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Graphs

• Graph G = (V, E)
– V = set of vertices
– E = set of edges  (VV)

• Types of graphs
– Undirected: edge (u, v) = (v, u); for all v, (v, v)  E (No self loops.)
– Directed: (u, v) is edge from u to v, denoted as u  v. Self loops are 

allowed.
– Weighted: each edge has an associated weight, given by a weight 

function w : E  R.
– Dense: |E|  |V|2.
– Sparse: |E| << |V|2.

• |E| = O(|V|2)
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Graphs

• If (u, v)  E, then vertex v is adjacent to vertex u.
• Adjacency relationship is:

– Symmetric if G is undirected.

– Not necessarily so if G is directed.

• If G is connected:
– There is a path between every pair of vertices.

– |E|  |V| – 1.

– Furthermore, if |E| = |V| – 1, then G is a tree.

• Other definitions in Appendix B (B.4 and B.5) as needed.
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Representation of Graphs

• Two standard ways.
– Adjacency Lists.

– Adjacency Matrix.
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Adjacency Lists

• Consists of an array Adj of |V| lists.

• One list per vertex.

• For u  V, Adj[u] consists of all vertices adjacent to u.
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If  weighted, store weights also 
in adjacency lists.
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Storage Requirement

• For directed graphs:
– Sum of lengths of all adj. lists is

out-degree(v) = |E|
vV

– Total storage: (|V|+|E|)

• For undirected graphs:
– Sum of lengths of all adj. lists is

degree(v) = 2|E|
vV

– Total storage: (|V|+|E|)

No. of edges leaving v

No. of edges incident on v. Edge (u,v) 
is incident on vertices u and v.
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Pros and Cons: adj list 

• Pros
– Space-efficient, when a graph is sparse.

– Can be modified to support many graph variants.

• Cons
– Determining if an edge (u,v) G is not efficient.

Have to search in u’s adjacency list. (degree(u)) time.

(V) in the worst case.
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Adjacency Matrix

• |V|  |V| matrix A.

• Number vertices from 1 to |V| in some arbitrary manner.

• A is then given by:
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A = AT for undirected graphs.
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Space and Time

• Space: (V2).
– Not memory efficient for large graphs.

• Time: to list all vertices adjacent to u: (V).

• Time: to determine if (u, v)  E: (1).

• Can store weights instead of bits for weighted graph.
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Graph-searching Algorithms

• Searching a graph:
– Systematically follow the edges of a graph to visit the vertices of 

the graph.

• Used to discover the structure of a graph.

• Standard graph-searching algorithms.
– Breadth-first Search (BFS).

– Depth-first Search (DFS).
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Breadth-first Search

• Input: Graph G = (V, E), either directed or undirected, 
and source vertex s  V.

• Output:
– d[v] = distance (smallest # of edges, or shortest path) from s to v, 

for all v  V. d[v] =  if v is not reachable from s.
– [v] = u such that (u, v) is last edge on shortest path s      v.

u is v’s predecessor.

– Builds breadth-first tree with root s that contains all reachable 
vertices.

Definitions:
Path between vertices u and v: Sequence of  vertices (v1, v2, …, vk) such that u=v1

and v =vk, and (vi,vi+1)  E, for all 1 i  k-1.
Length of  the path: Number of   edges in the path.
Path is simple if  no vertex is repeated.
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Breadth-first Search

• Expands the frontier between discovered and undiscovered 
vertices uniformly across the breadth of the frontier.
– A vertex is “discovered” the first time it is encountered during the 

search.
– A vertex is “finished” if all vertices adjacent to it have been 

discovered.

• Colors the vertices to keep track of progress.
– White – Undiscovered.
– Gray – Discovered but not finished.
– Black – Finished.

Colors are required only to reason about the algorithm. Can be 
implemented without colors.
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BFS for Shortest Paths

Finished Discovered Undiscovered
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BFS(G,s)
1. for each vertex u in V[G] – {s}
2 do color[u]  white
3 d[u]  
4 [u]  nil
5 color[s]  gray
6 d[s]  0
7 [s]  nil
8 Q  
9 enqueue(Q,s)
10 while Q  
11 do u  dequeue(Q)
12 for each v in Adj[u]
13 do if color[v] = white
14 then color[v]  gray
15 d[v]  d[u] + 1
16 [v]  u
17 enqueue(Q,v)
18 color[u]  black

white: undiscovered
gray: discovered
black: finished

Q: a queue of discovered 
vertices
color[v]: color of v
d[v]: distance from s to v
[u]: predecessor of v

Example: animation.
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Example (BFS)

 0

  

 



r s t u

v w x y

Q: s
0

(Courtesy of Prof. Jim Anderson)
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Example (BFS)

1 0

1  

 



r s t u

v w x y

Q: w  r
1  1
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Example (BFS)

1 0

1 2 

2 



r s t u

v w x y

Q: r   t  x
1  2  2
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Example (BFS)

1 0

1 2 

2 

2

r s t u

v w x y

Q: t  x  v
2  2  2
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Example (BFS)

1 0

1 2 

2 3

2

r s t u

v w x y

Q: x  v  u
2  2  3
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Example (BFS)

1 0

1 2 3

2 3

2

r s t u

v w x y

Q: v  u  y
2  3  3
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Example (BFS)

1 0

1 2 3

2 3

2

r s t u

v w x y

Q: u  y
3  3
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Example (BFS)

1 0

1 2 3

2 3

2

r s t u

v w x y

Q: y
3
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Example (BFS)

1 0

1 2 3

2 3

2

r s t u

v w x y

Q: 
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Example (BFS)

1 0

1 2 3

2 3

2

r s t u

v w x y

BF Tree
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Analysis of BFS

• Initialization takes O(V).
• Traversal Loop

– After initialization, each vertex is enqueued and dequeued at most 
once, and each operation takes O(1). So, total time for queuing is 
O(V).

– The adjacency list of each vertex is scanned at most once.  The sum 
of lengths of all adjacency lists is (E).

• Summing up over all vertices => total running time of BFS 
is O(V+E), linear in the size of the adjacency list 
representation of graph. 

• Correctness Proof
– We omit for BFS and DFS.
– Will do for later algorithms.
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Breadth-first Tree

• For a graph G = (V, E) with source s, the predecessor 
subgraph of G is G = (V , E) where 
– V ={vV : [v]  NIL}{s}

– E ={([v],v)E : v  V - {s}} 

• The predecessor subgraph G is a breadth-first tree if:
– V consists of the vertices reachable from s and

– for all vV , there is a unique simple path from s to v in G that 
is also a shortest path from s to v in G.  

• The edges in E are called tree edges.  
|E | = |V | - 1.
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Depth-first Search (DFS)

• Explore edges out of the most recently discovered vertex 
v.

• When all edges of v have been explored, backtrack to 
explore other edges leaving the vertex from which v was 
discovered (its predecessor).

• “Search as deep as possible first.”

• Continue until all vertices reachable from the original 
source are discovered.

• If any undiscovered vertices remain, then one of them is 
chosen as a new source and search is repeated from that 
source.
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Depth-first Search

• Input: G = (V, E), directed or undirected. No source 
vertex given!

• Output:
– 2 timestamps on each vertex. Integers between 1 and 2|V|.

d[v] = discovery time (v turns from white to gray)

 f [v] = finishing time (v turns from gray to black)

– [v] : predecessor of v = u, such that v was discovered during the 
scan of u’s adjacency list.

• Uses the same coloring scheme for vertices as BFS.
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Pseudo-code

DFS(G)

1.  for each vertex u  V[G]

2.       do color[u]  white

3.            [u]  NIL

4.  time  0

5.  for each vertex u  V[G]

6.        do if color[u] = white

7.                 then DFS-Visit(u)

Uses a global timestamp time.
;  

DFS-Visit(u)

1. color[u]  GRAY   White vertex u
has been discovered

2. time  time + 1

3. d[u]  time

4. for each v  Adj[u]

5. do if color[v] = WHITE

6. then [v]  u

7. DFS-Visit(v)

8. color[u]  BLACK      Blacken u;  
it is finished.

9. f[u]  time  time + 1

Example: animation.
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Example (DFS)

1/

u v w

x y z

(Courtesy of Prof. Jim Anderson)



CSE5311 Design and Analysis of  Algorithms 31Dept. CSE, UT Arlington

Example (DFS)

1/ 2/

u v w

x y z
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Example (DFS)

1/

3/

2/

u v w

x y z
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Example (DFS)

1/

4/ 3/

2/

u v w

x y z
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Example (DFS)

1/

4/ 3/

2/

u v w

x y z

B
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Example (DFS)

1/

4/5 3/

2/

u v w

x y z

B
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Example (DFS)

1/

4/5 3/6

2/

u v w

x y z

B
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Example (DFS)

1/

4/5 3/6

2/7

u v w

x y z

B
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Example (DFS)

1/

4/5 3/6

2/7

u v w

x y z

BF
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Example (DFS)

1/8

4/5 3/6

2/7

u v w

x y z

BF
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Example (DFS)

1/8

4/5 3/6

2/7 9/

u v w

x y z

BF
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Example (DFS)

1/8

4/5 3/6

2/7 9/

u v w

x y z

BF C
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Example (DFS)

1/8

4/5 3/6 10/

2/7 9/

u v w

x y z

BF C
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Example (DFS)

1/8

4/5 3/6 10/

2/7 9/

u v w

x y z

BF C

B
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Example (DFS)

1/8

4/5 3/6 10/11

2/7 9/

u v w

x y z

BF C

B
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Example (DFS)

1/8

4/5 3/6 10/11

2/7 9/12

u v w

x y z

BF C

B
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Analysis of DFS

• Loops on lines 1-2 & 5-7 take (V) time, excluding time 
to execute DFS-Visit.

• DFS-Visit is called once for each white vertex vV when 
it’s painted gray the first time.  Lines 3-6 of DFS-Visit is 
executed |Adj[v]| times. The total cost of executing DFS-
Visit is vV|Adj[v]| = (E)

• Total running time of DFS is (V+E).
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Parenthesis Theorem

Theorem 22.7

For all u, v, exactly one of the following holds:

1. d[u] < f [u] < d[v] < f [v] or d[v] < f [v] < d[u] < f [u] and neither u nor v 
is a descendant of the other.

2. d[u] < d[v] < f [v] < f [u] and v is a descendant of u.

3. d[v] < d[u] < f [u] < f [v] and u is a descendant of v.

 So d[u] < d[v] < f  [u] < f  [v] cannot happen.

 Like parentheses:
 OK: ( ) [ ] ( [ ] ) [ ( ) ]

 Not OK: ( [ ) ] [ ( ] )

Corollary
v is a proper descendant of  u if  and only if  d[u] < d[v] < f  [v] < f  [u].
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Example (Parenthesis Theorem)

3/6

4/5 7/8 12/13

2/9 1/10

y z s

x w v

B F

14/15

11/16

u

t

C C C

C B

(s (z (y (x x) y) (w w) z) s) (t (v v) (u u) t)
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Depth-First Trees

• Predecessor subgraph defined slightly different from that of 
BFS.

• The predecessor subgraph of DFS is G = (V, E) where 
E ={([v],v) : v  V and [v]  NIL}.
– How does it differ from that of BFS?

– The predecessor subgraph G forms a depth-first forest composed 
of several depth-first trees.  The edges in E are called tree edges.

Definition:
Forest: An acyclic graph G that may be disconnected.
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White-path Theorem

Theorem 22.9

v is a descendant of u if and only if at time d[u], there  is  a    path 
u      v consisting of only white vertices. (Except for u, which 
was just colored gray.)
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Classification of Edges

• Tree edge: in the depth-first forest. Found by exploring (u, v).
• Back edge: (u, v), where u is a descendant of v (in the depth-first 

tree).
• Forward edge: (u, v), where v is a descendant of u, but not a tree 

edge.
• Cross edge: any other edge. Can go between vertices in same depth-

first tree or in different depth-first trees.

Theorem:
In DFS of  an undirected graph, we get only tree and back edges. No 
forward or cross edges.
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Identification of Edges

• Edge type for edge (u, v) can be identified when it is first explored by 
DFS. 

• Identification is based on the color of v.
– White – tree edge.

– Gray – back edge.

– Black – forward or cross edge.
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Directed Acyclic Graph

• DAG – Directed graph with no cycles.

• Good for modeling processes and structures that have a 
partial order:
– a > b and b > c  a > c.

– But may have a and b such that neither a > b nor b > a.

• Can always make a total order (either a > b or b > a for all 
a  b) from a partial order. 
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Example

DAG of dependencies for putting on goalie equipment.

socks shorts

hose

pants

skates

leg pads

T-shirt

chest pad

sweater

mask

catch glove

blocker

batting glove
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Characterizing a DAG

Proof:

• : Show that back edge  cycle.
– Suppose there is a back edge (u, v). Then v is ancestor of u in 

depth-first forest.

– Therefore, there is a path v      u, so v       u  v is a cycle.

v u
T T T

B

Lemma 22.11
A directed graph G is acyclic iff  a DFS of  G yields no back edges.
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Characterizing a DAG

Proof (Contd.):

•  : Show that a cycle implies a back edge.
– c : cycle in G, v : first vertex discovered in c, (u, v) : preceding edge 

in c. 

– At time d[v], vertices of c form a white path v     u. Why?

– By white-path theorem, u is a descendent of v in depth-first forest.

– Therefore, (u, v) is a back edge.

Lemma 22.11
A directed graph G is acyclic iff  a DFS of  G yields no back edges.

v u
T T T

B


