
CSE5311 Design and Analysis of Algorithms 1Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms 1

CSE 5311
Lecture 21 Single-Source Shortest Paths

Junzhou Huang, Ph.D.

Department of Computer Science and Engineering

Design and Analysis of Algorithms

CSE5311 Design and Analysis of Algorithms 2Dept. CSE, UT Arlington

Single-Source Shortest Paths

• Given: A single source vertex in a weighted, directed
graph.

• Want to compute a shortest path for each possible
destination.
– Similar to BFS.

• We will assume either
– no negative-weight edges, or

– no reachable negative-weight cycles.

• Algorithm will compute a shortest-path tree.
– Similar to BFS tree.

CSE5311 Design and Analysis of Algorithms 3Dept. CSE, UT Arlington

Outline

• General Lemmas and Theorems.

• Bellman-Ford algorithm.

• DAG algorithm.

• Dijkstra’s algorithm.

CSE5311 Design and Analysis of Algorithms 4Dept. CSE, UT Arlington

Corollary: Let p = SP from s to v, where p = s u v. Then,
δ(s, v) = δ(s, u) + w(u, v).

General Results (Relaxation)

Lemma 24.1: Let p = ‹v1, v2, …, vk› be a SP from v1 to vk. Then,
pij = ‹vi, vi+1, …, vj› is a SP from vi to vj, where 1 i j k.

So, we have the optimal-substructure property.

Bellman-Ford’s algorithm uses dynamic programming.

Dijkstra’s algorithm uses the greedy approach.

Let δ(u, v) = weight of SP from u to v.
p'

Lemma 24.10: Let s V. For all edges (u,v) E, we have
δ(s, v) δ(s, u) + w(u,v).

CSE5311 Design and Analysis of Algorithms 5Dept. CSE, UT Arlington

• Lemma 24.1 holds because one edge gives the shortest
path, so the other edges must give sums that are at least as
large.

CSE5311 Design and Analysis of Algorithms 6Dept. CSE, UT Arlington

Relaxation

Initialize(G, s)
for each v V[G] do

d[v] := ;
[v] := NIL

end;
d[s] := 0

Relax(u, v, w)
if d[v] > d[u] + w(u, v) then

d[v] := d[u] + w(u, v);
[v] := u

end

Algorithms keep track of d[v], [v]. Initialized as follows:

These values are changed when an edge (u, v) is relaxed:

CSE5311 Design and Analysis of Algorithms 7Dept. CSE, UT Arlington

Properties of Relaxation

• d[v], if not , is the length of some path from s to v.

• d[v] either stays the same or decreases with time

• Therefore, if d[v] = (s, v) at any time, this holds thereafter

• Note that d[v] (s, v) always

• After i iterations of relaxing on all (u,v), if the shortest path
to v has i edges, then d[v] = (s, v).

CSE5311 Design and Analysis of Algorithms 8Dept. CSE, UT Arlington

Properties of Relaxation

Consider any algorithm in which d[v], and [v] are first initialized by
calling Initialize(G, s) [s is the source], and are only changed by calling
Relax. We have:

Lemma 24.11: (v:: d[v] (s, v)) is an invariant.

Implies d[v] doesn’t change once d[v] = (s, v).
Proof:
Initialize(G, s) establishes invariant. If call to Relax(u, v, w)
changes d[v], then it establishes:

d[v] = d[u] + w(u, v)
 (s, u) + w(u, v) , invariant holds before call.
 (s, v) , by Lemma 24.10.

Corollary 24.12: If there is no path from s to v, then
d[v] = δ(s, v) = is an invariant.

CSE5311 Design and Analysis of Algorithms 9Dept. CSE, UT Arlington

• For lemma 24.11, note that initialization makes the
invariant true at the beginning.

CSE5311 Design and Analysis of Algorithms 10Dept. CSE, UT Arlington

More Properties

Lemma 24.14: Let p = SP from s to v, where p = s u v.
If d[u] = δ(s, u) holds at any time prior to calling Relax(u, v, w),
then d[v] = δ(s, v) holds at all times after the call.

p'

Proof:

After the call we have:
d[v] d[u] + w(u, v) , by Lemma 24.13.

= (s, u) + w(u, v) , d[u] = (s, u) holds.
= (s, v) , by corollary to Lemma 24.1.

By Lemma 24.11, d[v] δ(s, v), so d[v] = δ(s, v).

Lemma 24.13: Immediately after relaxing edge (u, v) by calling
Relax(u, v, w), we have d[v] d[u] + w(u, v).

CSE5311 Design and Analysis of Algorithms 11Dept. CSE, UT Arlington

• Lemma 24.13 follows simply from the structure of Relax.

• Lemma 24.14 shows that the shortest path will be found
one vertex at a time, if not faster. Thus after a number of
iterations of Relax equal to V(G) - 1, all shortest paths
will be found.

CSE5311 Design and Analysis of Algorithms 12Dept. CSE, UT Arlington

• Bellman-Ford returns a compact representation of the set
of shortest paths from s to all other vertices in the graph
reachable from s. This is contained in the predecessor
subgraph.

CSE5311 Design and Analysis of Algorithms 13Dept. CSE, UT Arlington

Predecessor Subgraph

Lemma 24.16: Assume given graph G has no negative-weight cycles
reachable from s. Let G = predecessor subgraph. G is always a
tree with root s (i.e., this property is an invariant).

Proof:
Two proof obligations:

(1) G is acyclic.
(2) There exists a unique path from source s to each vertex in V.

Proof of (1):
Suppose there exists a cycle c = ‹v0, v1, …, vk›, where v0 = vk.
We have [vi] = vi-1 for i = 1, 2, …, k.

Assume relaxation of (vk-1, vk) created the cycle.
We show cycle has a negative weight.

Note: Cycle must be reachable from s.

CSE5311 Design and Analysis of Algorithms 14Dept. CSE, UT Arlington

Proof of (1) (Continued)
Before call to Relax(vk-1, vk, w):

[vi] = vi-1 for i = 1, …, k–1.

Implies d[vi] was last updated by “d[vi] := d[vi-1] + w(vi-1, vi)”
for i = 1, …, k–1. [Because Relax updates .]

Implies d[vi] d[vi-1] + w(vi-1, vi) for i = 1, …, k–1. [Lemma 24.13]

Because [vk] is changed by call, d[vk] > d[vk-1] + w(vk-1, vk). Thus,

cycle!weight -neg. i.e., 0,)v,w(v ,]d[v]d[v Because

)v,w(v]d[v

))v,w(v](d[v]d[v

k

1i
i1i

k

1i
1i

k

1i
i

k

1i

k

1i
i1i1i

k

1i

k

1i
i1i1ii

CSE5311 Design and Analysis of Algorithms 15Dept. CSE, UT Arlington

Comment on Proof

• d[vi] d[vi-1] + w(vi-1, vi) for i = 1, …, k–1 because when
Relax(vi-1 , vi , w) was called, there was an equality, and
d[vi-1] may have gotten smaller by further calls to Relax.

• d[vk] > d[vk-1] + w(vk-1, vk) before the last call to Relax
because that last call changed d[vk].

CSE5311 Design and Analysis of Algorithms 16Dept. CSE, UT Arlington

Lemma 24.17

Lemma 24.17: Same conditions as before. Call Initialize & repeatedly
call Relax until d[v] = δ(s, v) for all v in V. Then, G is a shortest-path
tree rooted at s.

Proof:

Key Proof Obligation: For all v in V, the unique simple path p from
s to v in G (path exists by Lemma 24.16) is a shortest path from s to v
in G.

Let p = ‹v0, v1, …, vk›, where v0 = s and vk = v.

We have d[vi] = δ(s, vi)
d[vi] d[vi-1] + w(vi-1, vi) (reasoning as before)

Implies w(vi-1, vi) δ(s, vi) – δ(s, vi-1).

CSE5311 Design and Analysis of Algorithms 17Dept. CSE, UT Arlington

Proof (Continued)

)v, δ(s

)v, δ(s)v, δ(s

))v, δ(s)v, δ(s(

)v,w(v

 w(p)

k

0k

1-ii

k

1i

k

1i
i1i

So, equality holds and p is a shortest path.

CSE5311 Design and Analysis of Algorithms 18Dept. CSE, UT Arlington

• And note that this shortest path tree will be found after
V(G) - 1 iterations of Relax.

CSE5311 Design and Analysis of Algorithms 19Dept. CSE, UT Arlington

Bellman-Ford Algorithm

Can have negative-weight edges. Will “detect” reachable negative-
weight cycles.

Initialize(G, s);
for i := 1 to |V[G]| –1 do

for each (u, v) in E[G] do
Relax(u, v, w)

od
od;
for each (u, v) in E[G] do

if d[v] > d[u] + w(u, v) then
return false

fi
od;
return true

Time
Complexity
is O(VE).

CSE5311 Design and Analysis of Algorithms 20Dept. CSE, UT Arlington

• So if Bellman-Ford has not converged after V(G) - 1
iterations, then there cannot be a shortest path tree, so
there must be a negative weight cycle.

CSE5311 Design and Analysis of Algorithms 21Dept. CSE, UT Arlington

Example

0

z

u v

x y

6

5

–3

9

7

7

8

–2

–4
2

CSE5311 Design and Analysis of Algorithms 22Dept. CSE, UT Arlington

Example

0

7

6

z

u v

x y

6

5

–3

9

7

7

8

–2

–4
2

CSE5311 Design and Analysis of Algorithms 23Dept. CSE, UT Arlington

Example

0

27

46

z

u v

x y

6

5

–3

9

7

7

8

–2

–4
2

CSE5311 Design and Analysis of Algorithms 24Dept. CSE, UT Arlington

Example

0

27

42

z

u v

x y

6

5

–3

9

7

7

8

–2

–4
2

CSE5311 Design and Analysis of Algorithms 25Dept. CSE, UT Arlington

Example

0

-27

42

z

u v

x y

6

5

–3

9

7

7

8

–2

–4
2

CSE5311 Design and Analysis of Algorithms 26Dept. CSE, UT Arlington

Another Look

Note: This is essentially dynamic programming.

Let d(i, j) = cost of the shortest path from s to i that is at most j hops.

d(i, j) =

0 if i = s j = 0
 if i s j = 0
min({d(k, j–1) + w(k, i): i Adj(k)}

 {d(i, j–1)}) if j > 0

z u v x y
1 2 3 4 5

0 0
1 0 6 7
2 0 6 4 7 2
3 0 2 4 7 2
4 0 2 4 7 –2

j

i

CSE5311 Design and Analysis of Algorithms 27Dept. CSE, UT Arlington

Lemma 24.2

Lemma 24.2: Assuming no negative-weight cycles reachable from
s, d[v] = (s, v) holds upon termination for all vertices v reachable
from s.

Proof:

Consider a SP p, where p = ‹v0, v1, …, vk›, where v0 = s and vk = v.

Assume k |V| – 1, otherwise p has a cycle.

Claim: d[vi] = (s, vi) holds after the ith pass over edges.
Proof follows by induction on i.

By Lemma 24.11, once d[vi] = (s, vi) holds, it continues to hold.

CSE5311 Design and Analysis of Algorithms 28Dept. CSE, UT Arlington

Correctness

Claim: Algorithm returns the correct value.

(Part of Theorem 24.4. Other parts of the theorem follow easily from earlier results.)

Case 1: There is no reachable negative-weight cycle.

Upon termination, we have for all (u, v):
d[v] = (s, v) , by lemma 24.2 (last slide) if v is reachable;

d[v] = (s, v) = otherwise.
 (s, u) + w(u, v) , by Lemma 24.10.
= d[u] + w(u, v)

So, algorithm returns true.

CSE5311 Design and Analysis of Algorithms 29Dept. CSE, UT Arlington

Case 2

Case 2: There exists a reachable negative-weight cycle
c = ‹v0, v1, …, vk›, where v0 = vk.

We have i = 1, …, k w(vi-1, vi) < 0. (*)

Suppose algorithm returns true. Then, d[vi] d[vi-1] + w(vi-1, vi) for
i = 1, …, k. (because Relax didn’t change any d[vi]). Thus,

i = 1, …, k d[vi] i = 1, …, k d[vi-1] + i = 1, …, k w(vi-1, vi)

But, i = 1, …, k d[vi] = i = 1, …, k d[vi-1].

Can show no d[vi] is infinite. Hence, 0 i = 1, …, k w(vi-1, vi).

Contradicts (*). Thus, algorithm returns false.

CSE5311 Design and Analysis of Algorithms 30Dept. CSE, UT Arlington

Shortest Paths in DAGs

Topologically sort vertices in G;
Initialize(G, s);
for each u in V[G] (in order) do

for each v in Adj[u] do
Relax(u, v, w)

od
od

CSE5311 Design and Analysis of Algorithms 31Dept. CSE, UT Arlington

Example

 0
r s t u v w

5 2 7 –1 –2

6 1

3
2

4

CSE5311 Design and Analysis of Algorithms 32Dept. CSE, UT Arlington

Example

 0
r s t u v w

5 2 7 –1 –2

6 1

3
2

4

CSE5311 Design and Analysis of Algorithms 33Dept. CSE, UT Arlington

Example

 0 2 6
r s t u v w

5 2 7 –1 –2

6 1

3
2

4

CSE5311 Design and Analysis of Algorithms 34Dept. CSE, UT Arlington

Example

 0 2 6 6 4

r s t u v w
5 2 7 –1 –2

6 1

3
2

4

CSE5311 Design and Analysis of Algorithms 35Dept. CSE, UT Arlington

Example

 0 2 6 5 4

r s t u v w
5 2 7 –1 –2

6 1

3
2

4

CSE5311 Design and Analysis of Algorithms 36Dept. CSE, UT Arlington

Example

 0 2 6 5 3

r s t u v w
5 2 7 –1 –2

6 1

3
2

4

CSE5311 Design and Analysis of Algorithms 37Dept. CSE, UT Arlington

Example

 0 2 6 5 3

r s t u v w
5 2 7 –1 –2

6 1

3
2

4

CSE5311 Design and Analysis of Algorithms 38Dept. CSE, UT Arlington

Dijkstra’s Algorithm

Assumes no negative-weight edges.

Maintains a set S of vertices whose SP from s has been determined.

Repeatedly selects u in V–S with minimum SP estimate (greedy choice).

Store V–S in priority queue Q.
Initialize(G, s);
S := ;
Q := V[G];
while Q do

u := Extract-Min(Q);
S := S {u};
for each v Adj[u] do

Relax(u, v, w)
od

od

CSE5311 Design and Analysis of Algorithms 39Dept. CSE, UT Arlington

Example

0

s

u v

x y

10

1

9

2

4 6

5

2 3

7

CSE5311 Design and Analysis of Algorithms 40Dept. CSE, UT Arlington

Example

0

5

10

s

u v

x y

10

1

9

2

4 6

5

2 3

7

CSE5311 Design and Analysis of Algorithms 41Dept. CSE, UT Arlington

Example

0

75

148

s

u v

x y

10

1

9

2

4 6

5

2 3

7

CSE5311 Design and Analysis of Algorithms 42Dept. CSE, UT Arlington

Example

0

75

138

s

u v

x y

10

1

9

2

4 6

5

2 3

7

CSE5311 Design and Analysis of Algorithms 43Dept. CSE, UT Arlington

Example

0

75

98

s

u v

x y

10

1

9

2

4 6

5

2 3

7

CSE5311 Design and Analysis of Algorithms 44Dept. CSE, UT Arlington

Example

0

75

98

s

u v

x y

10

1

9

2

4 6

5

2 3

7

CSE5311 Design and Analysis of Algorithms 45Dept. CSE, UT Arlington

Correctness

Theorem 24.6: Upon termination, d[u] = δ(s, u) for all u in V
(assuming non-negative weights).

Proof:

By Lemma 24.11, once d[u] = δ(s, u) holds, it continues to hold.

We prove: For each u in V, d[u] = (s, u) when u is inserted in S.

Suppose not. Let u be the first vertex such that d[u] (s, u) when
inserted in S.

Note that d[s] = (s, s) = 0 when s is inserted, so u s.

 S just before u is inserted (in fact, s S).

CSE5311 Design and Analysis of Algorithms 46Dept. CSE, UT Arlington

Proof (Continued)

Note that there exists a path from s to u, for otherwise
d[u] = (s, u) = by Corollary 24.12.

 there exists a SP from s to u. SP looks like this:

x

s

y

u

S

p1

p2

CSE5311 Design and Analysis of Algorithms 47Dept. CSE, UT Arlington

Proof (Continued)

Claim: d[y] = (s, y) when u is inserted into S.

We had d[x] = (s, x) when x was inserted into S.

Edge (x, y) was relaxed at that time.

By Lemma 24.14, this implies the claim.

Now, we have: d[y] = (s, y) , by Claim.
 (s, u) , nonnegative edge weights.
 d[u] , by Lemma 24.11.

Because u was added to S before y, d[u] d[y].

Thus, d[y] = (s, y) = (s, u) = d[u].

Contradiction.

CSE5311 Design and Analysis of Algorithms 48Dept. CSE, UT Arlington

Complexity

Running time is

O(V2) using linear array for priority queue.

O((V + E) lg V) using binary heap.

O(V lg V + E) using Fibonacci heap.

(See book.)

