Design and Analysis of Algorithms

CSE 5311

Lecture 21 Single-Source Shortest Paths

Junzhou Huang, Ph.D.
Department of Computer Science and Engineering

Single-Source Shortest Paths

- Given: A single source vertex in a weighted, directed graph.
- Want to compute a shortest path for each possible destination.
- Similar to BFS.
- We will assume either
- no negative-weight edges, or
- no reachable negative-weight cycles.
- Algorithm will compute a shortest-path tree.
- Similar to BFS tree.

Outline

- General Lemmas and Theorems.
- Bellman-Ford algorithm.
- DAG algorithm.
- Dijkstra's algorithm.

General Results (Relaxation)

Lemma 24.1: Let $\mathrm{p}=\left\langle\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{k}}\right\rangle$ be a SP from v_{1} to v_{k}. Then, $p_{i j}=\left\langle v_{i}, v_{i+1}, \ldots, v_{j}\right\rangle$ is a SP from v_{i} to v_{i}, where $1 \leq i \leq j \leq k$.

So, we have the optimal-substructure property.
Bellman-Ford's algorithm uses dynamic programming.
Dijkstra's algorithm uses the greedy approach.
Let $\delta(\mathrm{u}, \mathrm{v})=$ weight of SP from u to v .
Corollary: Let $\mathrm{p}=\mathrm{SP}$ from s to v , where $\mathrm{p}=\mathrm{s} \longrightarrow \mathrm{u} \rightarrow \mathrm{v}$. Then, $\delta(\mathrm{s}, \mathrm{v})=\delta(\mathrm{s}, \mathrm{u})+\mathrm{w}(\mathrm{u}, \mathrm{v})$.

Lemma 24.10: Let $s \in V$. For all edges $(u, v) \in E$, we have $\delta(\mathrm{s}, \mathrm{v}) \leq \delta(\mathrm{s}, \mathrm{u})+\mathrm{w}(\mathrm{u}, \mathrm{v})$.

- Lemma 24.1 holds because one edge gives the shortest path, so the other edges must give sums that are at least as large.

Relaxation

Algorithms keep track of $\mathrm{d}[\mathrm{v}], \pi[\mathrm{v}]$. Initialized as follows:

```
Initialize(G, s)
    for each v }\in\textrm{V}[G] d
        d[v] := m;
        \pi[v]:= NIL
    end;
    d[s] := 0
```

These values are changed when an edge (u, v) is relaxed:

$$
\begin{aligned}
& \text { Relax }(\mathrm{u}, \mathrm{v}, \mathrm{w}) \\
& \text { if } \mathrm{d}[\mathrm{v}]>\mathrm{d}[\mathrm{u}]+\mathrm{w}(\mathrm{u}, \mathrm{v}) \text { then } \\
& \mathrm{d}[\mathrm{v}]:=\mathrm{d}[\mathrm{u}]+\mathrm{w}(\mathrm{u}, \mathrm{v}) \\
& \pi[\mathrm{v}]:=\mathrm{u} \\
& \text { end }
\end{aligned}
$$

Properties of Relaxation

- $\mathrm{d}[\mathrm{v}]$, if not ∞, is the length of some path from s to v .
- $\mathrm{d}[\mathrm{v}]$ either stays the same or decreases with time
- Therefore, if $\mathrm{d}[\mathrm{v}]=\delta(\mathrm{s}, \mathrm{v})$ at any time, this holds thereafter
- Note that $\mathrm{d}[\mathrm{v}] \geq \delta(\mathrm{s}, \mathrm{v})$ always
- After i iterations of relaxing on all (u,v), if the shortest path to v has i edges, then $\mathrm{d}[\mathrm{v}]=\delta(\mathrm{s}, \mathrm{v})$.

Properties of Relaxation

Consider any algorithm in which $\mathrm{d}[\mathrm{v}]$, and $\pi[\mathrm{v}]$ are first initialized by calling Initialize (G, s) [s is the source], and are only changed by calling Relax. We have:

Lemma 24.11: $(\forall \mathrm{v}:: \mathrm{d}[\mathrm{v}] \geq \delta(\mathrm{s}, \mathrm{v}))$ is an invariant.
Implies $\mathrm{d}[\mathrm{v}]$ doesn't change once $\mathrm{d}[\mathrm{v}]=\delta(\mathrm{s}, \mathrm{v})$.

Proof:

Initialize(G, s) establishes invariant. If call to Relax(u, v, w) changes $\mathrm{d}[\mathrm{v}]$, then it establishes:

$$
\begin{array}{rlrl}
\mathrm{d}[\mathrm{v}] & =\mathrm{d}[\mathrm{u}]+\mathrm{w}(\mathrm{u}, \mathrm{v}) & & \\
& \geq \delta(\mathrm{s}, \mathrm{u})+\mathrm{w}(\mathrm{u}, \mathrm{v}) & & , \text { invariant holds before call. } \\
& \geq \delta(\mathrm{s}, \mathrm{v}) & , \text { by Lemma 24.10. }
\end{array}
$$

Corollary 24.12: If there is no path from s to v, then $\mathrm{d}[\mathrm{v}]=\delta(\mathrm{s}, \mathrm{v})=\infty$ is an invariant.

- For lemma 24.11, note that initialization makes the invariant true at the beginning.

More Properties

Lemma 24.13: Immediately after relaxing edge (u, v) by calling $\operatorname{Relax}(\mathrm{u}, \mathrm{v}, \mathrm{w})$, we have $\mathrm{d}[\mathrm{v}] \leq \mathrm{d}[\mathrm{u}]+\mathrm{w}(\mathrm{u}, \mathrm{v})$.

Lemma 24.14: Let $\mathrm{p}=$ SP from s to v , where $\mathrm{p}=\mathrm{s} \longrightarrow \mathrm{u} \rightarrow \mathrm{v}$.
If $\mathrm{d}[\mathrm{u}]=\delta(\mathrm{s}, \mathrm{u})$ holds at any time prior to calling $\operatorname{Relax}(\mathrm{u}, \mathrm{v}, \mathrm{w})$, then $\mathrm{d}[\mathrm{v}]=\delta(\mathrm{s}, \mathrm{v})$ holds at all times after the call.

Proof:

After the call we have:

$$
\begin{aligned}
\mathrm{d}[\mathrm{v}] & \leq \mathrm{d}[\mathrm{u}]+\mathrm{w}(\mathrm{u}, \mathrm{v}) & & , \text { by Lemma 24.13. } \\
& =\delta(\mathrm{s}, \mathrm{u})+\mathrm{w}(\mathrm{u}, \mathrm{v}) & & , \mathrm{d}[\mathrm{u}]=\delta(\mathrm{s}, \mathrm{u}) \text { holds. } \\
& =\delta(\mathrm{s}, \mathrm{v}) & & , \text { by corollary to Lemma 24.1. }
\end{aligned}
$$

By Lemma 24.11, $\mathrm{d}[\mathrm{v}] \geq \delta(\mathrm{s}, \mathrm{v})$, so $\mathrm{d}[\mathrm{v}]=\delta(\mathrm{s}, \mathrm{v})$.

- Lemma 24.13 follows simply from the structure of Relax.
- Lemma 24.14 shows that the shortest path will be found one vertex at a time, if not faster. Thus after a number of iterations of Relax equal to $V(G)-1$, all shortest paths will be found.
- Bellman-Ford returns a compact representation of the set of shortest paths from s to all other vertices in the graph reachable from s. This is contained in the predecessor subgraph.

Predecessor Subgraph

Lemma 24.16: Assume given graph G has no negative-weight cycles reachable from s. Let $G_{\pi}=$ predecessor subgraph. G_{π} is always a tree with root s (i.e., this property is an invariant).

Proof:

Two proof obligations:
(1) G_{π} is acyclic.
(2) There exists a unique path from source s to each vertex in V_{π}. Proof of (1):
Suppose there exists a cycle $\mathrm{c}=\left\langle\mathrm{v}_{0}, \mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{k}}\right\rangle$, where $\mathrm{v}_{0}=\mathrm{v}_{\mathrm{k}}$.
We have $\pi\left[\mathrm{v}_{\mathrm{i}}\right]=\mathrm{v}_{\mathrm{i}-1}$ for $\mathrm{i}=1,2, \ldots, \mathrm{k}$.
Assume relaxation of $\left(\mathrm{v}_{\mathrm{k}-1}, \mathrm{v}_{\mathrm{k}}\right)$ created the cycle.
We show cycle has a negative weight.
Note: Cycle must be reachable from s.

Proof of (1) (Continued)

Before call to $\operatorname{Relax}\left(\mathrm{v}_{\mathrm{k}-1}, \mathrm{v}_{\mathrm{k}}, \mathrm{w}\right)$:

$$
\pi\left[\mathrm{v}_{\mathrm{i}}\right]=\mathrm{v}_{\mathrm{i}-1} \text { for } \mathrm{i}=1, \ldots, \mathrm{k}-1
$$

Implies $\mathrm{d}\left[\mathrm{v}_{\mathrm{i}}\right]$ was last updated by " $\mathrm{d}\left[\mathrm{v}_{\mathrm{i}}\right]:=\mathrm{d}\left[\mathrm{v}_{\mathrm{i}-1}\right]+\mathrm{w}\left(\mathrm{v}_{\mathrm{i}-1}, \mathrm{v}_{\mathrm{i}}\right)$ " for $\mathrm{i}=1, \ldots, \mathrm{k}-1$. [Because Relax updates π.]

Implies $\mathrm{d}\left[\mathrm{v}_{\mathrm{i}}\right] \geq \mathrm{d}\left[\mathrm{v}_{\mathrm{i}-1}\right]+\mathrm{w}\left(\mathrm{v}_{\mathrm{i}-1}, \mathrm{v}_{\mathrm{i}}\right)$ for $\mathrm{i}=1, \ldots, \mathrm{k}-1$. [Lemma 24.13]
Because $\pi\left[\mathrm{v}_{\mathrm{k}}\right]$ is changed by call, $\mathrm{d}\left[\mathrm{v}_{\mathrm{k}}\right]>\mathrm{d}\left[\mathrm{v}_{\mathrm{k}-1}\right]+\mathrm{w}\left(\mathrm{v}_{\mathrm{k}-1}, \mathrm{v}_{\mathrm{k}}\right)$. Thus, $\sum_{\mathrm{i}=1}^{\mathrm{k}} \mathrm{d}\left[\mathrm{v}_{\mathrm{i}}\right]>\sum_{\mathrm{i}=1}^{\mathrm{k}}\left(\mathrm{d}\left[\mathrm{v}_{\mathrm{i}-1}\right]+\mathrm{w}\left(\mathrm{V}_{\mathrm{i}-1}, \mathrm{v}_{\mathrm{i}}\right)\right)$

$$
=\sum_{\mathrm{i}=1}^{\mathrm{k}} \mathrm{~d}\left[\mathrm{v}_{\mathrm{i}-1}\right]+\sum_{\mathrm{i}=1}^{\mathrm{k}} \mathrm{w}\left(\mathrm{v}_{\mathrm{i}-1}, \mathrm{v}_{\mathrm{i}}\right)
$$

Because $\sum_{i=1}^{k} \mathrm{~d}\left[\mathrm{v}_{\mathrm{i}}\right]=\sum_{\mathrm{i}=1}^{\mathrm{k}} \mathrm{d}\left[\mathrm{v}_{\mathrm{i}-1}\right], \sum_{\mathrm{i}=1}^{\mathrm{k}} \mathrm{w}\left(\mathrm{v}_{\mathrm{i}-1}, \mathrm{v}_{\mathrm{i}}\right)<0$, i.e., neg. - weight cycle!

Comment on Proof

- $\mathrm{d}\left[\mathrm{v}_{\mathrm{i}}\right] \geq \mathrm{d}\left[\mathrm{v}_{\mathrm{i}-1}\right]+\mathrm{w}\left(\mathrm{v}_{\mathrm{i}-1}, \mathrm{v}_{\mathrm{i}}\right)$ for $\mathrm{i}=1, \ldots, \mathrm{k}-1$ because when $\operatorname{Relax}\left(v_{\mathrm{i}-1}, \mathrm{v}_{\mathrm{i}}, w\right)$ was called, there was an equality, and $\mathrm{d}\left[\mathrm{v}_{\mathrm{i}-1}\right]$ may have gotten smaller by further calls to Relax.
- $\mathrm{d}\left[\mathrm{v}_{\mathrm{k}}\right]>\mathrm{d}\left[\mathrm{v}_{\mathrm{k}-1}\right]+\mathrm{w}\left(\mathrm{v}_{\mathrm{k}-1}, \mathrm{v}_{\mathrm{k}}\right)$ before the last call to Relax because that last call changed $\mathrm{d}\left[\mathrm{v}_{\mathrm{k}}\right]$.

Lemma 24.17

Lemma 24.17: Same conditions as before. Call Initialize \& repeatedly call Relax until $\mathrm{d}[\mathrm{v}]=\delta(\mathrm{s}, \mathrm{v})$ for all v in V . Then, G_{π} is a shortest-path tree rooted at s.

Proof:

Key Proof Obligation: For all v in V_{π}, the unique simple path p from s to v in G_{π} (path exists by Lemma 24.16) is a shortest path from s to v in G.

Let $\mathrm{p}=\left\langle\mathrm{v}_{0}, \mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{k}}\right\rangle$, where $\mathrm{v}_{0}=\mathrm{s}$ and $\mathrm{v}_{\mathrm{k}}=\mathrm{v}$.
We have $\mathrm{d}\left[\mathrm{v}_{\mathrm{i}}\right]=\delta\left(\mathrm{s}, \mathrm{v}_{\mathrm{i}}\right)$

$$
\mathrm{d}\left[\mathrm{v}_{\mathrm{i}}\right] \geq \mathrm{d}\left[\mathrm{v}_{\mathrm{i}-1}\right]+\mathrm{w}\left(\mathrm{v}_{\mathrm{i}-1}, \mathrm{v}_{\mathrm{i}}\right) \quad \text { (reasoning as before) }
$$

Implies $\mathrm{w}\left(\mathrm{v}_{\mathrm{i}-1}, \mathrm{v}_{\mathrm{i}}\right) \leq \delta\left(\mathrm{s}, \mathrm{v}_{\mathrm{i}}\right)-\delta\left(\mathrm{s}, \mathrm{v}_{\mathrm{i}-1}\right)$.

Proof (Continued)

$$
\begin{aligned}
& \mathrm{w}(\mathrm{p}) \\
= & \sum_{\mathrm{i}=1}^{\mathrm{k}} \mathrm{~W}\left(\mathrm{v}_{\mathrm{i}-1}, \mathrm{v}_{\mathrm{i}}\right) \\
\leq & \sum_{\mathrm{i}=1}^{\mathrm{k}}\left(\delta\left(\mathrm{~s}, \mathrm{v}_{\mathrm{i}}\right)-\delta\left(\mathrm{s}, \mathrm{v}_{\mathrm{i}-1}\right)\right) \\
= & \delta\left(\mathrm{s}, \mathrm{v}_{\mathrm{k}}\right)-\delta\left(\mathrm{s}, \mathrm{v}_{0}\right) \\
= & \delta\left(\mathrm{s}, \mathrm{v}_{\mathrm{k}}\right)
\end{aligned}
$$

So, equality holds and p is a shortest path.

- And note that this shortest path tree will be found after $\mathrm{V}(\mathrm{G})$ - 1 iterations of Relax.

Bellman-Ford Algorithm

Can have negative-weight edges. Will "detect" reachable negativeweight cycles.

```
Initialize(G, s);
for i := 1 to |V[G]| - 1 do
    for each (u,v) in E[G] do
        Relax(u, v, w)
    od
od;
for each (u,v) in E[G] do
    if d[v]>d[u] + w(u,v) then
        return false
    fi
od;
return true
```

is $\mathrm{O}(\mathrm{VE})$.

- So if Bellman-Ford has not converged after V(G) - 1 iterations, then there cannot be a shortest path tree, so there must be a negative weight cycle.

Example

Example

Example

Example

Example

Another Look

Note: This is essentially dynamic programming.
Let $d(i, j)=$ cost of the shortest path from s to i that is at most j hops.

Lemma 24.2

Lemma 24.2: Assuming no negative-weight cycles reachable from $\mathrm{s}, \mathrm{d}[\mathrm{v}]=\delta(\mathrm{s}, \mathrm{v})$ holds upon termination for all vertices v reachable from s.

Proof:

Consider a SP p , where $\mathrm{p}=\left\langle\mathrm{v}_{0}, \mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{k}}\right\rangle$, where $\mathrm{v}_{0}=\mathrm{s}$ and $\mathrm{v}_{\mathrm{k}}=\mathrm{v}$.
Assume $\mathrm{k} \leq|\mathrm{V}|-1$, otherwise p has a cycle.

Claim: $\mathrm{d}\left[\mathrm{v}_{\mathrm{i}}\right]=\delta\left(\mathrm{s}, \mathrm{v}_{\mathrm{i}}\right)$ holds after the $\mathrm{i}^{\text {th }}$ pass over edges. Proof follows by induction on i.

By Lemma 24.11, once $\mathrm{d}\left[\mathrm{v}_{\mathrm{i}}\right]=\delta\left(\mathrm{s}, \mathrm{v}_{\mathrm{i}}\right)$ holds, it continues to hold.

Correctness

Claim: Algorithm returns the correct value.
(Part of Theorem 24.4. Other parts of the theorem follow easily from earlier results.)

Case 1: There is no reachable negative-weight cycle.
Upon termination, we have for all (u, v) :

$$
\begin{array}{rlrl}
\mathrm{d}[\mathrm{v}] & =\delta(\mathrm{s}, \mathrm{v}) & , & \begin{aligned}
\text { by lemma } 24.2 \text { (last slide) if } \mathrm{v} \text { is reachable; } \\
\mathrm{d}[\mathrm{v}]=\delta(\mathrm{s}, \mathrm{v})=\infty \text { otherwise. }
\end{aligned} \\
& \leq \delta(\mathrm{s}, \mathrm{u})+\mathrm{w}(\mathrm{u}, \mathrm{v}) \quad, \text { by Lemma 24.10. } \\
& =\mathrm{d}[\mathrm{u}]+\mathrm{w}(\mathrm{u}, \mathrm{v})
\end{array}
$$

So, algorithm returns true.

Case 2

Case 2: There exists a reachable negative-weight cycle $\mathrm{c}=\left\langle\mathrm{v}_{0}, \mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{k}}\right\rangle$, where $\mathrm{v}_{0}=\mathrm{v}_{\mathrm{k}}$.

We have $\sum_{\mathrm{i}=1, \ldots, \mathrm{k}} \mathrm{w}\left(\mathrm{v}_{\mathrm{i}-1}, \mathrm{v}_{\mathrm{i}}\right)<0$.
Suppose algorithm returns true. Then, $\mathrm{d}\left[\mathrm{v}_{\mathrm{i}}\right] \leq \mathrm{d}\left[\mathrm{v}_{\mathrm{i}-1}\right]+\mathrm{w}\left(\mathrm{v}_{\mathrm{i}-1}, \mathrm{v}_{\mathrm{i}}\right)$ for $\mathrm{i}=1, \ldots, \mathrm{k}$. (because Relax didn't change any $\mathrm{d}\left[\mathrm{v}_{\mathrm{i}}\right]$). Thus,

$$
\sum_{i=1, \ldots, k} \mathrm{~d}\left[\mathrm{v}_{\mathrm{i}}\right] \leq \sum_{\mathrm{i}=1, \ldots, \mathrm{k}} \mathrm{~d}\left[\mathrm{v}_{\mathrm{i}-1}\right]+\sum_{\mathrm{i}=1, \ldots, \mathrm{k}} \mathrm{w}\left(\mathrm{v}_{\mathrm{i}-1}, \mathrm{v}_{\mathrm{i}}\right)
$$

But, $\sum_{\mathrm{i}=1, \ldots, \mathrm{k}} \mathrm{d}\left[\mathrm{v}_{\mathrm{i}}\right]=\sum_{\mathrm{i}=1, \ldots, \mathrm{k}} \mathrm{d}\left[\mathrm{v}_{\mathrm{i}-1}\right]$.
Can show no $d\left[\mathrm{v}_{\mathrm{i}}\right]$ is infinite. Hence, $0 \leq \sum_{\mathrm{i}=1, \ldots, \mathrm{k}} \mathrm{w}\left(\mathrm{v}_{\mathrm{i}-1}, \mathrm{v}_{\mathrm{i}}\right)$.
Contradicts (*). Thus, algorithm returns false.

Shortest Paths in DAGs

Topologically sort vertices in G ; Initialize(G, s);
for each u in $V[G]$ (in order) do for each v in Adj[u] do Relax(u, v, w)
od
od

Example

Dijkstra's Algorithm

Assumes no negative-weight edges.
Maintains a set S of vertices whose SP from s has been determined.
Repeatedly selects u in V-S with minimum SP estimate (greedy choice).
Store V-S in priority queue Q .

$$
\begin{aligned}
& \text { Initialize }(\mathrm{G}, \mathrm{~s}) ; \\
& \mathrm{S}:=\varnothing \text {; } \\
& \mathrm{Q}:=\mathrm{V}[\mathrm{G}] ; \\
& \text { while } \mathrm{Q} \neq \varnothing \text { do } \\
& \quad \mathrm{u}:=\mathrm{Extract-Min}(\mathrm{Q}) ; \\
& \mathrm{S}:=\mathrm{S} \cup\{\mathrm{u}\} ; \\
& \quad \text { for each } \mathrm{v} \in \operatorname{Adj}[\mathrm{u}] \text { do } \\
& \quad \operatorname{Relax}(\mathrm{u}, \mathrm{v}, \mathrm{w}) \\
& \quad \text { od } \\
& \text { od }
\end{aligned}
$$

Example

Example

Example

Example

Example

Example

Correctness

Theorem 24.6: Upon termination, $\mathrm{d}[\mathrm{u}]=\delta(\mathrm{s}, \mathrm{u})$ for all u in V (assuming non-negative weights).

Proof:

By Lemma 24.11, once $\mathrm{d}[\mathrm{u}]=\delta(\mathrm{s}, \mathrm{u})$ holds, it continues to hold. We prove: For each u in $\mathrm{V}, \mathrm{d}[\mathrm{u}]=\delta(\mathrm{s}, \mathrm{u})$ when u is inserted in S .

Suppose not. Let u be the first vertex such that $d[u] \neq \delta(s, u)$ when inserted in S.

Note that $\mathrm{d}[\mathrm{s}]=\delta(\mathrm{s}, \mathrm{s})=0$ when s is inserted, so $\mathrm{u} \neq \mathrm{s}$.
$\Rightarrow S \neq \varnothing$ just before u is inserted (in fact, $s \in S$).

Proof (Continued)

Note that there exists a path from s to u , for otherwise $\mathrm{d}[\mathrm{u}]=\delta(\mathrm{s}, \mathrm{u})=\infty$ by Corollary 24.12.
\Rightarrow there exists a SP from s to u. SP looks like this:

Proof (Continued)

Claim: $\mathrm{d}[\mathrm{y}]=\delta(\mathrm{s}, \mathrm{y})$ when u is inserted into S .
We had $\mathrm{d}[\mathrm{x}]=\delta(\mathrm{s}, \mathrm{x})$ when x was inserted into S .
Edge (x, y) was relaxed at that time.
By Lemma 24.14, this implies the claim.
Now, we have: $\mathrm{d}[\mathrm{y}]=\delta(\mathrm{s}, \mathrm{y})$, by Claim.

$$
\begin{array}{ll}
\leq \delta(\mathrm{s}, \mathrm{u}) & , \text { nonnegative edge weights. } \\
\leq \mathrm{d}[\mathrm{u}] & , \text { by Lemma 24.11. }
\end{array}
$$

Because u was added to S before $\mathrm{y}, \mathrm{d}[\mathrm{u}] \leq \mathrm{d}[\mathrm{y}]$.
Thus, $\mathrm{d}[\mathrm{y}]=\delta(\mathrm{s}, \mathrm{y})=\delta(\mathrm{s}, \mathrm{u})=\mathrm{d}[\mathrm{u}]$.
Contradiction.

Complexity

Running time is
$\mathrm{O}\left(\mathrm{V}^{2}\right)$ using linear array for priority queue.
$\mathrm{O}((\mathrm{V}+\mathrm{E}) \lg \mathrm{V})$ using binary heap.
$\mathrm{O}(\mathrm{V} \lg \mathrm{V}+\mathrm{E})$ using Fibonacci heap.
(See book.)

