Design and Analysis of Algorithms

CSE 5311

Lecture 15 Dynamic Programming

Junzhou Huang, Ph.D.
Department of Computer Science and Engineering

The General Dynamic Programming Technique

- Applies to a problem that at first seems to require a lot of time (possibly exponential), provided we have:
- Subproblem optimality: the global optimum value can be defined in terms of optimal subproblems
- Subproblem overlap: the subproblems are not independent, but instead they overlap (hence, should be constructed bottom-up).

Recalling: Steps in Dynamic Programming

1. Characterize structure of an optimal solution.
2. Define value of optimal solution recursively.
3. Compute optimal solution values either top-down with caching or bottom-up in a table.
4. Construct an optimal solution from computed values.

Optimal Binary Search Trees

- Problem
- Given sequence $K=k_{1}<k_{2}<\cdots<k_{\text {n }}$ of n sorted keys, with a search probability p_{i} for each key k_{i}.
- Want to build a binary search tree (BST) with minimum expected search cost.
- Actual cost = \# of items examined.
- For key k_{i}, cost $=\operatorname{depth}_{T}\left(k_{i}\right)+1$, where depth ${ }_{T}\left(k_{i}\right)=\operatorname{depth}$ of k_{i} in BST T.

Expected Search Cost

$E[$ search cost in $T]$

Example

- Consider 5 keys with these search probabilities:

$$
p_{1}=0.25, p_{2}=0.2, p_{3}=0.05, p_{4}=0.2, p_{5}=0.3 .
$$

i	depth $_{T}\left(k_{i}\right)$	$\operatorname{depth}_{T}\left(k_{i}\right) \cdot p_{i}$
1	1	0.25
2	0	0
3	2	0.1
4	1	0.2
5	2	0.6
		1.15

Therefore, E[search cost] $=2.15$.

Example

- $p_{1}=0.25, p_{2}=0.2, p_{3}=0.05, p_{4}=0.2, p_{5}=0.3$.

c	depth $_{T}\left(k_{i}\right)$	$\operatorname{depth}_{T}\left(k_{i}\right) \cdot p_{i}$
1	1	0.25
2	0	0
3	3	0.15
4	2	0.4
5	1	0.3
		1.10

Therefore, $\mathrm{E}[$ search $\operatorname{cost}]=2.10$.

This tree turns out to be optimal for this set of keys.

Example

- Observations:
- Optimal BST may not have smallest height.
- Optimal BST may not have highest-probability key at root.
- Build by exhaustive checking?
- Construct each n-node BST.
- For each, assign keys and compute expected search cost.
- But there are $\Omega\left(4^{n} / n^{3 / 2}\right)$ different BSTs with n nodes.

Optimal Substructure

- Any subtree of a BST contains keys in a contiguous range $k_{j} \ldots, k_{j}$ for some $1 \leq i \leq j \leq n$.

- If T is an optimal BST and
T contains subtree T with keys $k_{i j}, \ldots, k_{j}$, then T must be an optimal BST for keys $k_{i j} \ldots, k_{j}$;

Optimal Substructure

- One of the keys in $k_{i,}, \ldots, k_{, j}$, say $k_{, r}$, where $i \leq r \leq j$, must be the root of an optimal subtree for these keys.
- Left subtree of k_{r} contains $k_{i, \ldots, \ldots, k_{r-1}}$.
- Right subtree of k_{r} contains $k_{r}+1, \ldots, k_{j}$.

- To find an optimal BST:
- Examine all candidate roots k_{r}, for $i \leq r \leq j$
- Determine all optimal BSTs containing k_{i}, \ldots, k_{r-1} and containing k_{r+1}, \ldots, k_{j}

Recursive Solution

- Find optimal BST for k_{i}, \ldots, k_{j}, where $i \geq 1, j \leq n, j \geq i-1$. When $j=i-1$, the tree is empty.
- Define $e[i, j]=$ expected search cost of optimal BST for $k_{i}, \ldots, k_{j,}$
- If $j=i-1$, then $e[i, j]=0$.
- If $j \geq i$,
- Select a root k_{n}, for some $i \leq r \leq j$.
- Recursively make an optimal BSTs
$>$ for $k_{i, \cdots}, ., k_{r-1}$ as the left subtree, and
$>$ for k_{r+1}, \ldots, k_{j} as the right subtree.

Recursive Solution

- When the OPT subtree becomes a subtree of a node:
- Depth of every node in OPT subtree goes up by 1.
- Expected search cost increases by

$$
\begin{equation*}
w(i, j)=\sum_{l=i}^{j} p_{l} \tag{15.16}
\end{equation*}
$$

- If k_{r} is the root of an optimal BST for $k_{j} . . . k_{j}$:

$$
\begin{aligned}
-e[i, j] & =p_{r}+(e[i, r-1]+w(i, r-1))+(e[r+1, j]+w(r+1, j)) \\
& =e[i, r-1]+e[r+1, j]+w(i, j) . \quad \text { (because } w(i, j)=w(i, r-1)+p_{r}+w(r+1, .
\end{aligned}
$$

- But, we don't know k_{r}. Hence,

$$
e[i, j]= \begin{cases}0 & \text { if } j=i-1 \\ \min _{i \leq r \leq j}\{e[i, r-1]+e[r+1, j]+w(i, j)\} & \text { if } i \leq j\end{cases}
$$

Computing an Optimal Solution

For each subproblem (i, j), store:

- expected search cost in a table $e[1$..n+1, 0 ..n]
- Will use only entries $e[i, j]$, where $j \geq i-1$.
- $\operatorname{root}[i, j]=$ root of subtree with keys $k_{i j} . . .,_{e}$, for $1 \leq i \leq j$ $\leq n$.
- $w[1 . . n+1,0 . . n]=$ sum of probabilities
$-w[i, i-1]=0$ for $1 \leq i \leq n$.
$-w[i, j]=w[i, j-1]+p_{j}$ for $1 \leq i \leq j \leq n$.

Pseudo-code

Optimal Substructure

- Show that a solution to a problem consists of making a choice, which leaves one or more subproblems to solve.
- Suppose that you are given this last choice that leads to an optimal solution.
- Given this choice, determine which subproblems arise and how to characterize the resulting space of subproblems.
- Show that the solutions to the subproblems used within the optimal solution must themselves be optimal. Usually use cut-and-paste.
- Need to ensure that a wide enough range of choices and subproblems are considered.

Optimal Substructure

- Optimal substructure varies across problem domains:
- 1. How many subproblems are used in an optimal solution.
- 2. How many choices in determining which subproblem(s) to use.
- Informally, running time depends on (\# of subproblems overall) $\times(\#$ of choices).
- How many subproblems and choices do the examples considered contain?
- Dynamic programming uses optimal substructure bottom up.
- First find optimal solutions to subproblems.
- Then choose which to use in optimal solution to the problem.

Optimal Substucture

- Does optimal substructure apply to all optimization problems? No.
- Applies to determining the shortest path but NOT the longest simple path of an unweighted directed graph.
- Why?
- Shortest path has independent subproblems.
- Solution to one subproblem does not affect solution to another subproblem of the same problem.
- Subproblems are not independent in longest simple path.
$>$ Solution to one subproblem affects the solutions to other subproblems

Overlapping Subproblems

- The space of subproblems must be "small".
- The total number of distinct subproblems is a polynomial in the input size.
- A recursive algorithm is exponential because it solves the same problems repeatedly.
- If divide-and-conquer is applicable, then each problem solved will be brand new.

