
CSE5311 Design and Analysis of Algorithms 1Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms 1

CSE 5311
Lecture 15 Dynamic Programming

Junzhou Huang, Ph.D.

Department of Computer Science and Engineering

Design and Analysis of Algorithms

CSE5311 Design and Analysis of Algorithms 2Dept. CSE, UT Arlington

The General Dynamic Programming Technique

• Applies to a problem that at first seems to require a lot of
time (possibly exponential), provided we have:
– Subproblem optimality: the global optimum value can be

defined in terms of optimal subproblems
– Subproblem overlap: the subproblems are not independent, but

instead they overlap (hence, should be constructed bottom-up).

CSE5311 Design and Analysis of Algorithms 3Dept. CSE, UT Arlington

Recalling: Steps in Dynamic Programming

1. Characterize structure of an optimal solution.

2. Define value of optimal solution recursively.

3. Compute optimal solution values either top-down with
caching or bottom-up in a table.

4. Construct an optimal solution from computed values.

CSE5311 Design and Analysis of Algorithms 4Dept. CSE, UT Arlington

Optimal Binary Search Trees

• Problem
– Given sequence K = k1 < k2 <··· < kn of n sorted keys,

with a search probability pi for each key ki.

– Want to build a binary search tree (BST)
with minimum expected search cost.

– Actual cost = # of items examined.

– For key ki, cost = depthT(ki)+1, where depthT(ki) = depth of ki

in BST T .

CSE5311 Design and Analysis of Algorithms 5Dept. CSE, UT Arlington

Expected Search Cost



 





 









n

i
iiT

n

i

n

i
iiiT

n

i
iiT

pk

ppk

pk

TE

1

1 1

1

)(depth1

)(depth

)1)(depth(

]in cost search [

Sum of probabilities is 1.
(15.16)

CSE5311 Design and Analysis of Algorithms 6Dept. CSE, UT Arlington

Example

• Consider 5 keys with these search probabilities:
p1 = 0.25, p2 = 0.2, p3 = 0.05, p4 = 0.2, p5 = 0.3.

k2

k1 k4

k3 k5

i depthT(ki) depthT(ki)·pi

1 1 0.25
2 0 0
3 2 0.1
4 1 0.2
5 2 0.6

1.15

Therefore, E[search cost] = 2.15.

CSE5311 Design and Analysis of Algorithms 7Dept. CSE, UT Arlington

Example

• p1 = 0.25, p2 = 0.2, p3 = 0.05, p4 = 0.2, p5 = 0.3.

i depthT(ki) depthT(ki)·pi

1 1 0.25
2 0 0
3 3 0.15
4 2 0.4
5 1 0.3

1.10

Therefore, E[search cost] = 2.10.

k2

k1 k5

k4

k3 This tree turns out to be optimal for this set of keys.

CSE5311 Design and Analysis of Algorithms 8Dept. CSE, UT Arlington

Example

• Observations:
– Optimal BST may not have smallest height.

– Optimal BST may not have highest-probability key at root.

• Build by exhaustive checking?
– Construct each n-node BST.

– For each,
assign keys and compute expected search cost.

– But there are (4n/n3/2) different BSTs with n nodes.

CSE5311 Design and Analysis of Algorithms 9Dept. CSE, UT Arlington

Optimal Substructure

• Any subtree of a BST contains keys in a contiguous
range ki, ..., kj for some 1 ≤ i ≤ j ≤ n.

• If T is an optimal BST and
T contains subtree T with keys ki, ... ,kj ,

then T must be an optimal BST for keys ki, ..., kj.

T

T

CSE5311 Design and Analysis of Algorithms 10Dept. CSE, UT Arlington

Optimal Substructure

• One of the keys in ki, …,kj, say kr, where i ≤ r ≤ j,
must be the root of an optimal subtree for these keys.

• Left subtree of kr contains ki,...,kr1.

• Right subtree of kr contains kr+1, ...,kj.

• To find an optimal BST:
– Examine all candidate roots kr , for i ≤ r ≤ j

– Determine all optimal BSTs containing ki,...,kr1 and
containing kr+1,...,kj

kr

ki kr-1 kr+1 kj

CSE5311 Design and Analysis of Algorithms 11Dept. CSE, UT Arlington

Recursive Solution

• Find optimal BST for ki,...,kj, where i ≥ 1, j ≤ n, j ≥ i1.
When j = i1, the tree is empty.

• Define e[i, j] = expected search cost of optimal BST for ki,...,kj.

• If j = i1, then e[i, j] = 0.

• If j ≥ i,
– Select a root kr, for some i ≤ r ≤ j .

– Recursively make an optimal BSTs

for ki,..,kr1 as the left subtree, and

for kr+1,..,kj as the right subtree.

CSE5311 Design and Analysis of Algorithms 12Dept. CSE, UT Arlington

Recursive Solution

• When the OPT subtree becomes a subtree of a node:
– Depth of every node in OPT subtree goes up by 1.

– Expected search cost increases by

• If kr is the root of an optimal BST for ki,..,kj :
– e[i, j] = pr + (e[i, r1] + w(i, r1))+(e[r+1, j] + w(r+1, j))

= e[i, r1] + e[r+1, j] + w(i, j).

• But, we don’t know kr. Hence,





j

il
lpjiw),(




j

il
lpjiw),(from (15.16)

(because w(i, j)=w(i,r1) + pr + w(r + 1, j













jijiwjrerie

ij
jie

jri
 if)},(],1[]1,[{min

1 if0
],[













jijiwjrerie

ij
jie

jri
 if)},(],1[]1,[{min

1 if0
],[

CSE5311 Design and Analysis of Algorithms 13Dept. CSE, UT Arlington

Computing an Optimal Solution

For each subproblem (i,j), store:

• expected search cost in a table e[1 ..n+1 , 0 ..n]
– Will use only entries e[i, j], where j ≥ i1.

• root[i, j] = root of subtree with keys ki,..,kj, for 1 ≤ i ≤ j
≤ n.

• w[1..n+1, 0..n] = sum of probabilities
– w[i, i1] = 0 for 1 ≤ i ≤ n.

– w[i, j] = w[i, j-1] + pj for 1 ≤ i ≤ j ≤ n.

CSE5311 Design and Analysis of Algorithms 14Dept. CSE, UT Arlington

Pseudo-code

OPTIMAL-BST(p, q, n)OPTIMAL-BST(p, q, n)
1. for i ← 1 to n + 1
2. do e[i, i 1] ← 0
3. w[i, i 1] ← 0
4. for l ← 1 to n
5. do for i ← 1 to nl + 1
6. do j ←i + l1
7. e[i, j]←∞
8. w[i, j] ← w[i, j1] + pj

9. for r ←i to j
10. do t ← e[i, r1] + e[r + 1, j] + w[i, j

]
11. if t < e[i, j]
12. then e[i, j] ← t
13. root[i, j] ←r
14. return e and root

Time: O(n3)

Consider all trees with l keys.

Fix the first key.

Fix the last key

Determine the root
of the optimal
(sub)tree

CSE5311 Design and Analysis of Algorithms 15Dept. CSE, UT Arlington

Optimal Substructure

• Show that a solution to a problem consists of making a choice,
which leaves one or more subproblems to solve.

• Suppose that you are given this last choice that leads to an optimal
solution.

• Given this choice, determine which subproblems arise and how to
characterize the resulting space of subproblems.

• Show that the solutions to the subproblems used within the optimal
solution must themselves be optimal. Usually use cut-and-paste.

• Need to ensure that a wide enough range of choices and
subproblems are considered.

CSE5311 Design and Analysis of Algorithms 16Dept. CSE, UT Arlington

Optimal Substructure

• Optimal substructure varies across problem domains:
– 1. How many subproblems are used in an optimal solution.

– 2. How many choices in determining which subproblem(s) to use.

• Informally, running time depends on (# of subproblems
overall)  (# of choices).

• How many subproblems and choices do the examples
considered contain?

• Dynamic programming uses optimal substructure bottom
up.
– First find optimal solutions to subproblems.

– Then choose which to use in optimal solution to the problem.

CSE5311 Design and Analysis of Algorithms 17Dept. CSE, UT Arlington

Optimal Substucture

• Does optimal substructure apply to all optimization
problems? No.

• Applies to determining the shortest path but NOT the
longest simple path of an unweighted directed graph.

• Why?
– Shortest path has independent subproblems.

– Solution to one subproblem does not affect solution to another
subproblem of the same problem.

– Subproblems are not independent in longest simple path.
Solution to one subproblem affects the solutions to other subproblems

CSE5311 Design and Analysis of Algorithms 18Dept. CSE, UT Arlington

Overlapping Subproblems

• The space of subproblems must be “small”.

• The total number of distinct subproblems is a polynomial
in the input size.
– A recursive algorithm is exponential because it solves the same

problems repeatedly.

– If divide-and-conquer is applicable, then each problem solved will
be brand new.

