Design and Analysis of Algorithms

CSE 5311
Lecture 18 Graph Algorithm

Junzhou Huang, Ph.D.
Department of Computer Science and Engineering

Graphs

- Graph $G=(V, E)$
- $V=$ set of vertices
$-E=$ set of edges $\subseteq(V \times V)$
- Types of graphs
- Undirected: edge $(u, v)=(v, u)$; for all $v,(v, v) \notin E$ (No self loops.)
- Directed: (u, v) is edge from u to v, denoted as $u \rightarrow v$. Self loops are allowed.
- Weighted: each edge has an associated weight, given by a weight function $w: E \rightarrow \mathbf{R}$.
- Dense: $|E| \approx|V|^{2}$.
- Sparse: $|E| \ll|V|^{2}$.
- $|E|=O\left(|V|^{2}\right)$

Graphs

- If $(u, v) \in E$, then vertex v is adjacent to vertex u.
- Adjacency relationship is:
- Symmetric if G is undirected.
- Not necessarily so if G is directed.
- If G is connected:
- There is a path between every pair of vertices.
$-|E| \geq|V|-1$.
- Furthermore, if $|E|=|V|-1$, then G is a tree.
- Other definitions in Appendix B (B. 4 and B.5) as needed.

Representation of Graphs

- Two standard ways.
- Adjacency Lists.

- Adjacency Matrix.

	1	2	3	4
1	0	1	1	1
2	1	0	1	0
3	1	1	0	1
4	1	0	1	0

Adjacency Lists

- Consists of an array $A d j$ of $|V|$ lists.
- One list per vertex.
- For $u \in V, A d j[u]$ consists of all vertices adjacent to u.

Storage Requirement

- For directed graphs:
- Sum of lengths of all adj. lists is

$$
\sum_{\text {out-degree }(v)}=|E|
$$

$v \in V$

- Total storage: $\Theta(|V|+|E|)$
- For undirected graphs:
- Sum of lengths of all adj. lists is

$$
\sum_{v \in V} \operatorname{degree}(v)=2|E|
$$

No. of edges incident on v. Edge (u, v)

- Total storage: $\Theta(|V|+|E|) \quad$ is incident on vertices u and v.

Pros and Cons: adj list

- Pros
- Space-efficient, when a graph is sparse.
- Can be modified to support many graph variants.
- Cons
- Determining if an edge $(u, \nu) \in \mathrm{G}$ is not efficient.
$>$ Have to search in u 's adjacency list. Θ (degree $(u))$ time.
$>\Theta(V)$ in the worst case.

Adjacency Matrix

- $|V| \times|V|$ matrix A.
- Number vertices from 1 to $|V|$ in some arbitrary manner.
- A is then given by: $A[i, j]=a_{i j}= \begin{cases}1 & \text { if }(i, j) \in E \\ 0 & \text { otherwise }\end{cases}$

	1	2	3	4
1	0	1	1	1
2	0	0	1	0
3	0	0	0	1
4	0	0	0	0

	1	2	3	4
1	0	1	1	1
2	1	0	1	0
3	1	1	0	1
4	1	0	1	0

$A=A^{\top}$ for undirected graphs.

Space and Time

- Space: $\Theta\left(V^{2}\right)$.
- Not memory efficient for large graphs.
- Time: to list all vertices adjacent to $u: \Theta(V)$.
- Time: to determine if $(u, v) \in E: \Theta(1)$.
- Can store weights instead of bits for weighted graph.

Graph-searching Algorithms

- Searching a graph:
- Systematically follow the edges of a graph to visit the vertices of the graph.
- Used to discover the structure of a graph.
- Standard graph-searching algorithms.
- Breadth-first Search (BFS).
- Depth-first Search (DFS).

Breadth-first Search

- Input: Graph $G=(V, E)$, either directed or undirected, and source vertex $s \in V$.
- Output:
$-d[\nu]=$ distance (smallest \# of edges, or shortest path) from s to v, for all $v \in V \cdot d[\nu]=\infty$ if v is not reachable from s.
$-\pi[v]=u$ such that (u, v) is last edge on shortest path $s^{\sim} \nu$.
u is v 's predecessor.
- Builds breadth-first tree with root s that contains all reachable vertices.

Definitions:

Path between vertices u and v : Sequence of vertices $\left(v_{1}, v_{2}, \ldots, v_{\mathrm{k}}\right)$ such that $u=v_{1}$ and $v=v_{\mathrm{k}}$, and $\left(v_{i} v_{i+1}\right) \in E$, for all $1 \leq i \leq k-1$.
Length of the path: Number of edges in the path.
Path is simple if no vertex is repeated.

Breadth-first Search

- Expands the frontier between discovered and undiscovered vertices uniformly across the breadth of the frontier.
- A vertex is "discovered" the first time it is encountered during the search.
- A vertex is "finished" if all vertices adjacent to it have been discovered.
- Colors the vertices to keep track of progress.
- White - Undiscovered.
- Gray - Discovered but not finished.
- Black - Finished.
$>$ Colors are required only to reason about the algorithm. Can be implemented without colors.

BFS for Shortest Paths

- Finished

- Discovered

o Undiscovered

BFS(G,s)

1. for each vertex u in $V[G]-\{s\}$

2 do color $[u] \leftarrow$ white
$3 \quad d[u] \leftarrow \propto$
$4 \quad \pi[u] \leftarrow$ nil
5 color[s] \leftarrow gray
$6 \mathrm{~d}[\mathrm{~s}] \leftarrow 0$
$7 \pi[s] \leftarrow$ nil
$8 \quad Q \leftarrow \Phi$
9 enqueue(Q,s)
10 while $Q \neq \Phi$
11 do $u \leftarrow$ dequeue (Q)
12 for each v in $\operatorname{Adj}[u]$
13 do if color[v$]=$ white

14
15
16
17
18
then color $[v] \leftarrow$ gray $d[v] \leftarrow d[u]+1$ $\pi[v] \leftarrow u$ enqueue(Q, v)
color $[u] \leftarrow$ black
white: undiscovered gray: discovered black: finished

Q: a queue of discovered vertices
color[v]: color of v $\mathrm{d}[\mathrm{v}]$: distance from s to v $\pi[u]$: predecessor of v

Example: animation.

Example (BFS)

(Courtesy of Prof. Jim Anderson)

Example (BFS)

$$
\begin{array}{|r|r|}
\hline \text { Q: } & \text { r } \\
1 & 1 \\
\hline
\end{array}
$$

Example (BFS)

$$
\begin{array}{|llll|}
\hline \text { Q: } & r & t & x \\
1 & 2 & 2 \\
\hline
\end{array}
$$

Example (BFS)

$$
\begin{array}{|r|r|}
\hline \text { Q: } \times \mathrm{V} \\
2 & 2 \\
\hline
\end{array}
$$

Example (BFS)

$$
\begin{array}{|c|ccc|}
\hline \text { Q: } & x & v & u \\
2 & 2 & 3 \\
\hline
\end{array}
$$

Example (BFS)

$$
\begin{array}{|c|ccc|}
\hline \text { Q: } \begin{array}{rlll}
& u & y \\
2 & 3 & 3 \\
\hline
\end{array} \\
\hline
\end{array}
$$

Example (BFS)

$$
\begin{array}{|l|l|}
\hline \text { Q: } u & y \\
3 & 3 \\
\hline
\end{array}
$$

Example (BFS)

$$
\text { Q: } \begin{array}{r}
\mathrm{y} \\
3
\end{array}
$$

Example (BFS)

Q: \varnothing

Example (BFS)

BF Tree

Analysis of BFS

- Initialization takes $O(V)$.
- Traversal Loop
- After initialization, each vertex is enqueued and dequeued at most once, and each operation takes $O(1)$. So, total time for queuing is $O(V)$.
- The adjacency list of each vertex is scanned at most once. The sum of lengths of all adjacency lists is $\Theta(E)$.
- Summing up over all vertices $=>$ total running time of BFS is $O(V+E)$, linear in the size of the adjacency list representation of graph.
- Correctness Proof
- We omit for BFS and DFS.
- Will do for later algorithms.

Breadth-first Tree

- For a graph $G=(V, E)$ with source s, the predecessor subgraph of G is $G_{\pi}=\left(V_{\pi}, E_{\pi}\right)$ where

$$
\begin{aligned}
& -V_{\pi}=\{v \in V: \pi[v] \neq \mathrm{NIL}\} \bigcup\{s\} \\
& -E_{\pi}=\left\{(\pi[v], v) \in E: v \in V_{\pi}-\{s\}\right\}
\end{aligned}
$$

- The predecessor subgraph G_{π} is a breadth-first tree if:
- V_{π} consists of the vertices reachable from s and
- for all $v \in V_{\pi}$, there is a unique simple path from s to v in G_{π} that is also a shortest path from s to v in G.
- The edges in E_{π} are called tree edges.

$$
\left|E_{\pi}\right|=\left|V_{\pi}\right|-1
$$

Depth-first Search (DFS)

- Explore edges out of the most recently discovered vertex ν.
- When all edges of v have been explored, backtrack to explore other edges leaving the vertex from which v was discovered (its predecessor).
- "Search as deep as possible first."
- Continue until all vertices reachable from the original source are discovered.
- If any undiscovered vertices remain, then one of them is chosen as a new source and search is repeated from that source.

Depth-first Search

- Input: $G=(V, E)$, directed or undirected. No source vertex given!
- Output:
- 2 timestamps on each vertex. Integers between 1 and $2|\mathrm{~V}|$.
$>d[\nu]=$ discovery time (v turns from white to gray)
$>f[\nu]=$ finishing time (v turns from gray to black)
$-\pi[v]$: predecessor of $v=u$, such that v was discovered during the scan of u 's adjacency list.
- Uses the same coloring scheme for vertices as BFS.

Pseudo-code

DFS(G)

1. for each vertex $u \in V[G]$
2. do color $[u] \leftarrow$ white
3. $\pi[u] \leftarrow$ NIL
4. time $\leftarrow 0$
5. for each vertex $u \in V[G]$
6. do if color $[u]=$ white
7. then DFS-Visit(u)

Uses a global timestamp time.

DFS-Visit(u)

1. color $[u] \leftarrow$ GRAY ∇ White vertex u has been discovered
2. time \leftarrow time +1
3. $d[u] \leftarrow$ time
4. for each $v \in \operatorname{Adj}[u]$
5. do if color $[v]=$ WHITE
6. then $\pi[v] \leftarrow u$ DFS-Visit(v)
7. color $[u] \leftarrow$ BLACK $\quad \nabla$ Blacken u; it is finished.
8. $f[u] \leftarrow$ time \leftarrow time +1

Example: animation.

Example (DFS)

Analysis of DFS

- Loops on lines 1-2 \& 5-7 take $\Theta(V)$ time, excluding time to execute DFS-Visit.
- DFS-Visit is called once for each white vertex $v \in V$ when it's painted gray the first time. Lines 3-6 of DFS-Visit is executed $|\operatorname{Adj}[\nu]|$ times. The total cost of executing DFSVisit is $\sum_{v \in V}|\operatorname{Adj}[\nu]|=\Theta(E)$
- Total running time of DFS is $\Theta(V+E)$.

Parenthesis Theorem

Theorem 22.7

For all u, v, exactly one of the following holds:

1. $d[u]<f[u]<d[\nu]<f[v]$ or $d[v]<f[v]<d[u]<f[u]$ and neither u nor v is a descendant of the other.
2. $d[u]<d[v]<f[v]<f[u]$ and v is a descendant of u.
3. $d[v]<d[u]<f[u]<f[v]$ and u is a descendant of v.

- So $d[u]<d[v]<f[u]<f[v]$ cannot happen.
- Like parentheses:
- OK: () [] ([]) [()]
- Not OK: ([)][(])

Corollaty

v is a proper descendant of u if and only if $d[u]<d[v]<f[v]<f[u]$.

Example (Parenthesis Theorem)

Depth-First Trees

- Predecessor subgraph defined slightly different from that of BFS.
- The predecessor subgraph of DFS is $G_{\pi}=\left(V, E_{\pi}\right)$ where $E_{\pi}=\{(\pi[\nu], \nu): v \in V$ and $\pi[v] \neq \mathrm{NIL}\}$.
- How does it differ from that of BFS?
- The predecessor subgraph G_{π} forms a depth-first forest composed of several depth-first trees. The edges in E_{π} are called tree edges.

Definition:

Forest: An acyclic graph G that may be disconnected.

White-path Theorem

Theorem 22.9

v is a descendant of u if and only if at time $d[u]$, there is a path $u \sim v$ consisting of only white vertices. (Except for u, which was just colored gray.)

Classification of Edges

- Tree edge: in the depth-first forest. Found by exploring (u, v).
- Back edge: (u, v), where u is a descendant of v (in the depth-first tree).
- Forward edge: (u, v), where v is a descendant of u, but not a tree edge.
- Cross edge: any other edge. Can go between vertices in same depthfirst tree or in different depth-first trees.

Theorem:

In DFS of an undirected graph, we get only tree and back edges. No forward or cross edges.

Identification of Edges

- Edge type for edge (u, v) can be identified when it is first explored by DFS.
- Identification is based on the color of v.
- White - tree edge.
- Gray - back edge.
- Black - forward or cross edge.

Directed Acyclic Graph

- DAG - Directed graph with no cycles.
- Good for modeling processes and structures that have a partial order:
$-a>b$ and $b>c \Rightarrow a>c$.
- But may have a and b such that neither $a>b$ nor $b>a$.
- Can always make a total order (either $a>b$ or $b>a$ for all $a \neq b$) from a partial order.

Example

DAG of dependencies for putting on goalie equipment.

Characterizing a DAG

Lemma 22.11

A directed graph G is acyclic iff a DFS of G yields no back edges.

Proof:

- \Rightarrow : Show that back edge \Rightarrow cycle.
- Suppose there is a back edge (u, v). Then v is ancestor of u in depth-first forest.
- Therefore, there is a path $v^{\wedge} u$, so $v^{\wedge} u^{\sim}{ }_{v}$ is a cycle.

Characterizing a DAG

Lemma 22.11

A directed graph G is acyclic iff a DFS of G yields no back edges.

Proof (Contd.):

- \Leftarrow : Show that a cycle implies a back edge.
$-c:$ cycle in $G, v:$ first vertex discovered in $c,(u, v):$ preceding edge in c.
- At time $d[v]$, vertices of c form a white path $v^{\sim} u$. Why?
- By white-path theorem, u is a descendent of v in depth-first forest.
- Therefore, (u, v) is a back edge.

