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Single-Source Shortest Paths

• Given: A single source vertex in a weighted, directed
graph.

• Want to compute a shortest path for each possible 
destination.
– Similar to BFS.

• We will assume either
– no negative-weight edges, or

– no reachable negative-weight cycles.

• Algorithm will compute a shortest-path tree.
– Similar to BFS tree.
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Outline

• General Lemmas and Theorems.

• Bellman-Ford algorithm.

• DAG algorithm.

• Dijkstra’s algorithm.
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Corollary: Let p = SP from s to v, where p = s              u v. Then,
δ(s, v) = δ(s, u)  + w(u, v).

General Results (Relaxation)

Lemma 24.1: Let p = ‹v1, v2, …, vk› be a SP from v1 to vk.  Then,
pij = ‹vi, vi+1, …, vj› is a SP from vi to vj, where 1  i  j  k. 

So, we have the optimal-substructure property.

Bellman-Ford’s algorithm uses dynamic programming.

Dijkstra’s algorithm uses the greedy approach.

Let δ(u, v) = weight of  SP from u to v.
p'

Lemma 24.10: Let s  V.  For all edges (u,v)  E, we have
δ(s, v)  δ(s, u)  + w(u,v).



CSE5311 Design and Analysis of  Algorithms 5Dept. CSE, UT Arlington

• Lemma 24.1 holds because one edge gives the shortest 
path, so the other edges must give sums that are at least as 
large.



CSE5311 Design and Analysis of  Algorithms 6Dept. CSE, UT Arlington

Relaxation

Initialize(G, s)
for each v  V[G] do

d[v] := ;
[v] := NIL

end;
d[s] := 0

Relax(u, v, w)
if d[v] > d[u] + w(u, v) then

d[v] := d[u] + w(u, v);
[v] := u

end

Algorithms keep track of  d[v], [v].  Initialized as follows:

These values are changed when an edge (u, v) is relaxed:
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Properties of Relaxation

• d[v], if not , is the length of some path from s to v.

• d[v] either stays the same or decreases with time

• Therefore, if d[v] = (s, v) at any time, this holds thereafter

• Note that d[v]  (s, v) always

• After i iterations of relaxing on all (u,v), if the shortest path 
to v has i edges, then d[v] = (s, v).
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Properties of Relaxation

Consider any algorithm in which d[v], and [v] are first initialized by 
calling Initialize(G, s) [s is the source], and are only changed by calling 
Relax.  We have:

Lemma 24.11: ( v:: d[v]  (s, v)) is an invariant.

Implies d[v] doesn’t change once d[v] = (s, v).
Proof:
Initialize(G, s) establishes invariant.  If  call to Relax(u, v, w)
changes d[v], then it establishes:

d[v] = d[u] + w(u, v)
 (s, u) + w(u, v)         , invariant holds before call.
 (s, v)                         , by Lemma 24.10.

Corollary 24.12: If  there is no path from s to v, then
d[v] = δ(s, v) =  is an invariant.
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• For lemma 24.11, note that initialization makes the 
invariant true at the beginning.
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More Properties

Lemma 24.14: Let p = SP from s to v, where p = s              u v.
If  d[u] = δ(s, u) holds at any time prior to calling Relax(u, v, w),
then d[v] = δ(s, v)  holds at all times after the call.

p'

Proof:

After the call we have:
d[v]  d[u] + w(u, v)             , by Lemma 24.13.

= (s, u) + w(u, v)         , d[u] = (s, u) holds.
= (s, v)                         , by corollary to Lemma 24.1.

By Lemma 24.11, d[v]  δ(s, v), so d[v] = δ(s, v).

Lemma 24.13: Immediately after relaxing edge (u, v) by calling
Relax(u, v, w), we have d[v]  d[u] + w(u, v).
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• Lemma 24.13 follows simply from the structure of Relax.

• Lemma 24.14 shows that the shortest path will be found 
one vertex at a time, if not faster.  Thus after a number of 
iterations of Relax equal to V(G) - 1, all shortest paths 
will be found.
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• Bellman-Ford returns a compact representation of the set
of shortest paths from s to all other vertices in the graph
reachable from s. This is contained in the predecessor
subgraph.
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Predecessor Subgraph

Lemma 24.16: Assume given graph G has no negative-weight cycles
reachable from s.  Let G = predecessor subgraph. G is always a
tree with root s (i.e., this property is an invariant).

Proof:
Two proof  obligations:

(1) G is acyclic.
(2) There exists a unique path from source s to each vertex in V.

Proof  of  (1):
Suppose there exists a cycle c = ‹v0, v1, …, vk›, where v0 = vk.
We have [vi] = vi-1 for i = 1, 2, …, k.

Assume relaxation of  (vk-1, vk) created the cycle.
We show cycle has a negative weight.

Note: Cycle must be reachable from s.  
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Proof of (1) (Continued)
Before call to Relax(vk-1, vk, w):

[vi] = vi-1 for i = 1, …, k–1.

Implies d[vi] was last updated by “d[vi] := d[vi-1] + w(vi-1, vi)”
for i = 1, …, k–1. [Because Relax updates .]

Implies d[vi]  d[vi-1] + w(vi-1, vi) for i = 1, …, k–1. [Lemma 24.13]

Because [vk] is changed by call,  d[vk] > d[vk-1] + w(vk-1, vk).  Thus,

cycle!weight -neg.  i.e., 0,)v,w(v  ,]d[v]d[v Because

)v,w(v]d[v              

))v,w(v](d[v]d[v

k

1i
i1i

k

1i
1i

k

1i
i

k

1i

k

1i
i1i1i

k

1i

k

1i
i1i1ii









 

 









 


 




CSE5311 Design and Analysis of  Algorithms 15Dept. CSE, UT Arlington

Comment on Proof

• d[vi]  d[vi-1] + w(vi-1, vi) for i = 1, …, k–1 because when 
Relax(vi-1 , vi , w) was called, there was an equality, and 
d[vi-1] may have gotten smaller by further calls to Relax.

• d[vk] > d[vk-1] + w(vk-1, vk) before the last call to Relax 
because that last call changed d[vk].
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Lemma 24.17

Lemma 24.17: Same conditions as before.  Call Initialize & repeatedly
call Relax until d[v] = δ(s, v) for all v in V.  Then, G is a shortest-path
tree rooted at s.

Proof:

Key Proof  Obligation: For all v in V, the unique simple path p from
s to v in G (path exists by Lemma 24.16) is a shortest path from s to v
in G. 

Let p = ‹v0, v1, …, vk›, where v0 = s and vk = v.

We have d[vi] = δ(s, vi) 
d[vi]  d[vi-1] + w(vi-1, vi)  (reasoning as before)

Implies w(vi-1, vi)  δ(s, vi) – δ(s, vi-1).
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Proof (Continued)
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So, equality holds and p is a shortest path.
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• And note that this shortest path tree will be found after 
V(G) - 1 iterations of Relax.
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Bellman-Ford Algorithm

Can have negative-weight edges.  Will “detect” reachable negative-
weight cycles.

Initialize(G, s);
for i := 1 to |V[G]| –1 do

for each (u, v) in E[G] do
Relax(u, v, w)

od
od;
for each (u, v) in E[G] do

if d[v] > d[u] + w(u, v) then
return false

fi
od;
return true

Time 
Complexity
is O(VE).
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• So if Bellman-Ford has not converged after V(G) - 1 
iterations, then there cannot be a shortest path tree, so 
there must be a negative weight cycle.
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Example
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Example
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Example
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Example
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Example
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Another Look

Note: This is essentially dynamic programming.

Let d(i, j) = cost of  the shortest path from s to i that is at most j hops.

d(i, j) =

0                                                                   if i = s  j = 0
 if i  s  j = 0
min({d(k, j–1) + w(k, i): i Adj(k)}

 {d(i, j–1)})                 if j > 0

z u v x y
1     2      3    4      5

0 0    
1 0 6  7 
2 0 6 4 7 2
3 0 2 4 7 2
4 0 2 4 7    –2

j

i
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Lemma 24.2

Lemma 24.2: Assuming no negative-weight cycles reachable from
s, d[v] = (s, v) holds upon termination for all vertices v reachable
from s.

Proof:

Consider a SP p, where  p = ‹v0, v1, …, vk›, where v0 = s and vk = v.

Assume k  |V| – 1, otherwise p has a cycle.

Claim: d[vi] = (s, vi) holds after the ith pass over edges.
Proof  follows by induction on i.

By Lemma 24.11, once d[vi] = (s, vi) holds, it continues to hold.
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Correctness

Claim: Algorithm returns the correct value.

(Part of  Theorem 24.4.  Other parts of  the theorem follow easily from earlier results.)

Case 1: There is no reachable negative-weight cycle.

Upon termination, we have for all (u, v):
d[v] = (s, v)                  , by lemma 24.2 (last slide) if  v is reachable;

d[v] = (s, v) =  otherwise.
 (s, u) + w(u, v)   , by Lemma 24.10.
= d[u] + w(u, v)

So, algorithm returns true.
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Case 2

Case 2: There exists a reachable negative-weight cycle
c = ‹v0, v1, …, vk›, where v0 = vk.

We have i = 1, …, k w(vi-1, vi)  <  0.                                                 (*)

Suppose algorithm returns true.  Then, d[vi]  d[vi-1] + w(vi-1, vi) for
i = 1, …, k.  (because Relax didn’t change any d[vi] ). Thus,

i = 1, …, k d[vi]   i = 1, …, k d[vi-1]  + i = 1, …, k w(vi-1, vi) 

But, i = 1, …, k d[vi]  =  i = 1, …, k d[vi-1].

Can show no d[vi] is infinite.  Hence, 0   i = 1, …, k w(vi-1, vi).

Contradicts (*).   Thus, algorithm returns false.
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Shortest Paths in DAGs

Topologically sort vertices in G;
Initialize(G, s);
for each u in V[G] (in order) do

for each v in Adj[u] do
Relax(u, v, w)

od
od
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Example
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Example

 0    
r s t u v w

5 2 7 –1 –2

6 1

3
2

4



CSE5311 Design and Analysis of  Algorithms 33Dept. CSE, UT Arlington

Example
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Example
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Example
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Example
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Dijkstra’s Algorithm

Assumes no negative-weight edges.

Maintains a set S of  vertices whose SP from s has been determined.

Repeatedly selects u in V–S with minimum SP estimate (greedy choice).

Store V–S in priority queue Q.
Initialize(G, s);
S := ;
Q := V[G];
while Q   do

u := Extract-Min(Q);
S := S  {u};
for each v Adj[u] do

Relax(u, v, w)
od

od
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Example
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Example
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Example
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Example
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Correctness

Theorem 24.6: Upon termination, d[u] = δ(s, u) for all u in V
(assuming non-negative weights).

Proof:

By Lemma 24.11, once d[u] = δ(s, u) holds, it continues to hold.

We prove: For each u in V, d[u] = (s, u) when u is inserted in S.

Suppose not.  Let u be the first vertex such that d[u]  (s, u) when
inserted in S.

Note that d[s] = (s, s) = 0 when s is inserted, so u  s.

 S   just before u is inserted (in fact, s  S).
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Proof (Continued)

Note that there exists a path from s to u, for otherwise 
d[u] = (s, u) =  by Corollary 24.12.

 there exists a SP from s to u.   SP looks like this:

x

s

y

u

S

p1

p2
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Proof (Continued)

Claim: d[y] = (s, y) when u is inserted into S.

We had d[x] = (s, x) when x was inserted into S.

Edge (x, y) was relaxed at that time.

By Lemma 24.14, this implies the claim.

Now, we have: d[y] = (s, y)    , by Claim.
 (s, u)    , nonnegative edge weights.
 d[u]        , by Lemma 24.11.

Because u was added to S before y, d[u]  d[y].

Thus, d[y] = (s, y) = (s, u) = d[u].

Contradiction.
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Complexity

Running time is

O(V2) using linear array for priority queue.

O((V + E) lg V) using binary heap.

O(V lg V + E) using Fibonacci heap.

(See book.)


