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Administration

• Course CSE5311
– What:             Design and Analysis of  Algorithms
– When:            Friday 1:00 ~ 3:50pm
– Where:           ERB 130
– Who:              Junzhou Huang (Office ERB 650) jzhuang@uta.edu
– Office Hour: Friday 3:50 ~ 5:50pm and/or appointments
– Homepage:     http://ranger.uta.edu/~huang/teaching/CSE5311.htm

(You’re required to check this page regularly)

• Lecturer
– PhD in CS from Rutgers, the State University of  New Jersey
– Research areas: machine learning, computer vision, medical image analysis 

and bioinformatics

• GTA
– Saiyang Na (Office ERB 403), sxn3892@mavs.uta.edu
– Office hours: Friday 10:00am ~ 12:00pm and/or appointments
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Reviewing: Study Materials

• Prerequisites
– Algorithms and Data Structure (CSE 2320)

– Theoretical Computer Science  (CSE 3315)

– What this really means:
You have working experience s on software 

development.

You know compilation process and programming 

 Elementary knowledge of  math and algorithms

• Text book
– Thomas H. Cormen, Charles E. Leiserson, Ronald L. 

Rivest and Clifford Stein, Introduction to 
Algorithms, third edition

– https://mitpress.mit.edu/books/introduction-
algorithms
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Reviewing: What?

• The theoretical study of  design and analysis of  computer 
algorithms 

• Basic goals for an algorithm
– Always correct

– Always terminates

• Our class: performance
– Performance often draws the line between what is possible and what is 

impossible.

• Design and Analysis of  Algorithms
– Analysis: predict the cost of  an algorithm in terms of  resources and 

performance

– Design: design algorithms which minimize the cost 
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Reviewing: Insertion Sort
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Reviewing: Running Time

• Running Time
– Depends on the input
– An already sorted sequence is easier to sort.

• Major Simplifying Convention
– Parameterize the running time by the size of  the input, since short sequences 

are easier to sort than long ones. 
– TA(n) =  time of  A on length n inputs. Generally, we seek upper bounds on 

the running time, to have a guarantee of  performance.

• Kinds of  Analyses 
– Worst-case: (usually) T(n) = maximum time of  algorithm on any input of  

size n
– Average-case: (sometimes) T(n) = expected time of  algorithm over all 

inputs of  size n. Need assumption of  statistical distribution of  inputs.
– Best-case: (Never) Cheat with a slow algorithm that works fast on some 

input.
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Machine-independent Time

• Question
– Machine-independent Time

• Idea
– Ignore machine dependent constants, otherwise impossible to verify and to 

compare algorithms

– Look at growth of  T(n) as n → ∞ .

“Asymptotic Analysis”“Asymptotic Analysis”
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Recall: Q-notation

• Drop low-order terms; ignore leading constants.
• Example: 3n3 + 90n2 – 5n + 6046 = Q(n3)

Definition:

Q(g(n)) = { f (n) : there exist positive constants c1, c2, and
n0 such that 0  c1 g(n)  f (n)  c2 g(n)
for all n  n0 }

Basic Manipulations:
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Asymptotic Performance

n

T(n)

n0

.
• Asymptotic analysis is a 

useful tool to help to 
structure our thinking 
toward better algorithm

• We shouldn’t ignore                      
asymptotically slower 
algorithms, however.

• Real-world design situations 
often call for a careful 
balancing

When n gets large enough, a Q(n2) algorithm always beats a 
Q(n3) algorithm.
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Insertion Sort Analysis

Worst case: Input reverse sorted.

 
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Average case: All permutations equally likely.
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njnT
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Is insertion sort a fast sorting algorithm?
• Moderately so, for small n.
• Not at all, for large n.

[arithmetic series]
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Integer Multiplication

• Let X = A  B  and Y = C  D  where A,B,C and D are 
n/2 bit integers

• Simple Method:  
XY = (2n/2A+B)(2n/2C+D)= 2n AC+2n/2(AD+BC)+BD

• Running Time Recurrence

T(n) < 4T(n/2) + Q(n)

• Solution T(n) = Q(n2)

Addition and ShiftRecursive Calls
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Integer Multiplication
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Better Integer Multiplication

• Let X = A   B  and Y = C  D  where A,B,C and D are n/2 
bit integers

• [Karatsuba-Ofman 1962] : Can multiply two n-bit integers 
in O(n log 3) bit operations. 

XY = (2n/2A+B)(2n/2C+D)= 2n AC+2n/2(AD+BC)+BD 

= (2n - 2n/2)AC+2n/2(A+B)(C+D) + (1 - 2n/2) BD

• Running Time Recurrence

T(n) < 3T(n/2) + Q(n)

• Solution: T(n) = O(n log 3)
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Better Integer Multiplication



CSE5311 Design and Analysis of  Algorithms 15Dept. CSE, UT Arlington

Merge Sort

MERGE-SORT  A[1 . . n]

1. If  n = 1, done.
2. Recursively sort A[ 1 . . n/2 ] and A[ 

n/2+1 . . n ] .
3. “Merge” the 2 sorted lists.

Key subroutine: MERGE
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Merging Two Sorted Arrays
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Time = Q(n) to merge a total of  n elements (linear time).
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Analyzing Merge Sort

MERGE-SORT A[1 . . n]

1. If  n = 1, done.
2. Recursively sort A[ 1 . . n/2 ] and A[ 

n/2+1 . . n ] .
3. “Merge” the 2 sorted lists

T(n)
Q(1)
2T(n/2)

Q(n)

Sloppiness: Should be T( n/2 ) + T( n/2 ) , but it 
turns out not to matter asymptotically.
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Recurrence for Merge Sort

T(n) =
Q(1) if n = 1;

2T(n/2) + Q(n) if n > 1.

• We shall usually omit stating the base case when T(n) 
= Q(1) for sufficiently small n, but only when it has 
no effect on the asymptotic solution to the 
recurrence.

• Next Lecture will provide several ways to find a good 
upper bound on T(n).
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Recursion Tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

T(n/2) T(n/2)

cn
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Recursion Tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

T(n/4) T(n/4) T(n/4) T(n/4)

cn/2 cn/2
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Recursion Tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

Q(1)
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Recursion Tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

Q(1)

h = lg n
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Recursion Tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.
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h = lg n
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Recursion Tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

Q(1)

h = lg n

cn

cn

cn

#leaves = n Q(n)

…
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Recursion Tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

Q(1)

h = lg n

cn

cn

cn

#leaves = n Q(n)

Total  Q(n lg n)

…
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Summary

• Q(n lg n) grows more slowly than Q(n2).

• Therefore, merge sort asymptotically beats insertion sort in the 
worst case.

• In practice, merge sort beats insertion sort for n > 30 or so.


