
CSE5311 Design and Analysis of  Algorithms 1Dept. CSE, UT Arlington CSE5311 Design and Analysis of  Algorithms 1

CSE 5311  
Lecture 16  Greedy algorithms

Junzhou Huang, Ph.D.

Department of Computer Science and Engineering

Design and Analysis of Algorithms



CSE5311 Design and Analysis of  Algorithms 2Dept. CSE, UT Arlington

Overview

• A greedy algorithm always makes the choice that looks 
best at the moment
– Make a locally optimal choice in hope of getting a globally 

optimal solution
– Example: Play cards, Invest on stocks, etc.

• Do not always yield optimal solutions

• They do for some problems with optimal substructure 
(like Dynamic Programming)

• Easier to code than DP
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An Activity-Selection Problem

• Input: Set S of n activities, a1, a2, …, an.
– Activity ai starts at time s i and finishes at time fi

– Two activities are compatible, if their intervals don’t overlap.

• Output: A subset of maximum number of mutually compatible activities.

• Assume: activities are sorted by finishing times f1 ≤ f2 ≤ … ≤ fn

• Example:

• Possible sets of  mutually compatible activities
– {a3, a9, a11}
– {a1, a4, a8, a11}
– {a2, a4,  a9, a11} Largest subsets

i 1 2 3 4 5 6 7 8 9 10 11

s i 1 3 0 5 3 5 6 8 8 2 12

fi 4 5 6 8 8 9 10 11 12 13 14
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An Activity-Selection Problem
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Optimal Substructure

• Suppose an optimal solution includes activity ak. 
Two subproblems:

a1, …, ak-1,           ak, ak+1, …, an

• The solution to the two subproblems must be optimal  
(prove using cut-and-paste argument)

1. Select compatible activities 
that finish before ak starts

2. Select compatible activities that 
finish after ak starts    
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Cut-and-Paste

• The "cut and paste" technique is a way to prove that a 
problem has the property. 
– In particular, you want to show that when you come up with an 

optimal solution to a problem, you have necessarily used optimal 
solutions to the constituent subproblems. 

• The proof is by contradiction. 
– Suppose you came up with an optimal solution to a problem by 

using suboptimal solutions to subproblems. 
– Then, if you were to replace ("cut") those suboptimal 

subproblem solutions with optimal subproblem solutions (by 
"pasting" them in), you would improve your optimal solution.

– But, since your solution was optimal by assumption, you have a 
contradiction. 
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Recursive Solution

• Sij : subset of activities that start after ai and finish before 
aj starts

• Subproblems: find c[i, j], maximum number of mutually 
compatible activities from 

• Recurrence:
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Early Finish Greedy

1. while( activities)

2.      Select the activity with the earliest finish

3.      Remove the activities that are not compatible

4. end while

• Greedy in the sense that: 
– It leaves as much opportunity as possible for the remaining 

activities to be scheduled.
– Maximizes the amount of  unscheduled time remaining
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Example
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Example



CSE5311 Design and Analysis of  Algorithms 11Dept. CSE, UT Arlington

Example
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Example
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Example
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Example
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Greedy Choice Property

• Locally optimal choice, we then get globally optimal 
solution 
– Them 16.1: if  S is an non-empty activity-selection subproblem, 

then there exists optimal solution A in S such that as1 in A, where 
as1  is the earliest finish activity in A

– Sketch of  proof: if  there exists optimal solution B that does not 
contain as1 , can always replace the first activity in B with as1. 
Same number of  activities, thus optimal.
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Recursive Algorithm

• Initial call: 

• Complexity:

• Straightforward to convert to an iterative one 
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Iterative Algorithm

• Initial call: 

• Complexity:
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Elements of the greedy strategy

• Determine the optimal substructure

• Develop the recursive solution

• Prove that if  we make the greedy choice, only one 
subproblem remains

• Prove that it is safe to make the greedy choice

• Develop a recursive algorithm that implements the 
greedy strategy

• Convert the recursive algorithm to an iterative one. 
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Not All Greedy are Equal

• Earliest finish time: Select the activity with the earliest 
finish time Optimal

• Earliest start time: Select activity with the earliest start 
time

• Shortest duration: Select activity with the shortest 
duration di= fi–si

• Fewest conflicts: Select activity that conflicts with the 
least number of  other activities first

• Last start time: Select activity with the last start 
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Not All Greedy are Equal

• Earliest start time: Select activity with the earliest start 
time

• Shortest duration: Select activity with the shortest 
duration di= fi–si
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Not All Greedy are Equal

• Fewest conflicts: Select activity that conflicts with the 
least number of  other activities first
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Dynamic Programming vs. Greedy Algorithms

• Optimization problems
– Dynamic programming, but overkill sometime.

– Greedy algorithm:

Being  greedy for local optimization with the hope it will lead 
to a global optimal solution, not always, but in many 
situations, it works.
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Example: An Activity-Selection Problem

• Suppose A set of activities S={a1, a2,…, an}
– They use resources, such as lecture hall, one lecture at a time
– Each ai, has a start time si, and finish time fi, with 0 si< fi<.
– ai and aj are compatible if [si , fi) and [sj , fj) do not overlap

• Goal: select maximum-size subset of mutually compatible 
activities.

• Start from dynamic programming, then greedy algorithm, 
see the relation between the two.
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DP solution –step 1

• Optimal substructure of activity-selection problem.
– Furthermore, assume that f1 … fn.

– Define Sij={ak: fi sk<fksj}, i.e., all activities starting after ai

finished and ending before aj begins.

– Define two fictitious activities a0 with f0=0 and an+1 with sn+1=
So f0 f1 … fn+1.

– Then an optimal solution including ak to Sij contains within it the 
optimal solution to Sik and Skj.
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DP solution –step 2

• A recursive solution

• Assume c[n+1,n+1] with c[i,j] is the number of activities in 
a maximum-size subset of mutually compatible activities in 
Sij.  So the solution is c[0,n+1]=S0,n+1.

• C[i,j]=   0   if Sij=
max{c[i,k]+c[k,j]+1} if Sij
i<k<j and akSij
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Converting DP Solution to Greedy Solution

• Theorem 16.1: consider any nonempty subproblem Sij, 
and let am be the activity in Sij with earliest finish time: 
fm=min{fk : ak  Sij}, then

1. Activity am is used in some maximum-size subset of 
mutually compatible activities of Sij.

2. The subproblem Sim is empty, so that choosing am leaves
Smj as the only one that may be nonempty.

• Proof of the theorem:
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Top-Down Rather Than Bottom-Up

• To solve Sij , choose am in Sij with the earliest finish 
time, then solve Smj , (Sim is empty)

• It is certain that optimal solution to Smj is in optimal 
solution to Sij.

• No need to solve Smj ahead of Sij.

• Subproblem pattern: Si,n+1. 
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Optimal Solution Properties

• In DP, optimal solution depends:
– How many subproblems to divide. (2 subproblems)
– How many choices to determine which subproblem to use. (j-i-1 

choices) 

• However, the above theorem (16.1) reduces both 
significantly
– One subproblem (the other is sure to be empty).
– One choice, i.e., the one with earliest finish time in Sij.  
– Moreover, top-down solving, rather than bottom-up in DP.
– Pattern to the subproblems that we solve, Sm,n+1 from Sij.
– Pattern to the activities that we choose. The activity with earliest 

finish time.
– With this local optimal, it is in fact the global optimal.
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Elements of Greedy Strategy

• Determine the optimal substructure
• Develop the recursive solution
• Prove one of the optimal choices is the greedy choice yet 

safe
• Show that all but one of subproblems are empty after 

greedy choice
• Develop a recursive algorithm that implements the greedy 

strategy
• Convert the recursive algorithm to an iterative one. 
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Greedy vs. DP

• Knapsack problem: a thief robbing a store and find n items
– I1 (v1,w1), I2 (v2,w2),…,In(vn,wn).
– The i-th item is worth vi dollars and weight wi pound
– Given a weight W at most he can carry,
– Find the items which maximize the values
– Which items should the thief take to obtain the maximum 

amount of money?
• Fractional knapsack, 

– Fractional of items can be taken
– Greed algorithm, O(nlogn)

• 0/1 knapsack.
– Each item is taken or not taken
– DP, O(nW).  (Questions: 0/1 knapsack is an NP-complete 

problem, why O(nW) algorithm?)
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Knapsack Problem

• Both exhibit the optimal-substructure property
– 0-1: If item j is removed from an optimal packing, the remaining 

packing is an optimal packing with weight at most W-wj

– Fractional: If w pounds of item j is removed from an optimal 
packing, the remaining packing is an optimal packing with weight 
at most W-w that can be taken from other n-1 items plus wj–w of 
item j
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Fractional Knapsack Problem

• Can be solvable by the greedy strategy
– Compute the value per pound vj/wj for each item
– Obeying a greedy strategy, take as much as possible of the item 

with the greatest value per pound.
– If the supply of that item is exhausted and there is still more 

room, take as much as possible of the item with the next value 
per pound, and so forth until there is no more room

– O(n lgn) (we need to sort the items by value per pound)
• 
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0-1 Knapsack Problem

• Much harder
– Cannot be solved by the greedy strategy. Counter example?
– We must compare the solution to the sub-problem in which the 

item is included with the solution to the sub-problem in which 
the item is excluded before we can make the choice

– Dynamic Programming (See previous lectures)
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Counter Example


