
CSE5311 Design and Analysis of Algorithms 1Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms 1

CSE 5311
Lecture 16 Greedy algorithms

Junzhou Huang, Ph.D.

Department of Computer Science and Engineering

Design and Analysis of Algorithms

CSE5311 Design and Analysis of Algorithms 2Dept. CSE, UT Arlington

Overview

• A greedy algorithm always makes the choice that looks
best at the moment
– Make a locally optimal choice in hope of getting a globally

optimal solution
– Example: Play cards, Invest on stocks, etc.

• Do not always yield optimal solutions

• They do for some problems with optimal substructure
(like Dynamic Programming)

• Easier to code than DP

CSE5311 Design and Analysis of Algorithms 3Dept. CSE, UT Arlington

An Activity-Selection Problem

• Input: Set S of n activities, a1, a2, …, an.
– Activity ai starts at time s i and finishes at time fi

– Two activities are compatible, if their intervals don’t overlap.

• Output: A subset of maximum number of mutually compatible activities.

• Assume: activities are sorted by finishing times f1 ≤ f2 ≤ … ≤ fn

• Example:

• Possible sets of mutually compatible activities
– {a3, a9, a11}
– {a1, a4, a8, a11}
– {a2, a4, a9, a11} Largest subsets

i 1 2 3 4 5 6 7 8 9 10 11

s i 1 3 0 5 3 5 6 8 8 2 12

fi 4 5 6 8 8 9 10 11 12 13 14

CSE5311 Design and Analysis of Algorithms 4Dept. CSE, UT Arlington

An Activity-Selection Problem

CSE5311 Design and Analysis of Algorithms 5Dept. CSE, UT Arlington

Optimal Substructure

• Suppose an optimal solution includes activity ak.
Two subproblems:

a1, …, ak-1, ak, ak+1, …, an

• The solution to the two subproblems must be optimal
(prove using cut-and-paste argument)

1. Select compatible activities
that finish before ak starts

2. Select compatible activities that
finish after ak starts

CSE5311 Design and Analysis of Algorithms 6Dept. CSE, UT Arlington

Cut-and-Paste

• The "cut and paste" technique is a way to prove that a
problem has the property.
– In particular, you want to show that when you come up with an

optimal solution to a problem, you have necessarily used optimal
solutions to the constituent subproblems.

• The proof is by contradiction.
– Suppose you came up with an optimal solution to a problem by

using suboptimal solutions to subproblems.
– Then, if you were to replace ("cut") those suboptimal

subproblem solutions with optimal subproblem solutions (by
"pasting" them in), you would improve your optimal solution.

– But, since your solution was optimal by assumption, you have a
contradiction.

CSE5311 Design and Analysis of Algorithms 7Dept. CSE, UT Arlington

Recursive Solution

• Sij : subset of activities that start after ai and finish before
aj starts

• Subproblems: find c[i, j], maximum number of mutually
compatible activities from

• Recurrence:

CSE5311 Design and Analysis of Algorithms 8Dept. CSE, UT Arlington

Early Finish Greedy

1. while(activities)

2. Select the activity with the earliest finish

3. Remove the activities that are not compatible

4. end while

• Greedy in the sense that:
– It leaves as much opportunity as possible for the remaining

activities to be scheduled.
– Maximizes the amount of unscheduled time remaining

CSE5311 Design and Analysis of Algorithms 9Dept. CSE, UT Arlington

Example

CSE5311 Design and Analysis of Algorithms 10Dept. CSE, UT Arlington

Example

CSE5311 Design and Analysis of Algorithms 11Dept. CSE, UT Arlington

Example

CSE5311 Design and Analysis of Algorithms 12Dept. CSE, UT Arlington

Example

CSE5311 Design and Analysis of Algorithms 13Dept. CSE, UT Arlington

Example

CSE5311 Design and Analysis of Algorithms 14Dept. CSE, UT Arlington

Example

CSE5311 Design and Analysis of Algorithms 15Dept. CSE, UT Arlington

Greedy Choice Property

• Locally optimal choice, we then get globally optimal
solution
– Them 16.1: if S is an non-empty activity-selection subproblem,

then there exists optimal solution A in S such that as1 in A, where
as1 is the earliest finish activity in A

– Sketch of proof: if there exists optimal solution B that does not
contain as1 , can always replace the first activity in B with as1.
Same number of activities, thus optimal.

CSE5311 Design and Analysis of Algorithms 16Dept. CSE, UT Arlington

Recursive Algorithm

• Initial call:

• Complexity:

• Straightforward to convert to an iterative one

CSE5311 Design and Analysis of Algorithms 17Dept. CSE, UT Arlington

Iterative Algorithm

• Initial call:

• Complexity:

CSE5311 Design and Analysis of Algorithms 18Dept. CSE, UT Arlington

Elements of the greedy strategy

• Determine the optimal substructure

• Develop the recursive solution

• Prove that if we make the greedy choice, only one
subproblem remains

• Prove that it is safe to make the greedy choice

• Develop a recursive algorithm that implements the
greedy strategy

• Convert the recursive algorithm to an iterative one.

CSE5311 Design and Analysis of Algorithms 19Dept. CSE, UT Arlington

Not All Greedy are Equal

• Earliest finish time: Select the activity with the earliest
finish time Optimal

• Earliest start time: Select activity with the earliest start
time

• Shortest duration: Select activity with the shortest
duration di= fi–si

• Fewest conflicts: Select activity that conflicts with the
least number of other activities first

• Last start time: Select activity with the last start

CSE5311 Design and Analysis of Algorithms 20Dept. CSE, UT Arlington

Not All Greedy are Equal

• Earliest start time: Select activity with the earliest start
time

• Shortest duration: Select activity with the shortest
duration di= fi–si

CSE5311 Design and Analysis of Algorithms 21Dept. CSE, UT Arlington

Not All Greedy are Equal

• Fewest conflicts: Select activity that conflicts with the
least number of other activities first

CSE5311 Design and Analysis of Algorithms 22Dept. CSE, UT Arlington

Dynamic Programming vs. Greedy Algorithms

• Optimization problems
– Dynamic programming, but overkill sometime.

– Greedy algorithm:

Being greedy for local optimization with the hope it will lead
to a global optimal solution, not always, but in many
situations, it works.

CSE5311 Design and Analysis of Algorithms 23Dept. CSE, UT Arlington

Example: An Activity-Selection Problem

• Suppose A set of activities S={a1, a2,…, an}
– They use resources, such as lecture hall, one lecture at a time
– Each ai, has a start time si, and finish time fi, with 0 si< fi<.
– ai and aj are compatible if [si , fi) and [sj , fj) do not overlap

• Goal: select maximum-size subset of mutually compatible
activities.

• Start from dynamic programming, then greedy algorithm,
see the relation between the two.

CSE5311 Design and Analysis of Algorithms 24Dept. CSE, UT Arlington

DP solution –step 1

• Optimal substructure of activity-selection problem.
– Furthermore, assume that f1 … fn.

– Define Sij={ak: fi sk<fksj}, i.e., all activities starting after ai

finished and ending before aj begins.

– Define two fictitious activities a0 with f0=0 and an+1 with sn+1=
So f0 f1 … fn+1.

– Then an optimal solution including ak to Sij contains within it the
optimal solution to Sik and Skj.

CSE5311 Design and Analysis of Algorithms 25Dept. CSE, UT Arlington

DP solution –step 2

• A recursive solution

• Assume c[n+1,n+1] with c[i,j] is the number of activities in
a maximum-size subset of mutually compatible activities in
Sij. So the solution is c[0,n+1]=S0,n+1.

• C[i,j]= 0 if Sij=
max{c[i,k]+c[k,j]+1} if Sij
i<k<j and akSij

CSE5311 Design and Analysis of Algorithms 26Dept. CSE, UT Arlington

Converting DP Solution to Greedy Solution

• Theorem 16.1: consider any nonempty subproblem Sij,
and let am be the activity in Sij with earliest finish time:
fm=min{fk : ak Sij}, then

1. Activity am is used in some maximum-size subset of
mutually compatible activities of Sij.

2. The subproblem Sim is empty, so that choosing am leaves
Smj as the only one that may be nonempty.

• Proof of the theorem:

CSE5311 Design and Analysis of Algorithms 27Dept. CSE, UT Arlington

Top-Down Rather Than Bottom-Up

• To solve Sij , choose am in Sij with the earliest finish
time, then solve Smj , (Sim is empty)

• It is certain that optimal solution to Smj is in optimal
solution to Sij.

• No need to solve Smj ahead of Sij.

• Subproblem pattern: Si,n+1.

CSE5311 Design and Analysis of Algorithms 28Dept. CSE, UT Arlington

Optimal Solution Properties

• In DP, optimal solution depends:
– How many subproblems to divide. (2 subproblems)
– How many choices to determine which subproblem to use. (j-i-1

choices)

• However, the above theorem (16.1) reduces both
significantly
– One subproblem (the other is sure to be empty).
– One choice, i.e., the one with earliest finish time in Sij.
– Moreover, top-down solving, rather than bottom-up in DP.
– Pattern to the subproblems that we solve, Sm,n+1 from Sij.
– Pattern to the activities that we choose. The activity with earliest

finish time.
– With this local optimal, it is in fact the global optimal.

CSE5311 Design and Analysis of Algorithms 29Dept. CSE, UT Arlington

Elements of Greedy Strategy

• Determine the optimal substructure
• Develop the recursive solution
• Prove one of the optimal choices is the greedy choice yet

safe
• Show that all but one of subproblems are empty after

greedy choice
• Develop a recursive algorithm that implements the greedy

strategy
• Convert the recursive algorithm to an iterative one.

CSE5311 Design and Analysis of Algorithms 30Dept. CSE, UT Arlington

Greedy vs. DP

• Knapsack problem: a thief robbing a store and find n items
– I1 (v1,w1), I2 (v2,w2),…,In(vn,wn).
– The i-th item is worth vi dollars and weight wi pound
– Given a weight W at most he can carry,
– Find the items which maximize the values
– Which items should the thief take to obtain the maximum

amount of money?
• Fractional knapsack,

– Fractional of items can be taken
– Greed algorithm, O(nlogn)

• 0/1 knapsack.
– Each item is taken or not taken
– DP, O(nW). (Questions: 0/1 knapsack is an NP-complete

problem, why O(nW) algorithm?)

CSE5311 Design and Analysis of Algorithms 31Dept. CSE, UT Arlington

Knapsack Problem

• Both exhibit the optimal-substructure property
– 0-1: If item j is removed from an optimal packing, the remaining

packing is an optimal packing with weight at most W-wj

– Fractional: If w pounds of item j is removed from an optimal
packing, the remaining packing is an optimal packing with weight
at most W-w that can be taken from other n-1 items plus wj–w of
item j

CSE5311 Design and Analysis of Algorithms 32Dept. CSE, UT Arlington

Fractional Knapsack Problem

• Can be solvable by the greedy strategy
– Compute the value per pound vj/wj for each item
– Obeying a greedy strategy, take as much as possible of the item

with the greatest value per pound.
– If the supply of that item is exhausted and there is still more

room, take as much as possible of the item with the next value
per pound, and so forth until there is no more room

– O(n lgn) (we need to sort the items by value per pound)
•

CSE5311 Design and Analysis of Algorithms 33Dept. CSE, UT Arlington

0-1 Knapsack Problem

• Much harder
– Cannot be solved by the greedy strategy. Counter example?
– We must compare the solution to the sub-problem in which the

item is included with the solution to the sub-problem in which
the item is excluded before we can make the choice

– Dynamic Programming (See previous lectures)

CSE5311 Design and Analysis of Algorithms 34Dept. CSE, UT Arlington

Counter Example

