
CSE5311 Design and Analysis of Algorithms 1Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms 1

CSE 5311
Lecture 20 Minimum Spanning Tree

Junzhou Huang, Ph.D.

Department of Computer Science and Engineering

Design and Analysis of Algorithms

CSE5311 Design and Analysis of Algorithms 2Dept. CSE, UT Arlington

Minimum Spanning Trees

• Given: Connected, undirected, weighted graph, G
• Find: Minimum - weight spanning tree, T
• Example:

b c

a

d e f

5

11

0

3 1

7

-3

2

a

b c

fed

5

3 -3
1

0

Acyclic subset of edges(E) that connects
all vertices of G.

CSE5311 Design and Analysis of Algorithms 3Dept. CSE, UT Arlington

Generic Algorithm

“Grows” a set A.

A is subset of some MST.

Edge is “safe” if it can be added to A without destroying this
invariant.

A := ;
while A not complete tree do

find a safe edge (u, v);
A := A  {(u, v)}

od

CSE5311 Design and Analysis of Algorithms 4Dept. CSE, UT Arlington

cut partitions vertices into
disjoint sets, S and V – S.

b ca

d e f

5

11

0

3 1

7

-3

2

this edge crosses the cut

a light edge crossing cut
(could be more than one)

Definitions

cut respects the edge set {(a, b), (b, c)}

one endpoint is in S and the other is in V – S.

no edge in the set crosses the cut

CSE5311 Design and Analysis of Algorithms 5Dept. CSE, UT Arlington

Proof:
Let T be a MST that includes A.
Case: (u, v) in T. We’re done.
Case: (u, v) not in T. We have the following:

u y

x

v

edge in A

cut

shows edges
in T

Theorem 23.1

Theorem 23.1: Let (S, V-S) be any cut that respects A, and let (u, v)
be a light edge crossing (S, V-S). Then, (u, v) is safe for A.

(x, y) crosses cut.
Let T´ = T - {(x, y)}  {(u, v)}.

Because (u, v) is light for cut,
w(u, v)  w(x, y). Thus,
w(T´) = w(T) - w(x, y) + w(u, v)  w(T).

Hence, T´ is also a MST.
So, (u, v) is safe for A.

CSE5311 Design and Analysis of Algorithms 6Dept. CSE, UT Arlington

In general, A will consist of several connected components.

Corollary

Corollary: If (u, v) is a light edge connecting one CC in (V, A)
to another CC in (V, A), then (u, v) is safe for A.

CSE5311 Design and Analysis of Algorithms 7Dept. CSE, UT Arlington

Kruskal’s Algorithm

• Starts with each vertex in its own component.

• Repeatedly merges two components into one by choosing a light
edge that connects them (i.e., a light edge crossing the cut between
them).

• Scans the set of edges in monotonically increasing order by weight.

• Uses a disjoint-set data structure to determine whether an edge
connects vertices in different components.

CSE5311 Design and Analysis of Algorithms 8Dept. CSE, UT Arlington

Prim’s Algorithm

• Builds one tree, so A is always a tree.

• Starts from an arbitrary “root” r .

• At each step, adds a light edge crossing cut (VA, V - VA) to A.

– VA = vertices that A is incident on.

CSE5311 Design and Analysis of Algorithms 9Dept. CSE, UT Arlington

Prim’s Algorithm

• Uses a priority queue Q to find a light edge quickly.

• Each object in Q is a vertex in V - VA.

• Key of v is minimum weight of any edge (u, v), where u  VA.

• Then the vertex returned by Extract-Min is v such that there exists
u  VA and (u, v) is light edge crossing (VA, V - VA).

• Key of v is  if v is not adjacent to any vertex in VA.

CSE5311 Design and Analysis of Algorithms 10Dept. CSE, UT Arlington

Q := V[G];
for each u  Q do

key[u] := 
od;
key[r] := 0;
[r] := NIL;
while Q   do

u := Extract - Min(Q);
for each v  Adj[u] do

if v  Q  w(u, v) < key[v] then
[v] := u;
key[v] := w(u, v)

fi
od

od

Complexity:
Using binary heaps: O(E lg V).

Initialization – O(V).
Building initial queue – O(V).
V Extract-Min’s – O(V lgV).
E Decrease-Key’s – O(E lg V).

Using Fibonacci heaps: O(E + V lg V).
(see book)

Prim’s Algorithm

Note: A = {(v, [v]) : v  v - {r} - Q}.

 decrease-key operation

CSE5311 Design and Analysis of Algorithms 11Dept. CSE, UT Arlington

b/ c/a/0

d/ e/ f/

5

11

0

3 1

7

-3

2

Q = a b c d e f
0  

Not in tree

Example of Prim’s Algorithm

CSE5311 Design and Analysis of Algorithms 12Dept. CSE, UT Arlington

b/5 c/a/0

d/11 e/ f/

5

11

0

3 1

7

-3

2

Q = b d c e f
5 11  

Example of Prim’s Algorithm

CSE5311 Design and Analysis of Algorithms 13Dept. CSE, UT Arlington

b/5 c/7a/0

d/11 e/3 f/

5

11

0

3 1

7

-3

2

Q = e c d f
3 7 11 

Example of Prim’s Algorithm

CSE5311 Design and Analysis of Algorithms 14Dept. CSE, UT Arlington

b/5 c/1a/0

d/0 e/3 f/2

5

11

0

3 1

7

-3

2

Q = d c f
0 1 2

Example of Prim’s Algorithm

CSE5311 Design and Analysis of Algorithms 15Dept. CSE, UT Arlington

b/5 c/1a/0

d/0 e/3 f/2

5

11

0

3 1

7

-3

2

Q = c f
1 2

Example of Prim’s Algorithm

CSE5311 Design and Analysis of Algorithms 16Dept. CSE, UT Arlington

b/5 c/1a/0

d/0 e/3 f/-3

5

11

0

3 1

7

-3

2

Q = f
-3

Example of Prim’s Algorithm

CSE5311 Design and Analysis of Algorithms 17Dept. CSE, UT Arlington

b/5 c/1a/0

d/0 e/3 f/-3

5

11

0

3 1

7

-3

2

Q = 

Example of Prim’s Algorithm

CSE5311 Design and Analysis of Algorithms 18Dept. CSE, UT Arlington

Example of Prim’s Algorithm

0

b/5 c/1a/0

d/0 e/3 f/-3

5

3 1 -3

CSE5311 Design and Analysis of Algorithms 19Dept. CSE, UT Arlington

Minimum Spanning Trees

CSE5311 Design and Analysis of Algorithms 20Dept. CSE, UT Arlington

Minimum Spanning Trees

• Problem: Connect a set of nodes by a network of
minimal total length

• Some applications:

– Communication networks

– Circuit design

– Layout of highway systems

CSE5311 Design and Analysis of Algorithms 21Dept. CSE, UT Arlington

Motivation: Minimum Spanning Trees

• To minimize the length of a connecting network, it never
pays to have cycles.

• The resulting connection graph is connected, undirected,
and acyclic, i.e., a free tree (sometimes called simply a tree).

• This is the minimum spanning tree or MST problem.

CSE5311 Design and Analysis of Algorithms 22Dept. CSE, UT Arlington

Formal Definition of MST

• Given a connected, undirected, graph G = (V, E), a
spanning tree is an acyclic subset of edges T E that connects
all the vertices together.

• Assuming G is weighted, we define the cost of a spanning
tree T to be the sum of edge weights in the spanning tree

w(T) = (u,v)T w(u,v)

• A minimum spanning tree (MST) is a spanning tree of
minimum weight.

CSE5311 Design and Analysis of Algorithms 23Dept. CSE, UT Arlington

Figure1 : Examples of MST

• Not only do the edges sum to the same value, but the same
set of edge weights appear in the two MSTs. NOTE: An
MST may not be unique.

CSE5311 Design and Analysis of Algorithms 24Dept. CSE, UT Arlington

Steiner Minimum Trees (SMT)

• Given a undirected graph G = (V, E) with edge weights and
a subset of vertices V’  V, called terminals. We wish to
compute a connected acyclic subgraph of G that includes all
terminals. MST is just a SMT with V’ =V.

Figure 2: Steiner Minimum Tree

CSE5311 Design and Analysis of Algorithms 25Dept. CSE, UT Arlington

Generic Approaches

• Two greedy algorithms for computing MSTs:

– Kruskal’s Algorithm (similar to connected component)

– Prim’s Algorithm (similar to Dijkstra’s Algorithm)

CSE5311 Design and Analysis of Algorithms 26Dept. CSE, UT Arlington

Facts about (Free) Trees

• A tree with n vertices has exactly n-1 edges
(|E| = |V| - 1)

• There exists a unique path between any two vertices of a
tree

• Adding any edge to a tree creates a unique cycle; breaking
any edge on this cycle restores a tree

For details see CLRS Appendix B.5.1

CSE5311 Design and Analysis of Algorithms 27Dept. CSE, UT Arlington

Intuition Behind Greedy MST

• We maintain in a subset of edges A, which will initially be
empty, and we will add edges one at a time, until equals
the MST. We say that a subset A E is viable if A is a
subset of edges in some MST. We say that an edge (u,v) 
E-A is safe if A{(u,v)} is viable.

• Basically, the choice (u,v) is a safe choice to add so that A
can still be extended to form an MST. Note that if A is
viable it cannot contain a cycle. A generic greedy
algorithm operates by repeatedly adding any safe edge to the
current spanning tree.

CSE5311 Design and Analysis of Algorithms 28Dept. CSE, UT Arlington

Generic-MST (G, w)

1. A  // A trivially satisfies invariant

// lines 2-4 maintain the invariant

2. while A does not form a spanning tree

3. do find an edge (u,v) that is safe for A

4. A  A  {(u,v)}

5. return A // A is now a MST

CSE5311 Design and Analysis of Algorithms 29Dept. CSE, UT Arlington

Definitions

• A cut (S, V-S) is just a partition of the vertices into 2
disjoint subsets. An edge (u, v) crosses the cut if one
endpoint is in S and the other is in V-S. Given a subset of
edges A, we say that a cut respects A if no edge in A crosses
the cut.

• An edge of E is a light edge crossing a cut, if among all edges
crossing the cut, it has the minimum weight (the light edge
may not be unique if there are duplicate edge weights).

CSE5311 Design and Analysis of Algorithms 30Dept. CSE, UT Arlington

When is an Edge Safe?

• If we have computed a partial MST, and we wish to
know which edges can be added that do NOT induce
a cycle in the current MST, any edge that crosses a
respecting cut is a possible candidate.

• Intuition says that since all edges crossing a
respecting cut do not induce a cycle, then the lightest
edge crossing a cut is a natural choice.

CSE5311 Design and Analysis of Algorithms 31Dept. CSE, UT Arlington

MST Lemma

• Let G = (V, E) be a connected, undirected graph with real-
value weights on the edges. Let A be a viable subset of E
(i.e. a subset of some MST), let (S, V-S) be any cut that
respects A, and let (u,v) be a light edge crossing this cut.
Then, the edge is safe for A.

CSE5311 Design and Analysis of Algorithms 32Dept. CSE, UT Arlington

Proof of MST Lemma

• Must show that A  {(u,v)} is a subset of some MST

• Method:
1. Find arbitrary MST T containing A

2. Use a cut-and-paste technique to find another MST T that
contains A  {(u,v)}

• This cut-and-paste idea is an important proof technique

CSE5311 Design and Analysis of Algorithms 33Dept. CSE, UT Arlington

Figure

Figure 3: MST Lemma

CSE5311 Design and Analysis of Algorithms 34Dept. CSE, UT Arlington

Step 1

• Let T be any MST for G containing A.
– We know such a tree exists because A is viable.

• If (u, v) is in T then we are done.

CSE5311 Design and Analysis of Algorithms 35Dept. CSE, UT Arlington

Constructing T’

• If (u, v) is not in T, then add it to T, thus creating a cycle.
Since u and v are on opposite sides of the cut, and since
any cycle must cross the cut an even number of times,
there must be at least one other edge (x, y) in T that
crosses the cut.

• The edge (x, y) is not in A (because the cut respects A).
By removing (x,y) we restore a spanning tree, T’.

• Now must show
– T’ is a minimum spanning tree

– A  {(u,v)} is a subset of T’

CSE5311 Design and Analysis of Algorithms 36Dept. CSE, UT Arlington

Conclusion of Proof

• T’ is an MST: We have
w(T’) = w(T) - w(x,y) + w(u,v)

Since (u,v) is a light edge crossing the cut, we have w(u,v) 
w(x,y). Thus w(T’)  w(T). So T’ is also a minimum
spanning tree.

• A  {(u,v)}  T’: Remember that (x, y) is not in A. Thus
A  T - {(x, y)}, and thus

A  {(u,v)}  T - {(x, y)}  {(u,v)} = T’

CSE5311 Design and Analysis of Algorithms 37Dept. CSE, UT Arlington

MST Lemma: Reprise

• Let G = (V, E) be a connected, undirected graph with real-
value weights on the edges. Let A be a viable subset of E
(i.e. a subset of some MST), let (S, V-S) be any cut that
respects A, and let (u,v) be a light edge crossing this cut.
Then, the edge is safe for A.

• Point of Lemma: Greedy strategy works!

CSE5311 Design and Analysis of Algorithms 38Dept. CSE, UT Arlington

Basics of Kruskal’s Algorithm

• Attempts to add edges to A in increasing order of weight
(lightest edge first)

– If the next edge does not induce a cycle among the current
set of edges, then it is added to A.

– If it does, then this edge is passed over, and we consider the
next edge in order.

– As this algorithm runs, the edges of A will induce a forest
on the vertices and the trees of this forest are merged
together until we have a single tree containing all vertices.

CSE5311 Design and Analysis of Algorithms 39Dept. CSE, UT Arlington

Detecting a Cycle

• We can perform a DFS on subgraph induced by the edges
of A, but this takes too much time.

• Use “disjoint set UNION-FIND” data structure. This
data structure supports 3 operations:
Create-Set(u): create a set containing u.
Find-Set(u): Find the set that contains u.
Union(u, v): Merge the sets containing u and v.

Each can be performed in O(lg n) time.

• The vertices of the graph will be elements to be stored in
the sets; the sets will be vertices in each tree of A (stored
as a simple list of edges).

CSE5311 Design and Analysis of Algorithms 40Dept. CSE, UT Arlington

MST-Kruskal(G, w)

1. A  // initially A is empty

2. for each vertex v  V[G] // line 2-3 takes O(V) time

3. do Create-Set(v) // create set for each vertex

4. sort the edges of E by nondecreasing weight w

5. for each edge (u,v)  E, in order by nondecreasing weight

6. do if Find-Set(u)  Find-Set(v) // u&v on different trees

7. then A  A  {(u,v)}

8. Union(u,v)

9. return A

Total running time is O(E lg E).

CSE5311 Design and Analysis of Algorithms 41Dept. CSE, UT Arlington

Example: Kruskal’s Algorithm

Figure 4: Kruskal’s Algorithm

CSE5311 Design and Analysis of Algorithms 42Dept. CSE, UT Arlington

Analysis of Kruskal

• Lines 1-3 (initialization): O(V)

• Line 4 (sorting): O(E lg E)

• Lines 6-8 (set-operation): O(E log E)

• Total: O(E log E)

CSE5311 Design and Analysis of Algorithms 43Dept. CSE, UT Arlington

Correctness

• Consider the edge (u, v) that the algorithm seeks to add
next, and suppose that this edge does not induce a cycle in
A.

• Let A’ denote the tree of the forest A that contains vertex
u. Consider the cut (A’, V-A’).

• Every edge crossing the cut is not in A, and so this cut
respects A, and (u, v) is the light edge across the cut
(because any lighter edge would have been considered
earlier by the algorithm).

• Thus, by the MST Lemma, (u,v) is safe.

