
CSE5311 Design and Analysis of Algorithms 1Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms 1

CSE 5311
Lecture 19 Topological Sort

Junzhou Huang, Ph.D.

Department of Computer Science and Engineering

Design and Analysis of Algorithms

CSE5311 Design and Analysis of Algorithms 2Dept. CSE, UT Arlington

Topological Sort

Want to “sort” a directed acyclic graph (DAG).

B

E

D

C

A

C EDA B

Think of original DAG as a partial order.

Want a total order that extends this partial order.

CSE5311 Design and Analysis of Algorithms 3Dept. CSE, UT Arlington

Topological Sort

• Performed on a DAG.

• Linear ordering of the vertices of G such that if (u, v) E,
then u appears somewhere before v.

Topological-Sort (G)

1. call DFS(G) to compute finishing times f [v] for all v V

2. as each vertex is finished, insert it onto the front of a linked list

3. return the linked list of vertices

Time: (V + E).

Example: On board.

CSE5311 Design and Analysis of Algorithms 4Dept. CSE, UT Arlington

Example

Linked List:

A B D

C E

1/

(Courtesy of Prof. Jim Anderson)

CSE5311 Design and Analysis of Algorithms 5Dept. CSE, UT Arlington

Example

Linked List:

A B D

C E

1/

2/

CSE5311 Design and Analysis of Algorithms 6Dept. CSE, UT Arlington

Example

Linked List:

A B D

C E

1/

2/3

E
2/3

CSE5311 Design and Analysis of Algorithms 7Dept. CSE, UT Arlington

Example

Linked List:

A B D

C E

1/4

2/3

E
2/31/4

D

CSE5311 Design and Analysis of Algorithms 8Dept. CSE, UT Arlington

Example

Linked List:

A B D

C E

1/4

2/3

E
2/31/4

D

5/

CSE5311 Design and Analysis of Algorithms 9Dept. CSE, UT Arlington

Example

Linked List:

A B D

C E

1/4

2/3

E
2/31/4

D

5/

6/

CSE5311 Design and Analysis of Algorithms 10Dept. CSE, UT Arlington

Example

Linked List:

A B D

C E

1/4

2/3

E
2/31/4

D

5/

6/7

6/7

C

CSE5311 Design and Analysis of Algorithms 11Dept. CSE, UT Arlington

Example

Linked List:

A B D

C E

1/4

2/3

E
2/31/4

D

5/8

6/7

6/7

C
5/8
B

CSE5311 Design and Analysis of Algorithms 12Dept. CSE, UT Arlington

Example

Linked List:

A B D

C E

1/4

2/3

E
2/31/4

D

5/8

6/7

6/7

C
5/8
B

9/

CSE5311 Design and Analysis of Algorithms 13Dept. CSE, UT Arlington

Example

Linked List:

A B D

C E

1/4

2/3

E
2/31/4

D

5/8

6/7

6/7

C
5/8
B

9/10

9/10

A

CSE5311 Design and Analysis of Algorithms 14Dept. CSE, UT Arlington

Correctness Proof

• Just need to show if (u, v) E, then f [v] < f [u].
• When we explore (u, v), what are the colors of u and v?

– u is gray.
– Is v gray, too?

No, because then v would be ancestor of u.
 (u, v) is a back edge.
 contradiction of Lemma 22.11 (DAG has no back edges).

– Is v white?
Then becomes descendant of u.
By parenthesis theorem, d[u] < d[v] < f [v] < f [u].

– Is v black?
Then v is already finished.
Since we’re exploring (u, v), we have not yet finished u.
Therefore, f [v] < f [u].

CSE5311 Design and Analysis of Algorithms 15Dept. CSE, UT Arlington

Strongly Connected Components

• G is strongly connected if every pair (u, v) of vertices in G
is reachable from one another.

• A strongly connected component (SCC) of G is a
maximal set of vertices C V such that for all u, v C,
both u v and v u exist.

CSE5311 Design and Analysis of Algorithms 16Dept. CSE, UT Arlington

Component Graph

• GSCC = (VSCC, ESCC).

• VSCC has one vertex for each SCC in G.

• ESCC has an edge if there’s an edge between the
corresponding SCC’s in G.

• GSCC for the example considered:

CSE5311 Design and Analysis of Algorithms 17Dept. CSE, UT Arlington

GSCC is a DAG

Proof:

• Suppose there is a path v v in G.

• Then there are paths u u v and v v u in G.

• Therefore, u and v are reachable from each other, so they
are not in separate SCC’s.

Lemma 22.13
Let C and C be distinct SCC’s in G, let u, v C, u, v C, and
suppose there is a path u u in G. Then there cannot also be a path
v v in G.

CSE5311 Design and Analysis of Algorithms 18Dept. CSE, UT Arlington

Transpose of a Directed Graph

• GT = transpose of directed G.
– GT = (V, ET), ET = {(u, v) : (v, u) E}.

– GT is G with all edges reversed.

• Can create GT in Θ(V + E) time if using adjacency lists.

• G and GT have the same SCC’s. (u and v are reachable
from each other in G if and only if reachable from each
other in GT.)

CSE5311 Design and Analysis of Algorithms 19Dept. CSE, UT Arlington

Algorithm to determine SCCs

SCC(G)

1. call DFS(G) to compute finishing times f [u] for all u

2. compute GT

3. call DFS(GT), but in the main loop, consider vertices in order of
decreasing f [u] (as computed in first DFS)

4. output the vertices in each tree of the depth-first forest formed in
second DFS as a separate SCC

Time: (V + E).

Example: On board.

CSE5311 Design and Analysis of Algorithms 20Dept. CSE, UT Arlington

Example

13/14

12/15 3/4 2/7

11/16 1/10

a b c

e f g
5/6

8/9

h

d

(Courtesy of Prof. Jim Anderson)

G

CSE5311 Design and Analysis of Algorithms 21Dept. CSE, UT Arlington

Example

a b c

e f g h

d

GT

CSE5311 Design and Analysis of Algorithms 22Dept. CSE, UT Arlington

Example

cd

hfg

abe

CSE5311 Design and Analysis of Algorithms 23Dept. CSE, UT Arlington

Example (2)

CSE5311 Design and Analysis of Algorithms 24Dept. CSE, UT Arlington

Example (2) DFS

CSE5311 Design and Analysis of Algorithms 25Dept. CSE, UT Arlington

Example (2) GT

CSE5311 Design and Analysis of Algorithms 26Dept. CSE, UT Arlington

Example (2) DFT in GT

CSE5311 Design and Analysis of Algorithms 27Dept. CSE, UT Arlington

Example (2) SCC

CSE5311 Design and Analysis of Algorithms 28Dept. CSE, UT Arlington

How does it work?

• Idea:
– By considering vertices in second DFS in decreasing order of

finishing times from first DFS, we are visiting vertices of the
component graph in topologically sorted order.

– Because we are running DFS on GT, we will not be visiting any v
from a u, where v and u are in different components.

• Notation:
– d[u] and f [u] always refer to first DFS.

– Extend notation for d and f to sets of vertices U V:

– d(U) = minuU{d[u]} (earliest discovery time)

– f (U) = maxuU{ f [u]} (latest finishing time)

CSE5311 Design and Analysis of Algorithms 29Dept. CSE, UT Arlington

SCCs and DFS finishing times

Proof:

• Case 1: d(C) < d(C)
– Let x be the first vertex discovered in C.

– At time d[x], all vertices in C and C are
white. Thus, there exist paths of white
vertices from x to all vertices in C and C.

– By the white-path theorem, all vertices in C
and C are descendants of x in depth-first
tree.

– By the parenthesis theorem, f [x] = f (C) >
f(C).

Lemma 22.14
Let C and C be distinct SCC’s in G = (V, E). Suppose there is an edge
(u, v) E such that u C and v C. Then f (C) > f (C).

C C

u v

x

CSE5311 Design and Analysis of Algorithms 30Dept. CSE, UT Arlington

SCCs and DFS finishing times

Proof:
• Case 2: d(C) > d(C)

– Let y be the first vertex discovered in C.
– At time d[y], all vertices in C are white and

there is a white path from y to each vertex in
C all vertices in C become descendants of
y. Again, f [y] = f (C).

– At time d[y], all vertices in C are also white.
– By earlier lemma, since there is an edge (u, v),

we cannot have a path from C to C.
– So no vertex in C is reachable from y.
– Therefore, at time f [y], all vertices in C are still

white.
– Therefore, for all w C, f [w] > f [y], which

implies that f (C) > f (C).

Lemma 22.14
Let C and C be distinct SCC’s in G = (V, E). Suppose there is an edge
(u, v) E such that u C and v C. Then f (C) > f (C).

C C

u v

yx

CSE5311 Design and Analysis of Algorithms 31Dept. CSE, UT Arlington

SCCs and DFS finishing times

Proof:

• (u, v) ET (v, u) E.

• Since SCC’s of G and GT are the same, f(C) > f (C), by
Lemma 22.14.

Corollary 22.15
Let C and C be distinct SCC’s in G = (V, E). Suppose there is an edge
(u, v) ET, where u C and v C. Then f(C) < f(C).

CSE5311 Design and Analysis of Algorithms 32Dept. CSE, UT Arlington

Correctness of SCC

• When we do the second DFS, on GT, start with SCC C
such that f(C) is maximum.
– The second DFS starts from some x C, and it visits all vertices

in C.

– Corollary 22.15 says that since f(C) > f (C) for all C C, there
are no edges from C to C in GT.

– Therefore, DFS will visit only vertices in C.

– Which means that the depth-first tree rooted at x contains exactly
the vertices of C.

CSE5311 Design and Analysis of Algorithms 33Dept. CSE, UT Arlington

Correctness of SCC

• The next root chosen in the second DFS is in SCC C such
that f (C) is maximum over all SCC’s other than C.
– DFS visits all vertices in C, but the only edges out of C go to C,

which we’ve already visited.

– Therefore, the only tree edges will be to vertices in C.

• We can continue the process.

• Each time we choose a root for the second DFS, it can
reach only
– vertices in its SCC—get tree edges to these,

– vertices in SCC’s already visited in second DFS—get no tree edges
to these.

