Design and Analysis of Algorithms

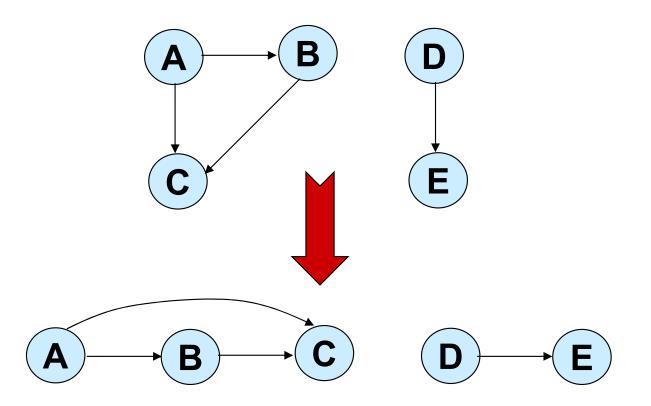
CSE 5311 Lecture 19 Topological Sort

Junzhou Huang, Ph.D. Department of Computer Science and Engineering

Dept. CSE, UT Arlington

Topological Sort

Want to "sort" a directed acyclic graph (DAG).



Think of original DAG as a partial order.

Want a total order that extends this partial order.

Dept. CSE, UT Arlington

Topological Sort

- Performed on a DAG.
- Linear ordering of the vertices of G such that if $(u, v) \in E$, then *u* appears somewhere before *v*.

Topological-Sort (G)

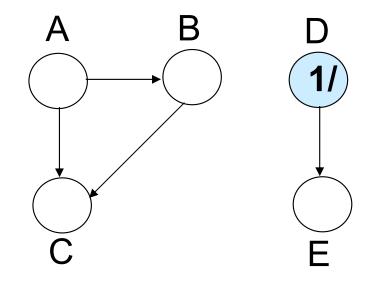
- 1. call DFS(G) to compute finishing times f[v] for all $v \in V$
- 2. as each vertex is finished, insert it onto the front of a linked list
- 3. return the linked list of vertices

Time: $\Theta(V + E)$.

Example: On board.

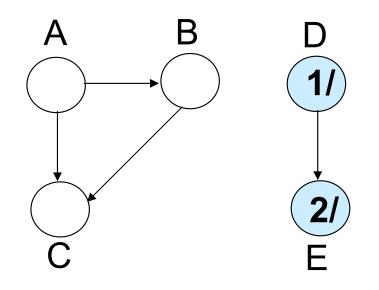
Dept. CSE, UT Arlington

(Courtesy of Prof. Jim Anderson)

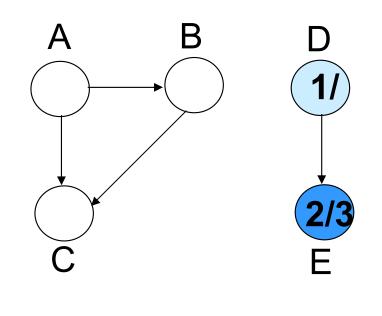


Linked List:

Dept. CSE, UT Arlington

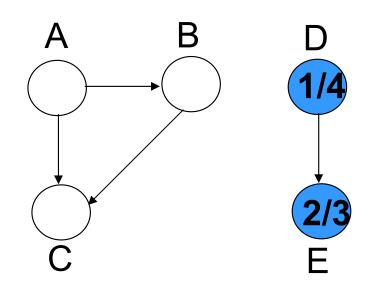


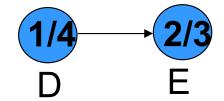
Dept. CSE, UT Arlington



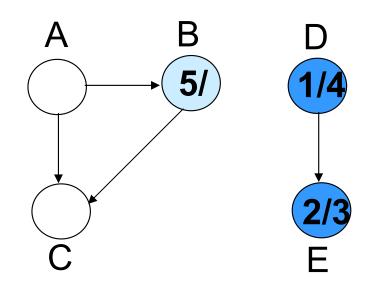
2/3 E

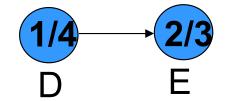
Dept. CSE, UT Arlington



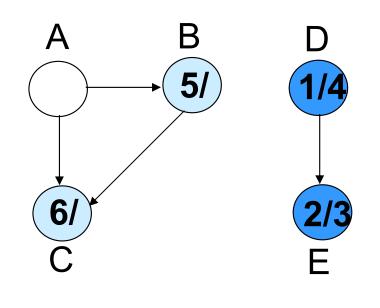


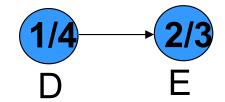
Dept. CSE, UT Arlington





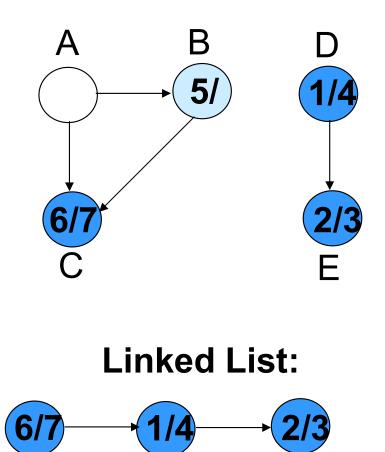
Dept. CSE, UT Arlington





Dept. CSE, UT Arlington

Example

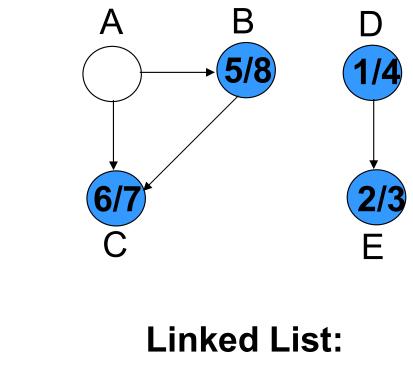


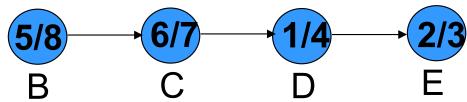
CSE5311 Design and Analysis of Algorithms

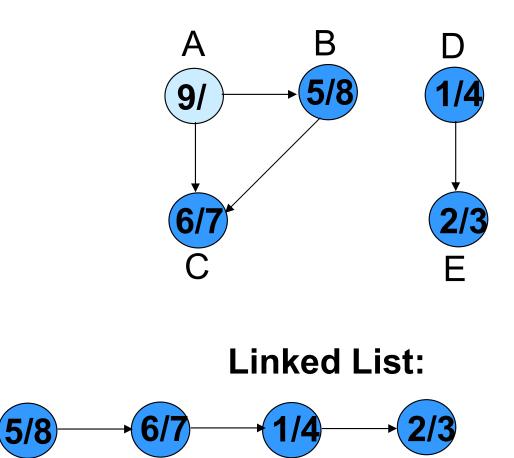
 \square

С

Ε





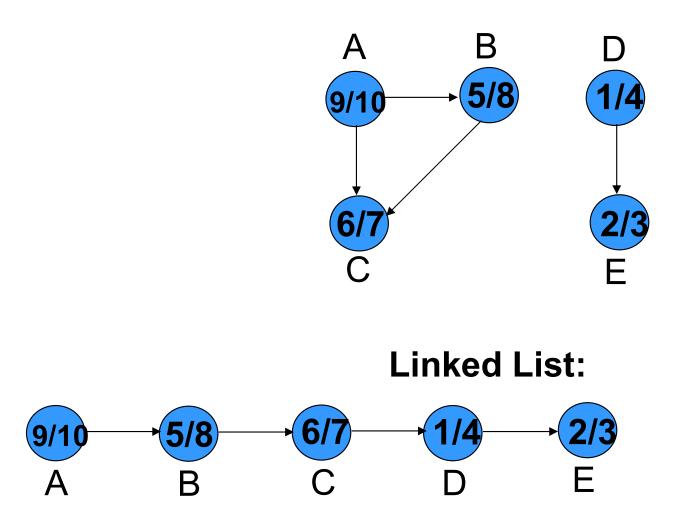


В

С

D

Ε



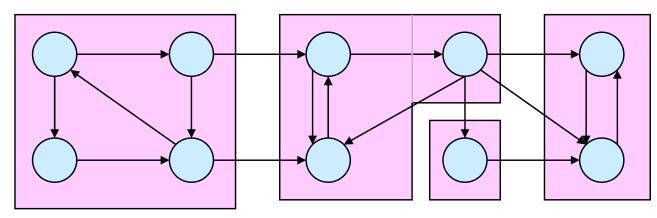
Correctness Proof

- Just need to show if $(u, v) \in E$, then f[v] < f[u].
- When we explore (u, v), what are the colors of u and v?
 - -u is gray.
 - Is v gray, too?
 - > No, because then *v* would be ancestor of *u*.
 - $\triangleright \Rightarrow (u, v)$ is a back edge.
 - \Rightarrow contradiction of Lemma 22.11 (DAG has no back edges).
 - Is *v* white?
 - \succ Then becomes descendant of *u*.
 - ► By parenthesis theorem, d[u] < d[v] < f[v] < f[u].
 - Is *v* black?
 - > Then v is already finished.
 - Since we're exploring (u, v), we have not yet finished u.
 - \succ Therefore, f[v] < f[u].

Dept. CSE, UT Arlington

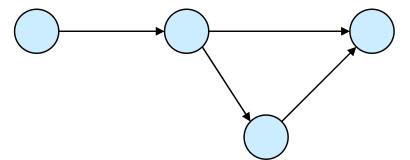
Strongly Connected Components

- *G* is strongly connected if every pair (*u*, *v*) of vertices in *G* is reachable from one another.
- A strongly connected component (SCC) of G is a maximal set of vertices $C \subseteq V$ such that for all $u, v \in C$, both $u \sim v$ and $v \sim u$ exist.



Component Graph

- $G^{\text{SCC}} = (V^{\text{SCC}}, E^{\text{SCC}}).$
- V^{SCC} has one vertex for each SCC in G.
- E^{SCC} has an edge if there's an edge between the corresponding SCC's in G.
- G^{SCC} for the example considered:



G^{SCC} is a DAG

Lemma 22.13

Let *C* and *C'* be distinct SCC's in *G*, let $u, v \in C, u', v' \in C'$, and suppose there is a path $u \sim u'$ in *G*. Then there cannot also be a path $v' \sim v$ in *G*.

Proof:

- Suppose there is a path $v' \sim v$ in G.
- Then there are paths $u \sim u' \sim v'$ and $v' \sim v \sim u$ in G.
- Therefore, *u* and *v*' are reachable from each other, so they are not in separate SCC's.

Transpose of a Directed Graph

• $G^{\mathrm{T}} = \text{transpose}$ of directed *G*.

$$- G^{\mathrm{T}} = (V, E^{\mathrm{T}}), E^{\mathrm{T}} = \{(u, v) : (v, u) \in E\}.$$

- G^{T} is G with all edges reversed.
- Can create G^{T} in $\Theta(V + E)$ time if using adjacency lists.
- *G* and G^{T} have the *same* SCC's. (*u* and *v* are reachable from each other in *G* if and only if reachable from each other in G^{T} .)

Algorithm to determine SCCs

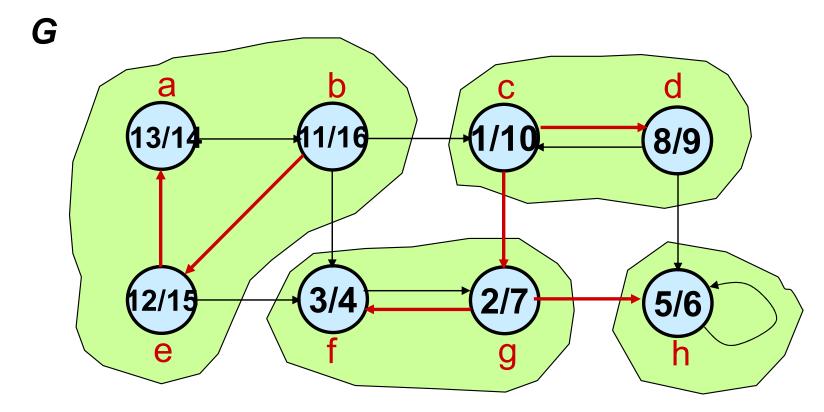
$\underline{SCC}(G)$

- 1. call DFS(G) to compute finishing times f[u] for all u
- 2. compute G^{T}
- 3. call DFS(G^{T}), but in the main loop, consider vertices in order of decreasing f[u] (as computed in first DFS)
- 4. output the vertices in each tree of the depth-first forest formed in second DFS as a separate SCC

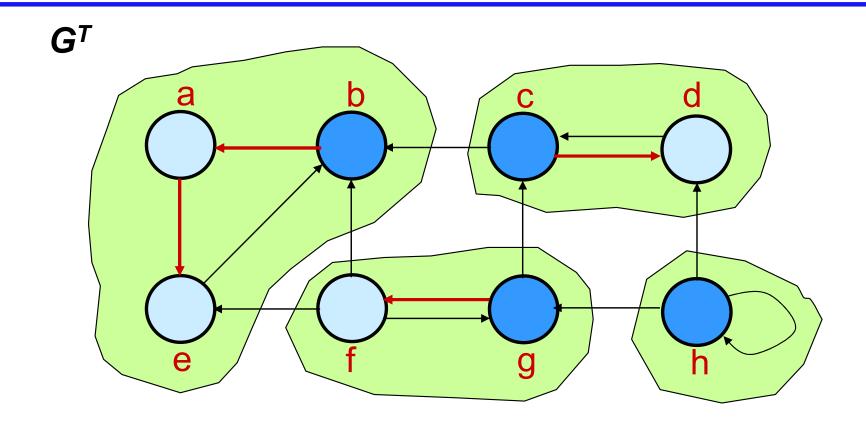
Time: $\Theta(V + E)$.

Example: On board.

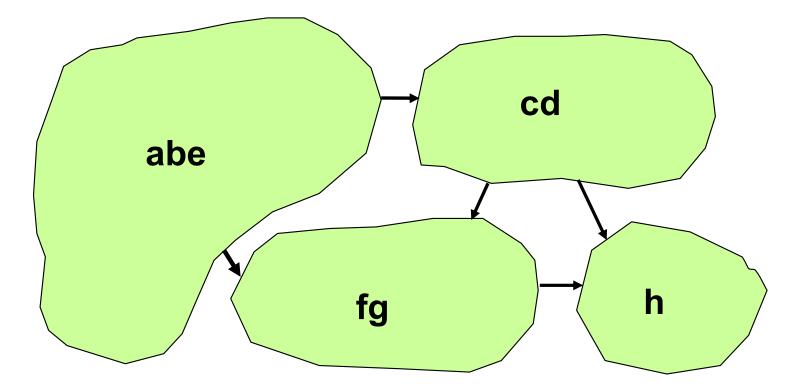
(Courtesy of Prof. Jim Anderson)



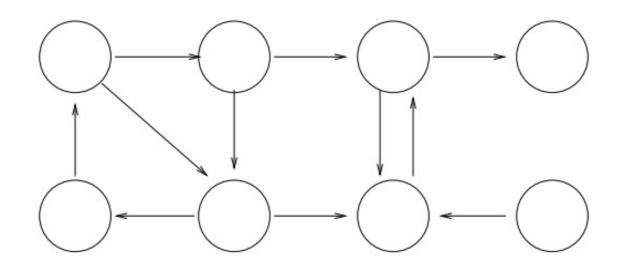
Example



Dept. CSE, UT Arlington

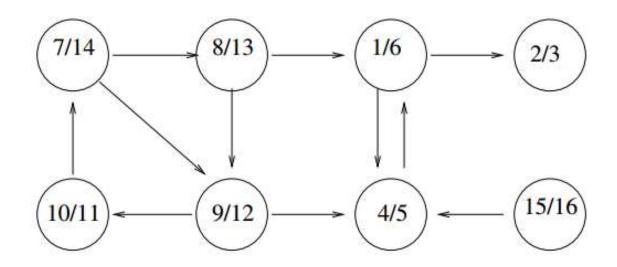


Example (2)



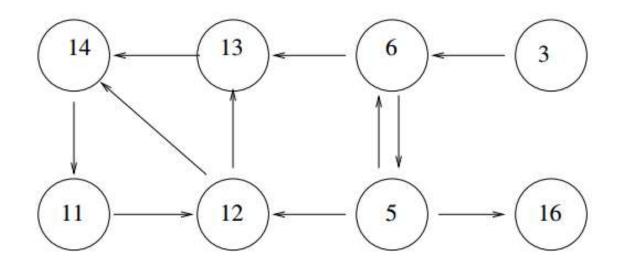
Dept. CSE, UT Arlington

Example (2) DFS



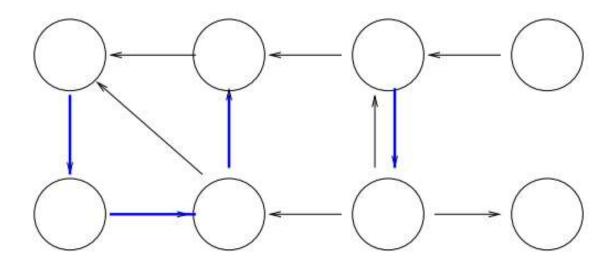
Dept. CSE, UT Arlington

Example (2) G^{T}



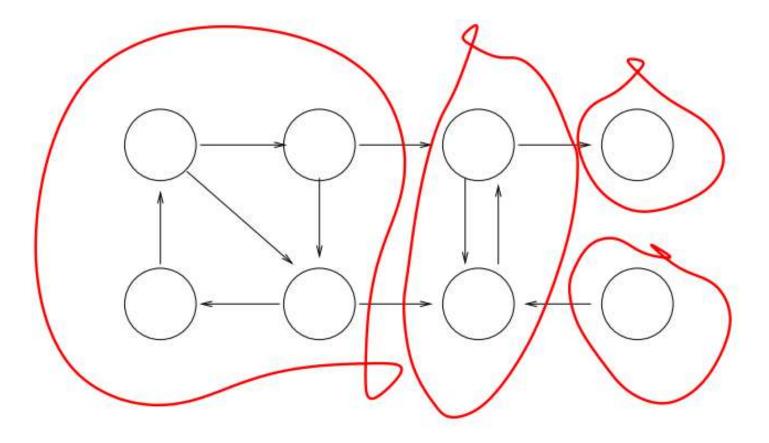
Dept. CSE, UT Arlington

Example (2) DFT in G^T



Dept. CSE, UT Arlington

Example (2) SCC



How does it work?

• Idea:

- By considering vertices in second DFS in decreasing order of finishing times from first DFS, we are visiting vertices of the component graph in topologically sorted order.
- Because we are running DFS on G^T , we will not be visiting any v from a u, where v and u are in different components.

• Notation:

- d[u] and f[u] always refer to *first* DFS.
- Extend notation for d and f to sets of vertices $U \subseteq V$:
- $d(U) = \min_{u \in U} \{d[u]\}$ (earliest discovery time)
- $-f(U) = \max_{u \in U} \{f[u]\}$ (latest finishing time)

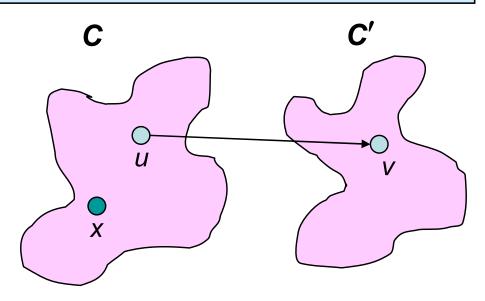
SCCs and DFS finishing times

Lemma 22.14

Let C and C' be distinct SCC's in G = (V, E). Suppose there is an edge $(u, v) \in E$ such that $u \in C$ and $v \in C'$. Then f(C) > f(C').

Proof:

- Case 1: d(C) < d(C')
 - Let x be the first vertex discovered in C.
 - At time d[x], all vertices in C and C' are white. Thus, there exist paths of white vertices from x to all vertices in C and C'.
 - By the white-path theorem, all vertices in C and C are descendants of x in depth-first tree.
 - By the parenthesis theorem, f[x] = f(C) > f(C).



SCCs and DFS finishing times

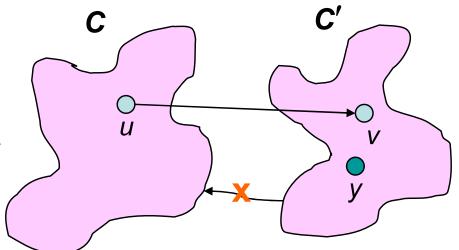
Lemma 22.14

Let C and C' be distinct SCC's in G = (V, E). Suppose there is an edge $(u, v) \in E$ such that $u \in C$ and $v \in C'$. Then f(C) > f(C').

Proof:

- Case 2: d(C) > d(C')
 - Let y be the first vertex discovered in C'.
 - At time d[y], all vertices in C are white and there is a white path from y to each vertex in $C \Rightarrow$ all vertices in C become descendants of y. Again, f[y] = f(C).
 - At time d[y], all vertices in C are also white.
 - By earlier lemma, since there is an edge (u, v), we cannot have a path from C' to C.
 - So no vertex in *C* is reachable from *y*.
 - Therefore, at time f[y], all vertices in C are still white.
 - Therefore, for all $w \in C$, f[w] > f[y], which implies that f(C) > f(C').

Dept. CSE, UT Arlington



SCCs and DFS finishing times

Corollary 22.15 Let *C* and *C*' be distinct SCC's in G = (V, E). Suppose there is an edge $(u, v) \in E^{T}$, where $u \in C$ and $v \in C'$. Then f(C) < f(C').

Proof:

- $(u, v) \in E^{\mathrm{T}} \Longrightarrow (v, u) \in E.$
- Since SCC's of G and G^{T} are the same, f(C') > f(C), by Lemma 22.14.

Correctness of SCC

- When we do the second DFS, on G^T , start with SCC *C* such that f(C) is maximum.
 - The second DFS starts from some $x \in C$, and it visits all vertices in *C*.
 - Corollary 22.15 says that since f(C) > f(C') for all $C \neq C'$, there are no edges from C to C in G^{T} .
 - Therefore, DFS will visit *only* vertices in *C*.
 - Which means that the depth-first tree rooted at x contains *exactly* the vertices of C.

Correctness of SCC

- The next root chosen in the second DFS is in SCC C' such that f(C') is maximum over all SCC's other than C.
 - DFS visits all vertices in C', but the only edges out of C' go to C, which we've already visited.
 - Therefore, the only tree edges will be to vertices in C.
- We can continue the process.
- Each time we choose a root for the second DFS, it can reach only
 - vertices in its SCC-get tree edges to these,
 - vertices in SCC's *already visited* in second DFS—get *no* tree edges to these.