Design and Analysis of Algorithms

CSE 5311

Lecture 2 Algorithms and Growth Functions

Junzhou Huang, Ph.D.
Department of Computer Science and Engineering

Administration

- Course CSE5311
- What: Design and Analysis of Algorithms
- When: Friday 1:00~3:50pm
- Where: ERB 130
- Who: Junzhou Huang (Office ERB 650) jzhuang@uta.edu
- Office Hour: Friday 3:50 $\sim 5: 50 \mathrm{pm}$ and/or appointments
- Homepage: http://ranger.uta.edu/~huang/teaching/CSE5311.htm
(You're required to check this page regularly)
- Lecturer
- PhD in CS from Rutgers, the State University of New Jersey
- Research areas: machine learning, computer vision, medical image analysis and bioinformatics
- GTA
- Saiyang Na (Office ERB 403), sxn3892@mavs.uta.edu
- Office hours: Friday 10:00am ~ 12:00pm and/or appointments

Reviewing: Study Materials

- Prerequisites

- Algorithms and Data Structure (CSE 2320)
- Theoretical Computer Science (CSE 3315)
- What this really means:
$>$ You have working experience s on software development.
$>$ You know compilation process and programming
$>$ Elementary knowledge of math and algorithms
- Text book
- Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein, Introduction to Algorithms, third edition
- https://mitpress.mit.edu/books/introductionalgorithms

Reviewing: What?

- The theoretical study of design and analysis of computer algorithms
- Basic goals for an algorithm
- Always correct
- Always terminates
- Our class: performance
- Performance often draws the line between what is possible and what is impossible.
- Design and Analysis of Algorithms
- Analysis: predict the cost of an algorithm in terms of resources and performance
- Design: design algorithms which minimize the cost

Reviewing: Insertion Sort

Reviewing: Running Time

- Running Time
- Depends on the input
- An already sorted sequence is easier to sort.
- Major Simplifying Convention
- Parameterize the running time by the size of the input, since short sequences are easier to sort than long ones.
$-T_{A}(n)=$ time of A on length n inputs. Generally, we seek upper bounds on the running time, to have a guarantee of performance.
- Kinds of Analyses
- Worst-case: (usually) $T(n)=$ maximum time of algorithm on any input of size n
- Average-case: (sometimes) $\mathrm{T}(\mathrm{n})=$ expected time of algorithm over all inputs of size n. Need assumption of statistical distribution of inputs.
- Best-case: (Never) Cheat with a slow algorithm that works fast on some input.

Machine-independent Time

- Question
- Machine-independent Time
- Idea
- Ignore machine dependent constants, otherwise impossible to verify and to compare algorithms
- Look at growth of $T(n)$ as $n \rightarrow \infty$.

"Asymptotic Analysis"

Recall: Θ-notation

Definition:

$\Theta(g(n))=\left\{f(n)\right.$: there exist positive constants c_{1}, c_{2}, and n_{0} such that $0 \leq c_{1} g(n) \leq f(n) \leq c_{2} g(n)$ for all $\left.n \geq n_{0}\right\}$
Basic Manipulations:

- Drop low-order terms; ignore leading constants.
- Example: $3 n^{3}+90 n^{2}-5 n+6046=\Theta\left(n^{3}\right)$

Asymptotic Performance

When n gets large enough, a $\Theta\left(n^{2}\right)$ algorithm always beats a $\Theta\left(n^{3}\right)$ algorithm.

- Asymptotic analysis is a useful tool to help to structure our thinking toward better algorithm
- We shouldn't ignore asymptotically slower algorithms, however.
- Real-world design situations often call for a careful balancing

Insertion Sort Analysis

Worst case: Input reverse sorted.

$$
T(n)=\sum_{j=2}^{n} \Theta(j)=\Theta\left(n^{2}\right) \quad \text { [arithmetic series] }
$$

Average case: All permutations equally likely.

$$
T(n)=\sum_{j=2}^{n} \Theta(j / 2)=\Theta\left(n^{2}\right)
$$

Is insertion sort a fast sorting algorithm?

- Moderately so, for small n.
- Not at all, for large n.

Integer Multiplication

- Let $X=A \quad B$ and $Y=C D$ where A, B, C and D are $\mathrm{n} / 2$ bit integers
- Simple Method:

$$
X Y=\left(2^{\mathrm{n} / 2} \mathrm{~A}+\mathrm{B}\right)\left(2^{\mathrm{n} / 2} \mathrm{C}+\mathrm{D}\right)=2^{\mathrm{n}} \mathrm{AC}+2^{\mathrm{n} / 2}(\mathrm{AD}+\mathrm{BC})+\mathrm{BD}
$$

- Running Time Recurrence

$$
\mathrm{T}(\mathrm{n})<4 \mathrm{~T}(\mathrm{n} / 2)+\Theta(\mathrm{n})
$$

Recursive Calls
Addition and Shift

- Solution $T(n)=\Theta\left(n^{2}\right)$

Integer Multiplication

$$
T(n)=\left\{\begin{array}{cl}
0 & \text { if } n=0 \\
4 T(n / 2)+n & \text { otherwise }
\end{array}\right.
$$

$$
T(n)=\sum_{k=0}^{\lg n} n 2^{k}=n\left(\frac{2^{1+\lg n}-1}{2-1}\right)=2 n^{2}-n
$$

Better Integer Multiplication

- Let $\mathrm{X}=\mathrm{A} \quad \mathrm{B}$ and $\mathrm{Y}=\mathrm{C}$ D where $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D are $\mathrm{n} / 2$ bit integers
- [Karatsuba-Ofman 1962] : Can multiply two n-bit integers in $\mathbf{O}\left(\mathrm{n}^{\log 3}\right)$ bit operations.

$$
\begin{aligned}
X Y & =\left(2^{n / 2} A+B\right)\left(2^{n / 2} C+D\right)=2^{n} A C+2^{n / 2}(A D+B C)+B D \\
& =\left(2^{n}-2^{n / 2}\right) A C+2^{n / 2}(A+B)(C+D)+\left(1-2^{n / 2}\right) B D
\end{aligned}
$$

- Running Time Recurrence

$$
T(n)<3 T(n / 2)+\Theta(n)
$$

$$
T(n) \leq \underbrace{T(\lfloor n / 2\rfloor)+T([n / 2\rceil)+T(1+\lceil n / 2\rceil)}_{\text {recursive calls }}+\underbrace{\Theta(n)}_{\text {add, subbract, shift }} \Rightarrow T(n)=O\left(n^{183}\right)=O\left(n^{1.585}\right)
$$

- Solution: $T(n)=O\left(n^{\log 3}\right)$

Better Integer Multiplication

Merge Sort

MERGE-SORT $A[1 \ldots n]$

1. If $n=1$, done.
2. Recursively sort $A[1 \ldots\lceil n / 2\rceil]$ and $A[$ $\lceil n / 2\rceil+1 . . n]$.
3. "Merge" the 2 sorted lists.

Key subroutine: MERGE

Merging Two Sorted Arrays

20	12
13	11
7	9
2	1

Merging Two Sorted Arrays

Merging Two Sorted Arrays

20	12	20	12
13	11	13	11
7	9	7	9
2	1	2	
	1		

Merging Two Sorted Arrays

20	12	20	12
13	11	13	11
7	9	7	9
2	1	2	2

Merging Two Sorted Arrays

20	12	20	12	20	12
13	11	13	11	13	11
7	9	7	9	7	9
2	1	2			
	1				
1					

Merging Two Sorted Arrays

2012	2012	2012
1311	1311	1311
$7 \quad 9$	$7 \quad 9$	9
	(2)	
1	2	7

Merging Two Sorted Arrays

2012	2012	2012	2012
1311	1311	1311	1311
$7 \quad 9$	$7 \quad 9$	(7) 9	9
	(2)	,	
1	2	7	

Merging Two Sorted Arrays

2012	2012	2012	2012
1311	1311	1311	1311
79		(7) 9	(9)
	(2)	1	1
1	2	7	9

Merging Two Sorted Arrays

2012	2012	2012	2012	$20 \quad 12$
1311	1311	1311	1311	1311
$7 \quad 9$	$7 \quad 9$	(7) 9	(9)	
2	(2)	\downarrow	1	
1	2	7	9	

Merging Two Sorted Arrays

2012	$20 \quad 12$	2012	2012	2012
1311	1311	1311	1311	13 (17)
$7 \quad 9$	$7 \quad 9$	(7) 9	(9)	
	2		1	1
1	2	7	9	11

Merging Two Sorted Arrays

2012	2012	2012	$20 \quad 12$	$20 \quad 12$	
1311	1311	1311	1311	13 (11)	13
79	$7 \quad 9$	(7) 9	(9)	1	
	4		1	1	
1	2	7	9	11	

Merging Two Sorted Arrays

2012	2012	$20 \quad 12$	2012	$20 \quad 12$	20 (12)
1311	1311	1311	1311	13 (3)	13
79	$7 \quad 9$	(7) 9	(9)		
2	(2)	1	1	,	
	2	7	9	11	12

Merging Two Sorted Arrays

2012	2012	2012	2012	$20 \quad 12$	20 (12)
1311	1311	1311	1311	13 (11)	13
79	$7 \quad 9$	(79	(9)	,	
	4		1	1	
1	2	7	9	11	12

Time $=\Theta(n)$ to merge a total of n elements (linear time).

Analyzing Merge Sort

MERGE-SORT $A[1 \ldots n]$

1. If $n=1$, done.
2. Recursively sort $A[1 \ldots\lceil n / 2\rceil]$ and $A[$ $\lceil n / 2\rceil+1 \ldots n]$.
3. "Merge" the 2 sorted lists

Sloppiness: Should be $T(\lceil n / 2\rceil)+T(\lfloor n / 2\rfloor)$, but it turns out not to matter asymptotically.

Recurrence for Merge Sort

$$
T(n)=\left\{\begin{array}{l}
\Theta(1) \text { if } n=1 \\
2 T(n / 2)+\Theta(n) \text { if } n>1
\end{array}\right.
$$

- We shall usually omit stating the base case when $T(n)$ $=\Theta(1)$ for sufficiently small n, but only when it has no effect on the asymptotic solution to the recurrence.
- Next Lecture will provide several ways to find a good upper bound on $T(n)$.

Recursion Tree

Solve $T(n)=2 T(n / 2)+c n$, where $c>0$ is constant.

Recursion Tree

Solve $T(n)=2 T(n / 2)+c n$, where $c>0$ is constant.

Recursion Tree

Solve $T(n)=2 T(n / 2)+c n$, where $c>0$ is constant.

Recursion Tree

Solve $T(n)=2 T(n / 2)+c n$, where $c>0$ is constant.

Recursion Tree

Solve $T(n)=2 T(n / 2)+c n$, where $c>0$ is constant.

Recursion Tree

Solve $T(n)=2 T(n / 2)+c n$, where $c>0$ is constant.

Recursion Tree

Solve $T(n)=2 T(n / 2)+c n$, where $c>0$ is constant.

Recursion Tree

Solve $T(n)=2 T(n / 2)+c n$, where $c>0$ is constant.

Recursion Tree

Solve $T(n)=2 T(n / 2)+c n$, where $c>0$ is constant.

Summary

- $\Theta(n \lg n)$ grows more slowly than $\Theta\left(n^{2}\right)$.
- Therefore, merge sort asymptotically beats insertion sort in the worst case.
- In practice, merge sort beats insertion sort for $n>30$ or so.

