Design and Analysis of Algorithms

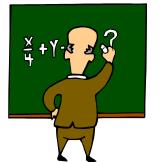
CSE 5311 Lecture 15 Dynamic Programming

Junzhou Huang, Ph.D. Department of Computer Science and Engineering

Dept. CSE, UT Arlington

The General Dynamic Programming Technique

- Applies to a problem that at first seems to require a lot of time (possibly exponential), provided we have:
 - Subproblem optimality: the global optimum value can be defined in terms of optimal subproblems
 - Subproblem overlap: the subproblems are not independent, but instead they overlap (hence, should be constructed bottom-up).



Recalling: Steps in Dynamic Programming

- 1. Characterize structure of an optimal solution.
- 2. Define value of optimal solution recursively.
- 3. Compute optimal solution values either top-down with caching or bottom-up in a table.
- 4. Construct an optimal solution from computed values.

Optimal Binary Search Trees

• Problem

- Given sequence $K = k_1 < k_2 < \cdots < k_n$ of *n* sorted keys, with a search probability p_i for each key k_i .
- Want to build a binary search tree (BST) with minimum expected search cost.
- Actual cost = # of items examined.
- For key k_i , cost = depth_T (k_i) +1, where depth_T (k_i) = depth of k_i in BST T.

E[search cost in T]

$$= \sum_{i=1}^{n} (\operatorname{depth}_{T}(k_{i}) + 1) \cdot p_{i}$$

$$= \sum_{i=1}^{n} \operatorname{depth}_{T}(k_{i}) \cdot p_{i} + \sum_{i=1}^{n} p_{i}$$

$$= 1 + \sum_{i=1}^{n} \operatorname{depth}_{T}(k_{i}) \cdot p_{i} \quad \text{(15.16)}$$
Sum of probabilities is 1.

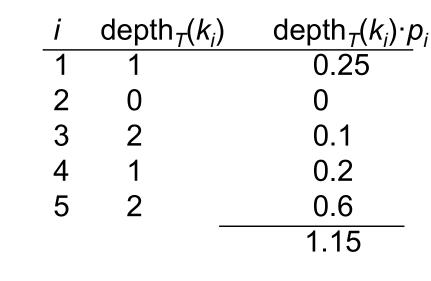
Dept. CSE, UT Arlington

Example

 \mathbf{k}_2

 k_{5}

• Consider 5 keys with these search probabilities: $p_1 = 0.25, p_2 = 0.2, p_3 = 0.05, p_4 = 0.2, p_5 = 0.3.$



Therefore, E[search cost] = 2.15.

 K_{2}

Example

k₂

 k_{5}

•
$$p_1 = 0.25, p_2 = 0.2, p_3 = 0.05, p_4 = 0.2, p_5 = 0.3.$$

i	$depth_T(k_i)$	depth _{$T(k_i) \cdot p_i$}
1	1	0.25
2	0	0
3	3	0.15
4	2	0.4
5	1	0.3
	_	1.10

This tree turns out to be optimal for this set of keys.

Dept. CSE, UT Arlington

 k_3

k₄

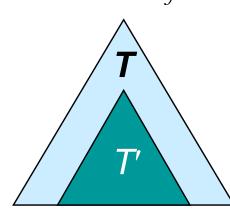
Example

- Observations:
 - Optimal BST may not have smallest height.
 - Optimal BST may not have highest-probability key at root.
- Build by exhaustive checking?
 - Construct each *n*-node BST.
 - For each,

assign keys and compute expected search cost.

– But there are $\Omega(4^n/n^{3/2})$ different BSTs with *n* nodes.

• Any subtree of a BST contains keys in a contiguous range k_i , ..., k_j for some $1 \le i \le j \le n$.



 If T is an optimal BST and T contains subtree T with keys k_i, ..., k_j, then T must be an optimal BST for keys k_i, ..., k_j.

Dept. CSE, UT Arlington

- One of the keys in k_i, \ldots, k_j , say k_r , where $i \le r \le j$, must be the root of an optimal subtree for these keys.
- Left subtree of k_r contains k_i, \dots, k_{r-1} .
- Right subtree of k_r contains $k_r+1, ..., k_j$.

- To find an optimal BST:
 - Examine all candidate roots k_r , for $i \le r \le j$
 - Determine all optimal BSTs containing k_i, \dots, k_{r-1} and containing k_{r+1}, \dots, k_j

Dept. CSE, UT Arlington

CSE5311 Design and Analysis of Algorithms

k_r

K

Recursive Solution

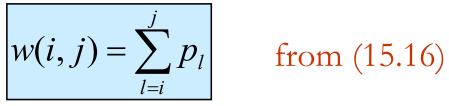
- Find optimal BST for k_i, \dots, k_j , where $i \ge 1, j \le n, j \ge i-1$. When j = i-1, the tree is empty.
- Define e[i, j] = expected search cost of optimal BST for k_{i}, \dots, k_{j} .
- If j = i-1, then e[i, j] = 0.
- If $j \ge i$,
 - Select a root k_r , for some $i \le r \le j$.
 - Recursively make an optimal BSTs

For k_i, \dots, k_{r-1} as the left subtree, and

For k_{r+1}, \dots, k_j as the right subtree.

Recursive Solution

- When the OPT subtree becomes a subtree of a node:
 - Depth of every node in OPT subtree goes up by 1.
 - Expected search cost increases by



- If k_r is the root of an optimal BST for k_i, \dots, k_j :
 - $e[i, j] = p_r + (e[i, r-1] + w(i, r-1)) + (e[r+1, j] + w(r+1, j))$

= e[i, r-1] + e[r+1, j] + w(i, j). (because $w(i, j)=w(i, r-1) + p_r + w(r+1, j)$

• But, we don't know k_r . Hence,

$$e[i,j] = \begin{cases} 0 & \text{if } j = i-1 \\ \min_{i \le r \le j} \{e[i,r-1] + e[r+1,j] + w(i,j)\} & \text{if } i \le j \end{cases}$$

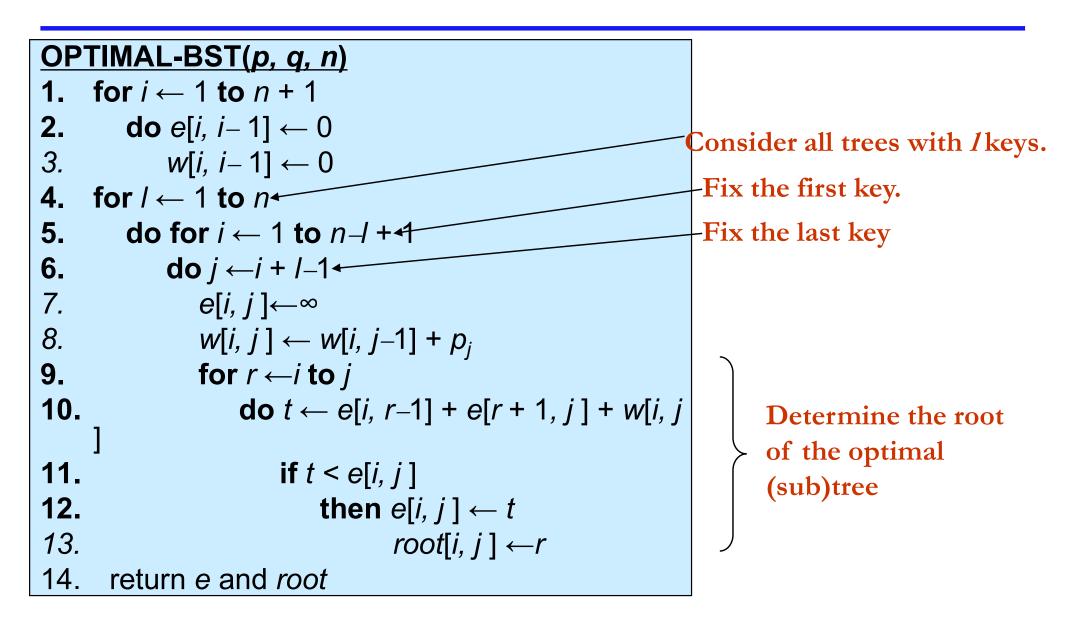
Dept. CSE, UT Arlington

Computing an Optimal Solution

For each subproblem (*i*,*j*), store:

- expected search cost in a table e[1 ...n+1, 0 ...n]- Will use only entries e[i, j], where $j \ge i-1$.
- $\operatorname{root}[i, j] = \operatorname{root} \operatorname{of} \operatorname{subtree} \operatorname{with} \operatorname{keys} k_{i}, \dots, k_{j}, \text{ for } 1 \le i \le j$ $\le n.$
- w[1..n+1, 0..n] = sum of probabilities- $w[i, i-1] = 0 \text{ for } 1 \le i \le n.$ - $w[i, j] = w[i, j-1] + p_j \text{ for } 1 \le i \le j \le n.$

Pseudo-code



- Show that a solution to a problem consists of making a choice, which leaves one or more subproblems to solve.
- Suppose that you are given this last choice that leads to an optimal solution.
- Given this choice, determine which subproblems arise and how to characterize the resulting space of subproblems.
- Show that the solutions to the subproblems used within the optimal solution must themselves be optimal. Usually use cut-and-paste.
- Need to ensure that a wide enough range of choices and subproblems are considered.

- Optimal substructure varies across problem domains:
 - 1. How many subproblems are used in an optimal solution.
 - 2. *How many choices* in determining which subproblem(s) to use.
- Informally, running time depends on (# of subproblems overall) × (# of choices).
- How many subproblems and choices do the examples considered contain?
- Dynamic programming uses optimal substructure bottom up.
 - First find optimal solutions to subproblems.
 - Then choose which to use in optimal solution to the problem.

Dept. CSE, UT Arlington

- Does optimal substructure apply to all optimization problems? <u>No</u>.
- Applies to determining the shortest path but NOT the longest simple path of an unweighted directed graph.
- Why?
 - Shortest path has independent subproblems.
 - Solution to one subproblem does not affect solution to another subproblem of the same problem.
 - Subproblems are not independent in longest simple path.

Solution to one subproblem affects the solutions to other subproblems

Overlapping Subproblems

- The space of subproblems must be "small".
- The total number of distinct subproblems is a polynomial in the input size.
 - A recursive algorithm is exponential because it solves the same problems repeatedly.
 - If divide-and-conquer is applicable, then each problem solved will be brand new.