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Minimum Spanning Trees

• Given: Connected, undirected, weighted graph, G
• Find: Minimum - weight spanning tree, T
• Example:
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Acyclic subset of  edges(E) that connects
all vertices of  G.
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Generic Algorithm

“Grows” a set A.

A is subset of  some MST.

Edge is “safe” if  it can be added to A without destroying this 
invariant.

A := ;
while A not complete tree do

find a safe edge (u, v);
A := A  {(u, v)}

od
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cut partitions vertices into
disjoint sets, S and V – S.
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this edge crosses the cut

a light edge crossing cut
(could be more than one)

Definitions

cut respects the edge set {(a, b), (b, c)}

one endpoint is in S and the other is in V – S.

no edge in the set crosses the cut
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Proof:
Let T be a MST that includes A.
Case: (u, v) in T. We’re done.
Case: (u, v) not in T.  We have the following: 

u y

x

v

edge in A

cut

shows edges
in T

Theorem 23.1

Theorem 23.1: Let (S, V-S) be any cut that respects A, and let (u, v) 
be a light edge crossing (S, V-S). Then, (u, v) is safe for A.

(x, y) crosses cut.
Let T´ = T - {(x, y)}  {(u, v)}.

Because (u, v) is light for cut,
w(u, v)  w(x, y). Thus, 
w(T´) = w(T) - w(x, y) + w(u, v)  w(T).

Hence, T´ is also a MST. 
So, (u, v) is safe for A.
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In general, A will consist of  several connected components.

Corollary

Corollary: If  (u, v) is a light edge connecting one CC in (V, A)
to another CC in (V, A), then (u, v) is safe for A.
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Kruskal’s Algorithm

• Starts with each vertex in its own component.

• Repeatedly merges two components into one by choosing a light 
edge that connects them (i.e., a light edge crossing the cut between 
them).

• Scans the set of edges in monotonically increasing order by weight.

• Uses a disjoint-set data structure to determine whether an edge 
connects vertices in different components.
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Prim’s Algorithm

• Builds one tree, so A is always a tree.

• Starts from an arbitrary “root” r .

• At each step, adds a light edge crossing cut (VA, V - VA) to A.

– VA = vertices that A is incident on.
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Prim’s Algorithm

• Uses a priority queue Q to find a  light edge quickly.

• Each object in Q is a vertex in V - VA.

• Key of v is minimum weight of any edge (u, v), where u  VA.

• Then the vertex returned by Extract-Min is v such that there exists 
u  VA and (u, v) is light edge crossing (VA, V - VA).

• Key of v is  if v is not adjacent to any vertex in VA.
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Q := V[G];
for each u  Q do

key[u] := 
od;
key[r] := 0;
[r] := NIL;
while Q   do

u := Extract - Min(Q);
for each v  Adj[u] do

if v  Q  w(u, v) < key[v] then
[v] := u;
key[v] := w(u, v)

fi
od

od

Complexity:
Using binary heaps: O(E lg V).

Initialization – O(V).
Building initial queue – O(V).
V Extract-Min’s – O(V lgV).
E Decrease-Key’s – O(E lg V).

Using Fibonacci heaps: O(E + V lg V).
(see book)

Prim’s Algorithm

Note: A = {(v, [v]) : v  v - {r} - Q}.

 decrease-key operation
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Not in tree

Example of Prim’s Algorithm
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Example of Prim’s Algorithm
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Example of Prim’s Algorithm
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Example of Prim’s Algorithm
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Minimum Spanning Trees
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Minimum Spanning Trees

• Problem: Connect a set of nodes by a network of 
minimal total length

• Some applications: 

– Communication networks

– Circuit design

– Layout of highway systems



CSE5311 Design and Analysis of  Algorithms 21Dept. CSE, UT Arlington

Motivation: Minimum Spanning Trees

• To minimize the length of a connecting network, it never 
pays to have cycles.

• The resulting connection graph is connected, undirected, 
and acyclic, i.e., a free tree (sometimes called simply a tree).

• This is the minimum spanning tree or MST problem.
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Formal Definition of MST

• Given a connected, undirected, graph G = (V, E), a 
spanning tree is an acyclic subset of edges  T E that connects 
all the vertices together.  

• Assuming G is weighted, we define the cost of a spanning 
tree T to be the sum of edge weights in the spanning tree

w(T) = (u,v)T w(u,v)

• A minimum spanning tree (MST) is a spanning tree of 
minimum weight.
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Figure1 :  Examples of MST

• Not only do the edges sum to the same value, but the same 
set of edge weights appear in the two MSTs.  NOTE:  An 
MST may not be unique.
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Steiner Minimum Trees (SMT)

• Given a undirected graph G = (V, E) with edge weights and 
a subset of vertices  V’  V, called terminals.  We wish to 
compute a connected acyclic subgraph of G that includes all 
terminals.  MST is just a SMT with V’ =V.

Figure 2:  Steiner Minimum Tree
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Generic Approaches

• Two greedy algorithms for computing MSTs:

– Kruskal’s Algorithm (similar to connected component)

– Prim’s Algorithm (similar to Dijkstra’s Algorithm)
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Facts about (Free) Trees

• A tree with n vertices has exactly n-1 edges 
(|E| = |V| - 1)

• There exists a unique path between any two vertices of a 
tree

• Adding any edge to a tree creates a unique cycle; breaking 
any edge on this cycle restores a tree

For details see CLRS Appendix B.5.1 
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Intuition Behind Greedy MST

• We maintain in a subset of edges A, which will initially be 
empty, and we will add edges one at a time, until equals 
the MST.  We say that a subset A E is viable if A is a 
subset of edges in some MST.  We say that an edge (u,v) 
E-A is safe if A{(u,v)} is viable.  

• Basically, the choice (u,v) is a safe choice to add so that A
can still be extended to form an MST.  Note that if A is 
viable it cannot contain a cycle.  A generic greedy 
algorithm operates by repeatedly adding any safe edge to the 
current spanning tree.  
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Generic-MST (G, w)

1.  A  // A trivially satisfies invariant

// lines 2-4 maintain the invariant

2.  while A does not form a spanning tree

3.       do find an edge (u,v) that is safe for A

4.             A  A  {(u,v)}

5.  return A      // A is now a MST
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Definitions

• A cut (S, V-S) is just a partition of the vertices into 2 
disjoint subsets.  An edge (u, v) crosses the cut if one 
endpoint is in S and the other is in V-S.  Given a subset of 
edges A, we say that a cut respects A if no edge in A crosses 
the cut.

• An edge of E is a light edge crossing a cut, if among all edges 
crossing the cut, it has the minimum weight (the light edge 
may not be unique if there are duplicate edge weights).
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When is an Edge Safe?

• If we have computed a partial MST, and we wish to 
know which edges can be added that do NOT induce 
a cycle in the current MST, any edge that crosses a 
respecting cut is a possible candidate.

• Intuition says that since all edges crossing a 
respecting cut do not induce a cycle, then the lightest 
edge crossing a cut is a natural choice.



CSE5311 Design and Analysis of  Algorithms 31Dept. CSE, UT Arlington

MST Lemma

• Let G = (V, E) be a connected, undirected graph with real-
value weights on the edges.  Let A be a viable subset of E
(i.e. a subset of some MST), let (S, V-S) be any cut that 
respects A, and let (u,v) be a light edge crossing this cut.  
Then, the edge is safe for A.
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Proof of MST Lemma

• Must show that A  {(u,v)} is a subset of some MST

• Method:
1. Find arbitrary MST T containing A

2. Use a cut-and-paste technique to find another MST T that 
contains A  {(u,v)}

• This cut-and-paste idea is an important proof technique
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Figure

Figure 3:  MST Lemma
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Step 1

• Let T be any MST for G containing A.
– We know such a tree exists because A is viable.

• If (u, v) is in T then we are done.
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Constructing T’

• If (u, v) is not in T, then add it to T, thus creating a cycle.  
Since u and v are on opposite sides of the cut, and since 
any cycle must cross the cut an even number of times, 
there must be at least one other edge (x, y) in T that 
crosses the cut.

• The edge (x, y) is not in A (because the cut respects A).  
By removing (x,y) we restore a spanning tree, T’.

• Now must show
– T’ is a minimum spanning tree

– A  {(u,v)} is a subset of T’
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Conclusion of Proof

• T’ is an MST: We have
w(T’) = w(T) - w(x,y) + w(u,v)

Since (u,v) is a light edge crossing the cut, we have w(u,v) 
w(x,y). Thus w(T’)  w(T).  So T’ is also a minimum 
spanning tree.

• A  {(u,v)}  T’: Remember that (x, y) is not in A.  Thus 
A  T - {(x, y)}, and thus

A  {(u,v)}  T - {(x, y)}  {(u,v)} = T’
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MST Lemma: Reprise

• Let G = (V, E) be a connected, undirected graph with real-
value weights on the edges.  Let A be a viable subset of E
(i.e. a subset of some MST), let (S, V-S) be any cut that 
respects A, and let (u,v) be a light edge crossing this cut.  
Then, the edge is safe for A.

• Point of Lemma: Greedy strategy works!
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Basics of Kruskal’s Algorithm

• Attempts to add edges to A in increasing order of weight 
(lightest edge first)

– If the next edge does not induce a cycle among the current 
set of edges, then it is added to A.

– If it does, then this edge is passed over, and we consider the 
next edge in order.

– As this algorithm runs, the edges of A will induce a forest 
on the vertices and the trees of this forest are merged 
together until we have a single tree containing all vertices.
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Detecting a Cycle

• We can perform a DFS on subgraph induced by the edges 
of A, but this takes too much time.

• Use “disjoint set UNION-FIND” data structure.  This 
data structure supports 3 operations:
Create-Set(u):  create a set containing u.
Find-Set(u):  Find the set that contains u.
Union(u, v):  Merge the sets containing u and v.

Each can be performed in O(lg n) time.

• The vertices of the graph will be elements to be stored in 
the sets; the sets will be vertices in each tree of A (stored 
as a simple list of edges). 
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MST-Kruskal(G, w)

1.  A  // initially A is empty

2.  for each vertex v  V[G]                 // line 2-3 takes O(V) time

3.        do Create-Set(v) // create set for each vertex

4.  sort the edges of E by nondecreasing weight w 

5.  for each edge (u,v)  E, in order by nondecreasing weight 

6.        do if Find-Set(u)  Find-Set(v)   // u&v on different trees

7.                 then  A  A  {(u,v)}

8.                          Union(u,v)

9.  return A

Total running time is O(E lg E).
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Example:  Kruskal’s Algorithm

Figure 4:  Kruskal’s Algorithm
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Analysis of Kruskal

• Lines 1-3 (initialization):  O(V)

• Line 4 (sorting):  O(E lg E)

• Lines 6-8 (set-operation):  O(E log E)

• Total: O(E log E)
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Correctness

• Consider the edge (u, v) that the algorithm seeks to add
next, and suppose that this edge does not induce a cycle in
A.

• Let A’ denote the tree of the forest A that contains vertex
u. Consider the cut (A’, V-A’).

• Every edge crossing the cut is not in A, and so this cut
respects A, and (u, v) is the light edge across the cut
(because any lighter edge would have been considered
earlier by the algorithm).

• Thus, by the MST Lemma, (u,v) is safe.


