
CSE5311 Design and Analysis of Algorithms 1Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms 1

CSE 5311
Lecture 2 Algorithms and Growth Functions

Junzhou Huang, Ph.D.

Department of Computer Science and Engineering

Design and Analysis of Algorithms

CSE5311 Design and Analysis of Algorithms 2Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms 2

Administration

• Course CSE5311
– What: Design and Analysis of Algorithms
– When: Friday 1:00 ~ 3:50pm
– Where: ERB 130
– Who: Junzhou Huang (Office ERB 650) jzhuang@uta.edu
– Office Hour: Friday 3:50 ~ 5:50pm and/or appointments
– Homepage: http://ranger.uta.edu/~huang/teaching/CSE5311.htm

(You’re required to check this page regularly)

• Lecturer
– PhD in CS from Rutgers, the State University of New Jersey
– Research areas: machine learning, computer vision, medical image analysis

and bioinformatics

• GTA
– Saiyang Na (Office ERB 403), sxn3892@mavs.uta.edu
– Office hours: Friday 10:00am ~ 12:00pm and/or appointments

CSE5311 Design and Analysis of Algorithms 3Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms 3

Reviewing: Study Materials

• Prerequisites
– Algorithms and Data Structure (CSE 2320)

– Theoretical Computer Science (CSE 3315)

– What this really means:
You have working experience s on software

development.

You know compilation process and programming

 Elementary knowledge of math and algorithms

• Text book
– Thomas H. Cormen, Charles E. Leiserson, Ronald L.

Rivest and Clifford Stein, Introduction to
Algorithms, third edition

– https://mitpress.mit.edu/books/introduction-
algorithms

CSE5311 Design and Analysis of Algorithms 4Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms 4

Reviewing: What?

• The theoretical study of design and analysis of computer
algorithms

• Basic goals for an algorithm
– Always correct

– Always terminates

• Our class: performance
– Performance often draws the line between what is possible and what is

impossible.

• Design and Analysis of Algorithms
– Analysis: predict the cost of an algorithm in terms of resources and

performance

– Design: design algorithms which minimize the cost

CSE5311 Design and Analysis of Algorithms 5Dept. CSE, UT Arlington

8 2 4 9 3 6

2 8 4 9 3 6

2 4 8 9 3 6

2 4 8 9 3 6

2 3 4 8 9 6

2 3 4 6 8 9 done

Reviewing: Insertion Sort

CSE5311 Design and Analysis of Algorithms 6Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms 6

Reviewing: Running Time

• Running Time
– Depends on the input
– An already sorted sequence is easier to sort.

• Major Simplifying Convention
– Parameterize the running time by the size of the input, since short sequences

are easier to sort than long ones.
– TA(n) = time of A on length n inputs. Generally, we seek upper bounds on

the running time, to have a guarantee of performance.

• Kinds of Analyses
– Worst-case: (usually) T(n) = maximum time of algorithm on any input of

size n
– Average-case: (sometimes) T(n) = expected time of algorithm over all

inputs of size n. Need assumption of statistical distribution of inputs.
– Best-case: (Never) Cheat with a slow algorithm that works fast on some

input.

CSE5311 Design and Analysis of Algorithms 7Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms 7

Machine-independent Time

• Question
– Machine-independent Time

• Idea
– Ignore machine dependent constants, otherwise impossible to verify and to

compare algorithms

– Look at growth of T(n) as n → ∞ .

“Asymptotic Analysis”“Asymptotic Analysis”

CSE5311 Design and Analysis of Algorithms 8Dept. CSE, UT Arlington

Recall: Q-notation

• Drop low-order terms; ignore leading constants.
• Example: 3n3 + 90n2 – 5n + 6046 = Q(n3)

Definition:

Q(g(n)) = { f (n) : there exist positive constants c1, c2, and
n0 such that 0  c1 g(n)  f (n)  c2 g(n)
for all n  n0 }

Basic Manipulations:

CSE5311 Design and Analysis of Algorithms 9Dept. CSE, UT Arlington

Asymptotic Performance

n

T(n)

n0

.
• Asymptotic analysis is a

useful tool to help to
structure our thinking
toward better algorithm

• We shouldn’t ignore
asymptotically slower
algorithms, however.

• Real-world design situations
often call for a careful
balancing

When n gets large enough, a Q(n2) algorithm always beats a
Q(n3) algorithm.

CSE5311 Design and Analysis of Algorithms 10Dept. CSE, UT Arlington

Insertion Sort Analysis

Worst case: Input reverse sorted.

 


QQ
n

j

njnT
2

2)()(

Average case: All permutations equally likely.

 


QQ
n

j

njnT
2

2)2/()(

Is insertion sort a fast sorting algorithm?
• Moderately so, for small n.
• Not at all, for large n.

[arithmetic series]

CSE5311 Design and Analysis of Algorithms 11Dept. CSE, UT Arlington

Integer Multiplication

• Let X = A B and Y = C D where A,B,C and D are
n/2 bit integers

• Simple Method:
XY = (2n/2A+B)(2n/2C+D)= 2n AC+2n/2(AD+BC)+BD

• Running Time Recurrence

T(n) < 4T(n/2) + Q(n)

• Solution T(n) = Q(n2)

Addition and ShiftRecursive Calls

CSE5311 Design and Analysis of Algorithms 12Dept. CSE, UT Arlington

Integer Multiplication

CSE5311 Design and Analysis of Algorithms 13Dept. CSE, UT Arlington

Better Integer Multiplication

• Let X = A B and Y = C D where A,B,C and D are n/2
bit integers

• [Karatsuba-Ofman 1962] : Can multiply two n-bit integers
in O(n log 3) bit operations.

XY = (2n/2A+B)(2n/2C+D)= 2n AC+2n/2(AD+BC)+BD

= (2n - 2n/2)AC+2n/2(A+B)(C+D) + (1 - 2n/2) BD

• Running Time Recurrence

T(n) < 3T(n/2) + Q(n)

• Solution: T(n) = O(n log 3)

CSE5311 Design and Analysis of Algorithms 14Dept. CSE, UT Arlington

Better Integer Multiplication

CSE5311 Design and Analysis of Algorithms 15Dept. CSE, UT Arlington

Merge Sort

MERGE-SORT A[1 . . n]

1. If n = 1, done.
2. Recursively sort A[1 . . n/2] and A[

n/2+1 . . n] .
3. “Merge” the 2 sorted lists.

Key subroutine: MERGE

CSE5311 Design and Analysis of Algorithms 16Dept. CSE, UT Arlington

Merging Two Sorted Arrays

20

13

7

2

12

11

9

1

CSE5311 Design and Analysis of Algorithms 17Dept. CSE, UT Arlington

Merging Two Sorted Arrays

20

13

7

2

12

11

9

1

1

CSE5311 Design and Analysis of Algorithms 18Dept. CSE, UT Arlington

Merging Two Sorted Arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

CSE5311 Design and Analysis of Algorithms 19Dept. CSE, UT Arlington

Merging Two Sorted Arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

CSE5311 Design and Analysis of Algorithms 20Dept. CSE, UT Arlington

Merging Two Sorted Arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

CSE5311 Design and Analysis of Algorithms 21Dept. CSE, UT Arlington

Merging Two Sorted Arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

CSE5311 Design and Analysis of Algorithms 22Dept. CSE, UT Arlington

Merging Two Sorted Arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

20

13

12

11

9

CSE5311 Design and Analysis of Algorithms 23Dept. CSE, UT Arlington

Merging Two Sorted Arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

20

13

12

11

9

9

CSE5311 Design and Analysis of Algorithms 24Dept. CSE, UT Arlington

Merging Two Sorted Arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

20

13

12

11

9

9

20

13

12

11

CSE5311 Design and Analysis of Algorithms 25Dept. CSE, UT Arlington

Merging Two Sorted Arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

20

13

12

11

9

9

20

13

12

11

11

CSE5311 Design and Analysis of Algorithms 26Dept. CSE, UT Arlington

Merging Two Sorted Arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

20

13

12

11

9

9

20

13

12

11

11

20

13

12

CSE5311 Design and Analysis of Algorithms 27Dept. CSE, UT Arlington

Merging Two Sorted Arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

20

13

12

11

9

9

20

13

12

11

11

20

13

12

12

CSE5311 Design and Analysis of Algorithms 28Dept. CSE, UT Arlington

Merging Two Sorted Arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

20

13

12

11

9

9

20

13

12

11

11

20

13

12

12

Time = Q(n) to merge a total of n elements (linear time).

CSE5311 Design and Analysis of Algorithms 29Dept. CSE, UT Arlington

Analyzing Merge Sort

MERGE-SORT A[1 . . n]

1. If n = 1, done.
2. Recursively sort A[1 . . n/2] and A[

n/2+1 . . n] .
3. “Merge” the 2 sorted lists

T(n)
Q(1)
2T(n/2)

Q(n)

Sloppiness: Should be T(n/2) + T(n/2) , but it
turns out not to matter asymptotically.

CSE5311 Design and Analysis of Algorithms 30Dept. CSE, UT Arlington

Recurrence for Merge Sort

T(n) =
Q(1) if n = 1;

2T(n/2) + Q(n) if n > 1.

• We shall usually omit stating the base case when T(n)
= Q(1) for sufficiently small n, but only when it has
no effect on the asymptotic solution to the
recurrence.

• Next Lecture will provide several ways to find a good
upper bound on T(n).

CSE5311 Design and Analysis of Algorithms 31Dept. CSE, UT Arlington

Recursion Tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

T(n/2) T(n/2)

cn

CSE5311 Design and Analysis of Algorithms 32Dept. CSE, UT Arlington

Recursion Tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

T(n/4) T(n/4) T(n/4) T(n/4)

cn/2 cn/2

CSE5311 Design and Analysis of Algorithms 33Dept. CSE, UT Arlington

Recursion Tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

Q(1)

CSE5311 Design and Analysis of Algorithms 34Dept. CSE, UT Arlington

Recursion Tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

Q(1)

h = lg n

CSE5311 Design and Analysis of Algorithms 35Dept. CSE, UT Arlington

Recursion Tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

Q(1)

h = lg n

cn

CSE5311 Design and Analysis of Algorithms 36Dept. CSE, UT Arlington

Recursion Tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

Q(1)

h = lg n

cn

cn

CSE5311 Design and Analysis of Algorithms 37Dept. CSE, UT Arlington

Recursion Tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

Q(1)

h = lg n

cn

cn

cn

…

CSE5311 Design and Analysis of Algorithms 38Dept. CSE, UT Arlington

Recursion Tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

Q(1)

h = lg n

cn

cn

cn

#leaves = n Q(n)

…

CSE5311 Design and Analysis of Algorithms 39Dept. CSE, UT Arlington

Recursion Tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

Q(1)

h = lg n

cn

cn

cn

#leaves = n Q(n)

Total  Q(n lg n)

…

CSE5311 Design and Analysis of Algorithms 40Dept. CSE, UT Arlington

Summary

• Q(n lg n) grows more slowly than Q(n2).

• Therefore, merge sort asymptotically beats insertion sort in the
worst case.

• In practice, merge sort beats insertion sort for n > 30 or so.

