
CSE5311 Design and Analysis of Algorithms 1Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms 1

CSE 5311
Lecture 18 Graph Algorithm

Junzhou Huang, Ph.D.

Department of Computer Science and Engineering

Design and Analysis of Algorithms

CSE5311 Design and Analysis of Algorithms 2Dept. CSE, UT Arlington

Graphs

• Graph G = (V, E)
– V = set of vertices
– E = set of edges  (VV)

• Types of graphs
– Undirected: edge (u, v) = (v, u); for all v, (v, v)  E (No self loops.)
– Directed: (u, v) is edge from u to v, denoted as u  v. Self loops are

allowed.
– Weighted: each edge has an associated weight, given by a weight

function w : E  R.
– Dense: |E|  |V|2.
– Sparse: |E| << |V|2.

• |E| = O(|V|2)

CSE5311 Design and Analysis of Algorithms 3Dept. CSE, UT Arlington

Graphs

• If (u, v)  E, then vertex v is adjacent to vertex u.
• Adjacency relationship is:

– Symmetric if G is undirected.

– Not necessarily so if G is directed.

• If G is connected:
– There is a path between every pair of vertices.

– |E|  |V| – 1.

– Furthermore, if |E| = |V| – 1, then G is a tree.

• Other definitions in Appendix B (B.4 and B.5) as needed.

CSE5311 Design and Analysis of Algorithms 4Dept. CSE, UT Arlington

Representation of Graphs

• Two standard ways.
– Adjacency Lists.

– Adjacency Matrix.

a

dc

b a

b

c

d

b

a

d

d c

c

a b

a c

a

dc

b
1 2

3 4

1 2 3 4
1 0 1 1 1
2 1 0 1 0
3 1 1 0 1
4 1 0 1 0

CSE5311 Design and Analysis of Algorithms 5Dept. CSE, UT Arlington

Adjacency Lists

• Consists of an array Adj of |V| lists.

• One list per vertex.

• For u  V, Adj[u] consists of all vertices adjacent to u.

a

dc

b a

b

c

d

b

c

d

d c

a

dc

b a

b

c

d

b

a

d

d c

c

a b

a c

If weighted, store weights also
in adjacency lists.

CSE5311 Design and Analysis of Algorithms 6Dept. CSE, UT Arlington

Storage Requirement

• For directed graphs:
– Sum of lengths of all adj. lists is

out-degree(v) = |E|
vV

– Total storage: (|V|+|E|)

• For undirected graphs:
– Sum of lengths of all adj. lists is

degree(v) = 2|E|
vV

– Total storage: (|V|+|E|)

No. of edges leaving v

No. of edges incident on v. Edge (u,v)
is incident on vertices u and v.

CSE5311 Design and Analysis of Algorithms 7Dept. CSE, UT Arlington

Pros and Cons: adj list

• Pros
– Space-efficient, when a graph is sparse.

– Can be modified to support many graph variants.

• Cons
– Determining if an edge (u,v) G is not efficient.

Have to search in u’s adjacency list. (degree(u)) time.

(V) in the worst case.

CSE5311 Design and Analysis of Algorithms 8Dept. CSE, UT Arlington

Adjacency Matrix

• |V|  |V| matrix A.

• Number vertices from 1 to |V| in some arbitrary manner.

• A is then given by:


 


otherwise0

),(if1
],[

Eji
ajiA ij

a

dc

b
1 2

3 4

1 2 3 4
1 0 1 1 1
2 0 0 1 0
3 0 0 0 1
4 0 0 0 0

a

dc

b
1 2

3 4

1 2 3 4
1 0 1 1 1
2 1 0 1 0
3 1 1 0 1
4 1 0 1 0

A = AT for undirected graphs.

CSE5311 Design and Analysis of Algorithms 9Dept. CSE, UT Arlington

Space and Time

• Space: (V2).
– Not memory efficient for large graphs.

• Time: to list all vertices adjacent to u: (V).

• Time: to determine if (u, v)  E: (1).

• Can store weights instead of bits for weighted graph.

CSE5311 Design and Analysis of Algorithms 10Dept. CSE, UT Arlington

Graph-searching Algorithms

• Searching a graph:
– Systematically follow the edges of a graph to visit the vertices of

the graph.

• Used to discover the structure of a graph.

• Standard graph-searching algorithms.
– Breadth-first Search (BFS).

– Depth-first Search (DFS).

CSE5311 Design and Analysis of Algorithms 11Dept. CSE, UT Arlington

Breadth-first Search

• Input: Graph G = (V, E), either directed or undirected,
and source vertex s  V.

• Output:
– d[v] = distance (smallest # of edges, or shortest path) from s to v,

for all v  V. d[v] =  if v is not reachable from s.
– [v] = u such that (u, v) is last edge on shortest path s v.

u is v’s predecessor.

– Builds breadth-first tree with root s that contains all reachable
vertices.

Definitions:
Path between vertices u and v: Sequence of vertices (v1, v2, …, vk) such that u=v1

and v =vk, and (vi,vi+1)  E, for all 1 i  k-1.
Length of the path: Number of edges in the path.
Path is simple if no vertex is repeated.

CSE5311 Design and Analysis of Algorithms 12Dept. CSE, UT Arlington

Breadth-first Search

• Expands the frontier between discovered and undiscovered
vertices uniformly across the breadth of the frontier.
– A vertex is “discovered” the first time it is encountered during the

search.
– A vertex is “finished” if all vertices adjacent to it have been

discovered.

• Colors the vertices to keep track of progress.
– White – Undiscovered.
– Gray – Discovered but not finished.
– Black – Finished.

Colors are required only to reason about the algorithm. Can be
implemented without colors.

CSE5311 Design and Analysis of Algorithms 13Dept. CSE, UT Arlington

BFS for Shortest Paths

Finished Discovered Undiscovered

S
11

1
S2

2

2

2

2
2

S

3

3 3

3

3

CSE5311 Design and Analysis of Algorithms 14Dept. CSE, UT Arlington

BFS(G,s)
1. for each vertex u in V[G] – {s}
2 do color[u]  white
3 d[u]  
4 [u]  nil
5 color[s]  gray
6 d[s]  0
7 [s]  nil
8 Q  
9 enqueue(Q,s)
10 while Q  
11 do u  dequeue(Q)
12 for each v in Adj[u]
13 do if color[v] = white
14 then color[v]  gray
15 d[v]  d[u] + 1
16 [v]  u
17 enqueue(Q,v)
18 color[u]  black

white: undiscovered
gray: discovered
black: finished

Q: a queue of discovered
vertices
color[v]: color of v
d[v]: distance from s to v
[u]: predecessor of v

Example: animation.

CSE5311 Design and Analysis of Algorithms 15Dept. CSE, UT Arlington

Example (BFS)

 0

  

 



r s t u

v w x y

Q: s
0

(Courtesy of Prof. Jim Anderson)

CSE5311 Design and Analysis of Algorithms 16Dept. CSE, UT Arlington

Example (BFS)

1 0

1  

 



r s t u

v w x y

Q: w r
1 1

CSE5311 Design and Analysis of Algorithms 17Dept. CSE, UT Arlington

Example (BFS)

1 0

1 2 

2 



r s t u

v w x y

Q: r t x
1 2 2

CSE5311 Design and Analysis of Algorithms 18Dept. CSE, UT Arlington

Example (BFS)

1 0

1 2 

2 

2

r s t u

v w x y

Q: t x v
2 2 2

CSE5311 Design and Analysis of Algorithms 19Dept. CSE, UT Arlington

Example (BFS)

1 0

1 2 

2 3

2

r s t u

v w x y

Q: x v u
2 2 3

CSE5311 Design and Analysis of Algorithms 20Dept. CSE, UT Arlington

Example (BFS)

1 0

1 2 3

2 3

2

r s t u

v w x y

Q: v u y
2 3 3

CSE5311 Design and Analysis of Algorithms 21Dept. CSE, UT Arlington

Example (BFS)

1 0

1 2 3

2 3

2

r s t u

v w x y

Q: u y
3 3

CSE5311 Design and Analysis of Algorithms 22Dept. CSE, UT Arlington

Example (BFS)

1 0

1 2 3

2 3

2

r s t u

v w x y

Q: y
3

CSE5311 Design and Analysis of Algorithms 23Dept. CSE, UT Arlington

Example (BFS)

1 0

1 2 3

2 3

2

r s t u

v w x y

Q: 

CSE5311 Design and Analysis of Algorithms 24Dept. CSE, UT Arlington

Example (BFS)

1 0

1 2 3

2 3

2

r s t u

v w x y

BF Tree

CSE5311 Design and Analysis of Algorithms 25Dept. CSE, UT Arlington

Analysis of BFS

• Initialization takes O(V).
• Traversal Loop

– After initialization, each vertex is enqueued and dequeued at most
once, and each operation takes O(1). So, total time for queuing is
O(V).

– The adjacency list of each vertex is scanned at most once. The sum
of lengths of all adjacency lists is (E).

• Summing up over all vertices => total running time of BFS
is O(V+E), linear in the size of the adjacency list
representation of graph.

• Correctness Proof
– We omit for BFS and DFS.
– Will do for later algorithms.

CSE5311 Design and Analysis of Algorithms 26Dept. CSE, UT Arlington

Breadth-first Tree

• For a graph G = (V, E) with source s, the predecessor
subgraph of G is G = (V , E) where
– V ={vV : [v]  NIL}{s}

– E ={([v],v)E : v  V - {s}}

• The predecessor subgraph G is a breadth-first tree if:
– V consists of the vertices reachable from s and

– for all vV , there is a unique simple path from s to v in G that
is also a shortest path from s to v in G.

• The edges in E are called tree edges.
|E | = |V | - 1.

CSE5311 Design and Analysis of Algorithms 27Dept. CSE, UT Arlington

Depth-first Search (DFS)

• Explore edges out of the most recently discovered vertex
v.

• When all edges of v have been explored, backtrack to
explore other edges leaving the vertex from which v was
discovered (its predecessor).

• “Search as deep as possible first.”

• Continue until all vertices reachable from the original
source are discovered.

• If any undiscovered vertices remain, then one of them is
chosen as a new source and search is repeated from that
source.

CSE5311 Design and Analysis of Algorithms 28Dept. CSE, UT Arlington

Depth-first Search

• Input: G = (V, E), directed or undirected. No source
vertex given!

• Output:
– 2 timestamps on each vertex. Integers between 1 and 2|V|.

d[v] = discovery time (v turns from white to gray)

 f [v] = finishing time (v turns from gray to black)

– [v] : predecessor of v = u, such that v was discovered during the
scan of u’s adjacency list.

• Uses the same coloring scheme for vertices as BFS.

CSE5311 Design and Analysis of Algorithms 29Dept. CSE, UT Arlington

Pseudo-code

DFS(G)

1. for each vertex u  V[G]

2. do color[u]  white

3. [u]  NIL

4. time  0

5. for each vertex u  V[G]

6. do if color[u] = white

7. then DFS-Visit(u)

Uses a global timestamp time.
;

DFS-Visit(u)

1. color[u]  GRAY  White vertex u
has been discovered

2. time  time + 1

3. d[u]  time

4. for each v  Adj[u]

5. do if color[v] = WHITE

6. then [v]  u

7. DFS-Visit(v)

8. color[u]  BLACK  Blacken u;
it is finished.

9. f[u]  time  time + 1

Example: animation.

CSE5311 Design and Analysis of Algorithms 30Dept. CSE, UT Arlington

Example (DFS)

1/

u v w

x y z

(Courtesy of Prof. Jim Anderson)

CSE5311 Design and Analysis of Algorithms 31Dept. CSE, UT Arlington

Example (DFS)

1/ 2/

u v w

x y z

CSE5311 Design and Analysis of Algorithms 32Dept. CSE, UT Arlington

Example (DFS)

1/

3/

2/

u v w

x y z

CSE5311 Design and Analysis of Algorithms 33Dept. CSE, UT Arlington

Example (DFS)

1/

4/ 3/

2/

u v w

x y z

CSE5311 Design and Analysis of Algorithms 34Dept. CSE, UT Arlington

Example (DFS)

1/

4/ 3/

2/

u v w

x y z

B

CSE5311 Design and Analysis of Algorithms 35Dept. CSE, UT Arlington

Example (DFS)

1/

4/5 3/

2/

u v w

x y z

B

CSE5311 Design and Analysis of Algorithms 36Dept. CSE, UT Arlington

Example (DFS)

1/

4/5 3/6

2/

u v w

x y z

B

CSE5311 Design and Analysis of Algorithms 37Dept. CSE, UT Arlington

Example (DFS)

1/

4/5 3/6

2/7

u v w

x y z

B

CSE5311 Design and Analysis of Algorithms 38Dept. CSE, UT Arlington

Example (DFS)

1/

4/5 3/6

2/7

u v w

x y z

BF

CSE5311 Design and Analysis of Algorithms 39Dept. CSE, UT Arlington

Example (DFS)

1/8

4/5 3/6

2/7

u v w

x y z

BF

CSE5311 Design and Analysis of Algorithms 40Dept. CSE, UT Arlington

Example (DFS)

1/8

4/5 3/6

2/7 9/

u v w

x y z

BF

CSE5311 Design and Analysis of Algorithms 41Dept. CSE, UT Arlington

Example (DFS)

1/8

4/5 3/6

2/7 9/

u v w

x y z

BF C

CSE5311 Design and Analysis of Algorithms 42Dept. CSE, UT Arlington

Example (DFS)

1/8

4/5 3/6 10/

2/7 9/

u v w

x y z

BF C

CSE5311 Design and Analysis of Algorithms 43Dept. CSE, UT Arlington

Example (DFS)

1/8

4/5 3/6 10/

2/7 9/

u v w

x y z

BF C

B

CSE5311 Design and Analysis of Algorithms 44Dept. CSE, UT Arlington

Example (DFS)

1/8

4/5 3/6 10/11

2/7 9/

u v w

x y z

BF C

B

CSE5311 Design and Analysis of Algorithms 45Dept. CSE, UT Arlington

Example (DFS)

1/8

4/5 3/6 10/11

2/7 9/12

u v w

x y z

BF C

B

CSE5311 Design and Analysis of Algorithms 46Dept. CSE, UT Arlington

Analysis of DFS

• Loops on lines 1-2 & 5-7 take (V) time, excluding time
to execute DFS-Visit.

• DFS-Visit is called once for each white vertex vV when
it’s painted gray the first time. Lines 3-6 of DFS-Visit is
executed |Adj[v]| times. The total cost of executing DFS-
Visit is vV|Adj[v]| = (E)

• Total running time of DFS is (V+E).

CSE5311 Design and Analysis of Algorithms 47Dept. CSE, UT Arlington

Parenthesis Theorem

Theorem 22.7

For all u, v, exactly one of the following holds:

1. d[u] < f [u] < d[v] < f [v] or d[v] < f [v] < d[u] < f [u] and neither u nor v
is a descendant of the other.

2. d[u] < d[v] < f [v] < f [u] and v is a descendant of u.

3. d[v] < d[u] < f [u] < f [v] and u is a descendant of v.

 So d[u] < d[v] < f [u] < f [v] cannot happen.

 Like parentheses:
 OK: () [] ([]) [()]

 Not OK: ([)] [(])

Corollary
v is a proper descendant of u if and only if d[u] < d[v] < f [v] < f [u].

CSE5311 Design and Analysis of Algorithms 48Dept. CSE, UT Arlington

Example (Parenthesis Theorem)

3/6

4/5 7/8 12/13

2/9 1/10

y z s

x w v

B F

14/15

11/16

u

t

C C C

C B

(s (z (y (x x) y) (w w) z) s) (t (v v) (u u) t)

CSE5311 Design and Analysis of Algorithms 49Dept. CSE, UT Arlington

Depth-First Trees

• Predecessor subgraph defined slightly different from that of
BFS.

• The predecessor subgraph of DFS is G = (V, E) where
E ={([v],v) : v  V and [v]  NIL}.
– How does it differ from that of BFS?

– The predecessor subgraph G forms a depth-first forest composed
of several depth-first trees. The edges in E are called tree edges.

Definition:
Forest: An acyclic graph G that may be disconnected.

CSE5311 Design and Analysis of Algorithms 50Dept. CSE, UT Arlington

White-path Theorem

Theorem 22.9

v is a descendant of u if and only if at time d[u], there is a path
u v consisting of only white vertices. (Except for u, which
was just colored gray.)

CSE5311 Design and Analysis of Algorithms 51Dept. CSE, UT Arlington

Classification of Edges

• Tree edge: in the depth-first forest. Found by exploring (u, v).
• Back edge: (u, v), where u is a descendant of v (in the depth-first

tree).
• Forward edge: (u, v), where v is a descendant of u, but not a tree

edge.
• Cross edge: any other edge. Can go between vertices in same depth-

first tree or in different depth-first trees.

Theorem:
In DFS of an undirected graph, we get only tree and back edges. No
forward or cross edges.

CSE5311 Design and Analysis of Algorithms 52Dept. CSE, UT Arlington

Identification of Edges

• Edge type for edge (u, v) can be identified when it is first explored by
DFS.

• Identification is based on the color of v.
– White – tree edge.

– Gray – back edge.

– Black – forward or cross edge.

CSE5311 Design and Analysis of Algorithms 53Dept. CSE, UT Arlington

Directed Acyclic Graph

• DAG – Directed graph with no cycles.

• Good for modeling processes and structures that have a
partial order:
– a > b and b > c  a > c.

– But may have a and b such that neither a > b nor b > a.

• Can always make a total order (either a > b or b > a for all
a  b) from a partial order.

CSE5311 Design and Analysis of Algorithms 54Dept. CSE, UT Arlington

Example

DAG of dependencies for putting on goalie equipment.

socks shorts

hose

pants

skates

leg pads

T-shirt

chest pad

sweater

mask

catch glove

blocker

batting glove

CSE5311 Design and Analysis of Algorithms 55Dept. CSE, UT Arlington

Characterizing a DAG

Proof:

• : Show that back edge  cycle.
– Suppose there is a back edge (u, v). Then v is ancestor of u in

depth-first forest.

– Therefore, there is a path v u, so v u v is a cycle.

v u
T T T

B

Lemma 22.11
A directed graph G is acyclic iff a DFS of G yields no back edges.

CSE5311 Design and Analysis of Algorithms 56Dept. CSE, UT Arlington

Characterizing a DAG

Proof (Contd.):

•  : Show that a cycle implies a back edge.
– c : cycle in G, v : first vertex discovered in c, (u, v) : preceding edge

in c.

– At time d[v], vertices of c form a white path v u. Why?

– By white-path theorem, u is a descendent of v in depth-first forest.

– Therefore, (u, v) is a back edge.

Lemma 22.11
A directed graph G is acyclic iff a DFS of G yields no back edges.

v u
T T T

B

