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Topological Sort

Want to “sort” a directed acyclic graph (DAG).
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Think of  original DAG as a partial order.

Want a total order that extends this partial order.
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Topological Sort

• Performed on a DAG.

• Linear ordering of the vertices of G such that if (u, v)  E, 
then u appears somewhere before v.

Topological-Sort (G)

1. call DFS(G) to compute finishing times f  [v] for all v  V

2. as each vertex is finished, insert it onto the front of  a linked list

3. return the linked list of  vertices

Time: (V + E).

Example: On board.



CSE5311 Design and Analysis of  Algorithms 4Dept. CSE, UT Arlington

Example

Linked List:

A B D

C E

1/

(Courtesy of Prof. Jim Anderson)
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Example

Linked List:

A B D

C E

1/

2/
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Example

Linked List:

A B D

C E

1/

2/3

E
2/3



CSE5311 Design and Analysis of  Algorithms 7Dept. CSE, UT Arlington

Example

Linked List:

A B D

C E

1/4

2/3

E
2/31/4

D
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Example

Linked List:

A B D

C E

1/4

2/3

E
2/31/4

D

5/
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Example

Linked List:

A B D

C E

1/4

2/3

E
2/31/4

D

5/

6/



CSE5311 Design and Analysis of  Algorithms 10Dept. CSE, UT Arlington

Example

Linked List:

A B D

C E

1/4

2/3

E
2/31/4

D

5/

6/7

6/7

C
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Example

Linked List:

A B D

C E

1/4

2/3

E
2/31/4

D

5/8

6/7

6/7

C
5/8
B
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Example

Linked List:

A B D

C E

1/4

2/3

E
2/31/4

D

5/8

6/7

6/7

C
5/8
B

9/
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Example

Linked List:

A B D

C E

1/4

2/3

E
2/31/4

D

5/8

6/7

6/7

C
5/8
B

9/10

9/10

A
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Correctness Proof

• Just need to show if (u, v)  E, then f [v] < f [u].
• When we explore (u, v), what are the colors of u and v?

– u is gray.
– Is v gray, too?

No, because then v would be ancestor of u.
 (u, v) is a back edge.
 contradiction of Lemma 22.11 (DAG has no back edges).

– Is v white?
Then becomes descendant of u.
By parenthesis theorem, d[u] < d[v] < f [v] < f [u].

– Is v black?
Then v is already finished.
Since we’re exploring (u, v), we have not yet finished u.
Therefore, f [v] < f [u].
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Strongly Connected Components

• G is strongly connected if every pair (u, v) of vertices in G 
is reachable from one another.

• A strongly connected component (SCC) of G is a 
maximal set of vertices C  V such that for all u, v  C, 
both u     v and v      u exist.
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Component Graph

• GSCC = (VSCC, ESCC).

• VSCC has one vertex for each SCC in G.

• ESCC has an edge if there’s an edge between the 
corresponding SCC’s in G.

• GSCC for the example considered:
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GSCC is a DAG

Proof:

• Suppose there is a path v v in G. 

• Then there are paths u     u v and v v     u in G. 

• Therefore, u and v are reachable from each other, so they 
are not in separate SCC’s.

Lemma 22.13
Let C and C be distinct SCC’s in G, let u, v  C, u, v  C, and 
suppose there is a path u       u in G. Then there cannot also be a path 
v v in G.
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Transpose of a Directed Graph

• GT = transpose of directed G.
– GT = (V, ET), ET = {(u, v) : (v, u)  E}.

– GT is G with all edges reversed.

• Can create GT in Θ(V + E) time if using adjacency lists.

• G and GT have the same SCC’s. (u and v are reachable 
from each other in G if and only if reachable from each 
other in GT.)



CSE5311 Design and Analysis of  Algorithms 19Dept. CSE, UT Arlington

Algorithm to determine SCCs

SCC(G)

1. call DFS(G) to compute finishing times f [u] for all u

2. compute GT

3. call DFS(GT), but in the main loop, consider vertices in order of 
decreasing f [u] (as computed in first DFS)

4. output the vertices in each tree of the depth-first forest formed in 
second DFS as a separate SCC

Time: (V + E).

Example: On board.
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Example

13/14

12/15 3/4 2/7

11/16 1/10

a b c

e f g
5/6

8/9

h

d

(Courtesy of Prof. Jim Anderson)

G
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Example

a b c

e f g h

d

GT
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Example

cd

hfg

abe



CSE5311 Design and Analysis of  Algorithms 23Dept. CSE, UT Arlington

Example (2)
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Example (2)  DFS
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Example (2)   GT
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Example (2)  DFT in GT
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Example (2)  SCC
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How does it work?

• Idea:
– By considering vertices in second DFS in decreasing order of 

finishing times from first DFS, we are visiting vertices of the 
component graph in topologically sorted order.

– Because we are running DFS on GT, we will not be visiting any v
from a u, where v and u are in different components.

• Notation:
– d[u] and f [u] always refer to first DFS.

– Extend notation for d and f to sets of vertices U  V:

– d(U) = minuU{d[u]} (earliest discovery time)

– f (U) = maxuU{ f [u]} (latest finishing time)
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SCCs and DFS finishing times

Proof:

• Case 1: d(C) < d(C)
– Let x be the first vertex discovered in C. 

– At time d[x], all vertices in C and C are 
white. Thus, there exist paths of white 
vertices from x to all vertices in C and C.

– By the white-path theorem, all vertices in C 
and C are descendants of x in depth-first 
tree.

– By the parenthesis theorem, f [x] = f (C) > 
f(C).

Lemma 22.14
Let C and C be distinct SCC’s in G = (V, E). Suppose there is an edge 
(u, v)  E such that u  C and v C. Then f  (C) > f  (C).

C C

u v

x



CSE5311 Design and Analysis of  Algorithms 30Dept. CSE, UT Arlington

SCCs and DFS finishing times

Proof:
• Case 2: d(C) > d(C)

– Let y be the first vertex discovered in C. 
– At time d[y], all vertices in C are white and 

there is a white path from y to each vertex in 
C  all vertices in C become descendants of 
y. Again, f [y] = f (C).

– At time d[y], all vertices in C are also white.
– By earlier lemma, since there is an edge (u, v), 

we cannot have a path from C to C.
– So no vertex in C is reachable from y.
– Therefore, at time f [y], all vertices in C are still 

white.
– Therefore, for all w  C, f [w] > f [y], which 

implies that f (C) > f (C).

Lemma 22.14
Let C and C be distinct SCC’s in G = (V, E). Suppose there is an edge 
(u, v)  E such that u  C and v C. Then f  (C) > f  (C).

C C

u v

yx
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SCCs and DFS finishing times

Proof:

• (u, v)  ET  (v, u)  E. 

• Since SCC’s of G and GT are the same,  f(C) > f (C), by 
Lemma 22.14.

Corollary 22.15
Let C and C be distinct SCC’s in G = (V, E). Suppose there is an edge
(u, v)  ET, where u  C and v  C. Then f(C) < f(C).
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Correctness of SCC

• When we do the second DFS, on GT, start with SCC C 
such that f(C) is maximum.
– The second DFS starts from some x  C, and it visits all vertices 

in C. 

– Corollary 22.15 says that since f(C) > f (C) for all C  C, there 
are no edges from C to C in GT.

– Therefore, DFS will visit only vertices in C.

– Which means that the depth-first tree rooted at x contains exactly 
the vertices of C.
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Correctness of SCC

• The next root chosen in the second DFS is in SCC C such 
that f (C) is maximum over all SCC’s other than C. 
– DFS visits all vertices in C, but the only edges out of  C go to C, 

which we’ve already visited.

– Therefore, the only tree edges will be to vertices in C.

• We can continue the process.

• Each time we choose a root for the second DFS, it can 
reach only
– vertices in its SCC—get tree edges to these,

– vertices in SCC’s already visited in second DFS—get no tree edges 
to these.


