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The General Dynamic Programming Technique

• Applies to a problem that at first seems to require a lot of 
time (possibly exponential), provided we have:
– Subproblem optimality: the global optimum value can be 

defined in terms of optimal subproblems
– Subproblem overlap: the subproblems are not independent, but 

instead they overlap (hence, should be constructed bottom-up).
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Recalling: Steps in Dynamic Programming

1. Characterize structure of an optimal solution.

2. Define value of optimal solution recursively.

3. Compute optimal solution values either top-down with 
caching or bottom-up in a table.

4. Construct an optimal solution from computed values.



CSE5311 Design and Analysis of  Algorithms 4Dept. CSE, UT Arlington

Optimal Binary Search Trees

• Problem
– Given sequence K = k1 < k2 <··· < kn of n sorted keys, 

with a search probability pi for each key ki.

– Want to build a binary search tree (BST) 
with minimum expected search cost.

– Actual cost = # of items examined.

– For key ki, cost = depthT(ki)+1, where depthT(ki) = depth of ki

in BST T .
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Expected Search Cost
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Example

• Consider 5 keys with these search probabilities:
p1 = 0.25, p2 = 0.2, p3 = 0.05, p4 = 0.2, p5 = 0.3.

k2

k1 k4

k3 k5

i     depthT(ki) depthT(ki)·pi

1       1                     0.25
2       0                     0
3       2                     0.1
4       1                     0.2
5       2                     0.6

1.15

Therefore, E[search cost] = 2.15.
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Example

• p1 = 0.25, p2 = 0.2, p3 = 0.05, p4 = 0.2, p5 = 0.3.

i    depthT(ki) depthT(ki)·pi

1       1                     0.25
2       0                     0
3       3                     0.15
4       2                     0.4
5       1                     0.3

1.10

Therefore, E[search cost] = 2.10.

k2

k1 k5

k4

k3 This tree turns out to be optimal for this set of  keys.
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Example

• Observations:
– Optimal BST may not have smallest height.

– Optimal BST may not have highest-probability key at root.

• Build by exhaustive checking?
– Construct each n-node BST.

– For each, 
assign keys and compute expected search cost.

– But there are (4n/n3/2) different BSTs with n nodes.
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Optimal Substructure

• Any subtree of a BST contains keys in a contiguous 
range ki, ..., kj for some 1 ≤ i ≤ j ≤ n.

• If T is an optimal BST and 
T contains subtree T with keys ki, ... ,kj , 

then T must be an optimal BST for keys ki, ..., kj.

T

T



CSE5311 Design and Analysis of  Algorithms 10Dept. CSE, UT Arlington

Optimal Substructure

• One of the keys in ki, …,kj, say kr, where i ≤ r ≤ j,
must be the root of an optimal subtree for these keys.

• Left subtree of kr contains ki,...,kr1.

• Right subtree of kr contains kr+1, ...,kj.

• To find an optimal BST:
– Examine all candidate roots kr , for i ≤ r ≤ j

– Determine all optimal BSTs containing ki,...,kr1 and 
containing kr+1,...,kj

kr

ki kr-1 kr+1 kj
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Recursive Solution

• Find optimal BST for ki,...,kj, where i ≥ 1, j ≤ n, j ≥ i1. 
When j = i1, the tree is empty.

• Define e[i, j ] = expected search cost of optimal BST for ki,...,kj.

• If j = i1, then e[i, j ] = 0.

• If j ≥ i,
– Select a root kr, for some i ≤ r ≤ j .

– Recursively make an optimal BSTs 

for ki,..,kr1 as the left subtree, and

for kr+1,..,kj as the right subtree.
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Recursive Solution

• When the OPT subtree becomes a subtree of a node:
– Depth of every node in OPT subtree goes up by 1.

– Expected search cost increases by

• If kr is the root of an optimal BST for ki,..,kj :
– e[i, j ] = pr + (e[i, r1] + w(i, r1))+(e[r+1, j] + w(r+1, j))

= e[i, r1] + e[r+1, j] + w(i, j).

• But, we don’t know kr. Hence,
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Computing an Optimal Solution

For each subproblem (i,j), store:

• expected search cost in a table e[1 ..n+1 , 0 ..n]
– Will use only entries e[i, j ], where j ≥ i1.

• root[i, j ] = root of subtree with keys ki,..,kj, for 1 ≤ i ≤ j 
≤ n.

• w[1..n+1, 0..n] = sum of probabilities
– w[i, i1] = 0 for 1 ≤ i ≤ n.

– w[i, j ] = w[i, j-1] + pj for 1 ≤ i ≤ j ≤ n.
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Pseudo-code

OPTIMAL-BST(p, q, n)OPTIMAL-BST(p, q, n)
1. for i ← 1 to n + 1
2. do e[i, i 1] ← 0
3. w[i, i 1] ← 0
4. for l ← 1 to n
5. do for i ← 1 to nl + 1
6. do j ←i + l1
7. e[i, j ]←∞
8. w[i, j ] ← w[i, j1] + pj

9. for r ←i to j
10. do t ← e[i, r1] + e[r + 1, j ] + w[i, j 

]
11. if t < e[i, j ]
12. then e[i, j ] ← t
13. root[i, j ] ←r
14. return e and root

Time: O(n3)

Consider all trees with l keys.

Fix the first key.

Fix the last key

Determine the root 
of  the optimal 
(sub)tree
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Optimal Substructure

• Show that a solution to a problem consists of making a choice, 
which leaves one or more subproblems to solve.

• Suppose that you are given this last choice that leads to an optimal 
solution.

• Given this choice, determine which subproblems arise and how to 
characterize the resulting space of subproblems.

• Show that the solutions to the subproblems used within the optimal 
solution must themselves be optimal. Usually use cut-and-paste.

• Need to ensure that a wide enough range of choices and 
subproblems are considered.
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Optimal Substructure

• Optimal substructure varies across problem domains:
– 1. How many subproblems are used in an optimal solution.

– 2. How many choices in determining which subproblem(s) to use.

• Informally, running time depends on (# of subproblems 
overall)  (# of choices).

• How many subproblems and choices do the examples 
considered contain?

• Dynamic programming uses optimal substructure bottom 
up.
– First find optimal solutions to subproblems.

– Then choose which to use in optimal solution to the problem.
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Optimal Substucture

• Does optimal substructure apply to all optimization 
problems?  No.

• Applies to determining the shortest path but NOT the 
longest simple path of an unweighted directed graph.

• Why?
– Shortest path has independent subproblems.

– Solution to one subproblem does not affect solution to another 
subproblem of the same problem.

– Subproblems are not independent in longest simple path.
Solution to one subproblem affects the solutions to other subproblems
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Overlapping Subproblems

• The space of subproblems must be “small”.

• The total number of distinct subproblems is a polynomial 
in the input size.
– A recursive algorithm is exponential because it solves the same 

problems repeatedly.

– If divide-and-conquer is applicable, then each problem solved will 
be brand new.


