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Single-Source Shortest Paths

• Given: A single source vertex in a weighted, directed
graph.

• Want to compute a shortest path for each possible 
destination.
– Similar to BFS.

• We will assume either
– no negative-weight edges, or

– no reachable negative-weight cycles.

• Algorithm will compute a shortest-path tree.
– Similar to BFS tree.
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Outline

• General Lemmas and Theorems.

• Bellman-Ford algorithm.

• DAG algorithm.

• Dijkstra’s algorithm.
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Corollary: Let p = SP from s to v, where p = s              u v. Then,
δ(s, v) = δ(s, u)  + w(u, v).

General Results (Relaxation)

Lemma 24.1: Let p = ‹v1, v2, …, vk› be a SP from v1 to vk.  Then,
pij = ‹vi, vi+1, …, vj› is a SP from vi to vj, where 1  i  j  k. 

So, we have the optimal-substructure property.

Bellman-Ford’s algorithm uses dynamic programming.

Dijkstra’s algorithm uses the greedy approach.

Let δ(u, v) = weight of  SP from u to v.
p'

Lemma 24.10: Let s  V.  For all edges (u,v)  E, we have
δ(s, v)  δ(s, u)  + w(u,v).
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• Lemma 24.1 holds because one edge gives the shortest 
path, so the other edges must give sums that are at least as 
large.
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Relaxation

Initialize(G, s)
for each v  V[G] do

d[v] := ;
[v] := NIL

end;
d[s] := 0

Relax(u, v, w)
if d[v] > d[u] + w(u, v) then

d[v] := d[u] + w(u, v);
[v] := u

end

Algorithms keep track of  d[v], [v].  Initialized as follows:

These values are changed when an edge (u, v) is relaxed:
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Properties of Relaxation

• d[v], if not , is the length of some path from s to v.

• d[v] either stays the same or decreases with time

• Therefore, if d[v] = (s, v) at any time, this holds thereafter

• Note that d[v]  (s, v) always

• After i iterations of relaxing on all (u,v), if the shortest path 
to v has i edges, then d[v] = (s, v).
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Properties of Relaxation

Consider any algorithm in which d[v], and [v] are first initialized by 
calling Initialize(G, s) [s is the source], and are only changed by calling 
Relax.  We have:

Lemma 24.11: ( v:: d[v]  (s, v)) is an invariant.

Implies d[v] doesn’t change once d[v] = (s, v).
Proof:
Initialize(G, s) establishes invariant.  If  call to Relax(u, v, w)
changes d[v], then it establishes:

d[v] = d[u] + w(u, v)
 (s, u) + w(u, v)         , invariant holds before call.
 (s, v)                         , by Lemma 24.10.

Corollary 24.12: If  there is no path from s to v, then
d[v] = δ(s, v) =  is an invariant.
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• For lemma 24.11, note that initialization makes the 
invariant true at the beginning.



CSE5311 Design and Analysis of  Algorithms 10Dept. CSE, UT Arlington

More Properties

Lemma 24.14: Let p = SP from s to v, where p = s              u v.
If  d[u] = δ(s, u) holds at any time prior to calling Relax(u, v, w),
then d[v] = δ(s, v)  holds at all times after the call.

p'

Proof:

After the call we have:
d[v]  d[u] + w(u, v)             , by Lemma 24.13.

= (s, u) + w(u, v)         , d[u] = (s, u) holds.
= (s, v)                         , by corollary to Lemma 24.1.

By Lemma 24.11, d[v]  δ(s, v), so d[v] = δ(s, v).

Lemma 24.13: Immediately after relaxing edge (u, v) by calling
Relax(u, v, w), we have d[v]  d[u] + w(u, v).
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• Lemma 24.13 follows simply from the structure of Relax.

• Lemma 24.14 shows that the shortest path will be found 
one vertex at a time, if not faster.  Thus after a number of 
iterations of Relax equal to V(G) - 1, all shortest paths 
will be found.



CSE5311 Design and Analysis of  Algorithms 12Dept. CSE, UT Arlington

• Bellman-Ford returns a compact representation of the set
of shortest paths from s to all other vertices in the graph
reachable from s. This is contained in the predecessor
subgraph.
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Predecessor Subgraph

Lemma 24.16: Assume given graph G has no negative-weight cycles
reachable from s.  Let G = predecessor subgraph. G is always a
tree with root s (i.e., this property is an invariant).

Proof:
Two proof  obligations:

(1) G is acyclic.
(2) There exists a unique path from source s to each vertex in V.

Proof  of  (1):
Suppose there exists a cycle c = ‹v0, v1, …, vk›, where v0 = vk.
We have [vi] = vi-1 for i = 1, 2, …, k.

Assume relaxation of  (vk-1, vk) created the cycle.
We show cycle has a negative weight.

Note: Cycle must be reachable from s.  
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Proof of (1) (Continued)
Before call to Relax(vk-1, vk, w):

[vi] = vi-1 for i = 1, …, k–1.

Implies d[vi] was last updated by “d[vi] := d[vi-1] + w(vi-1, vi)”
for i = 1, …, k–1. [Because Relax updates .]

Implies d[vi]  d[vi-1] + w(vi-1, vi) for i = 1, …, k–1. [Lemma 24.13]

Because [vk] is changed by call,  d[vk] > d[vk-1] + w(vk-1, vk).  Thus,
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Comment on Proof

• d[vi]  d[vi-1] + w(vi-1, vi) for i = 1, …, k–1 because when 
Relax(vi-1 , vi , w) was called, there was an equality, and 
d[vi-1] may have gotten smaller by further calls to Relax.

• d[vk] > d[vk-1] + w(vk-1, vk) before the last call to Relax 
because that last call changed d[vk].
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Lemma 24.17

Lemma 24.17: Same conditions as before.  Call Initialize & repeatedly
call Relax until d[v] = δ(s, v) for all v in V.  Then, G is a shortest-path
tree rooted at s.

Proof:

Key Proof  Obligation: For all v in V, the unique simple path p from
s to v in G (path exists by Lemma 24.16) is a shortest path from s to v
in G. 

Let p = ‹v0, v1, …, vk›, where v0 = s and vk = v.

We have d[vi] = δ(s, vi) 
d[vi]  d[vi-1] + w(vi-1, vi)  (reasoning as before)

Implies w(vi-1, vi)  δ(s, vi) – δ(s, vi-1).
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Proof (Continued)
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So, equality holds and p is a shortest path.
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• And note that this shortest path tree will be found after 
V(G) - 1 iterations of Relax.



CSE5311 Design and Analysis of  Algorithms 19Dept. CSE, UT Arlington

Bellman-Ford Algorithm

Can have negative-weight edges.  Will “detect” reachable negative-
weight cycles.

Initialize(G, s);
for i := 1 to |V[G]| –1 do

for each (u, v) in E[G] do
Relax(u, v, w)

od
od;
for each (u, v) in E[G] do

if d[v] > d[u] + w(u, v) then
return false

fi
od;
return true

Time 
Complexity
is O(VE).
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• So if Bellman-Ford has not converged after V(G) - 1 
iterations, then there cannot be a shortest path tree, so 
there must be a negative weight cycle.
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Example
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Example
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Example
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Example
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Another Look

Note: This is essentially dynamic programming.

Let d(i, j) = cost of  the shortest path from s to i that is at most j hops.

d(i, j) =

0                                                                   if i = s  j = 0
 if i  s  j = 0
min({d(k, j–1) + w(k, i): i Adj(k)}

 {d(i, j–1)})                 if j > 0

z u v x y
1     2      3    4      5

0 0    
1 0 6  7 
2 0 6 4 7 2
3 0 2 4 7 2
4 0 2 4 7    –2

j

i
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Lemma 24.2

Lemma 24.2: Assuming no negative-weight cycles reachable from
s, d[v] = (s, v) holds upon termination for all vertices v reachable
from s.

Proof:

Consider a SP p, where  p = ‹v0, v1, …, vk›, where v0 = s and vk = v.

Assume k  |V| – 1, otherwise p has a cycle.

Claim: d[vi] = (s, vi) holds after the ith pass over edges.
Proof  follows by induction on i.

By Lemma 24.11, once d[vi] = (s, vi) holds, it continues to hold.
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Correctness

Claim: Algorithm returns the correct value.

(Part of  Theorem 24.4.  Other parts of  the theorem follow easily from earlier results.)

Case 1: There is no reachable negative-weight cycle.

Upon termination, we have for all (u, v):
d[v] = (s, v)                  , by lemma 24.2 (last slide) if  v is reachable;

d[v] = (s, v) =  otherwise.
 (s, u) + w(u, v)   , by Lemma 24.10.
= d[u] + w(u, v)

So, algorithm returns true.
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Case 2

Case 2: There exists a reachable negative-weight cycle
c = ‹v0, v1, …, vk›, where v0 = vk.

We have i = 1, …, k w(vi-1, vi)  <  0.                                                 (*)

Suppose algorithm returns true.  Then, d[vi]  d[vi-1] + w(vi-1, vi) for
i = 1, …, k.  (because Relax didn’t change any d[vi] ). Thus,

i = 1, …, k d[vi]   i = 1, …, k d[vi-1]  + i = 1, …, k w(vi-1, vi) 

But, i = 1, …, k d[vi]  =  i = 1, …, k d[vi-1].

Can show no d[vi] is infinite.  Hence, 0   i = 1, …, k w(vi-1, vi).

Contradicts (*).   Thus, algorithm returns false.
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Shortest Paths in DAGs

Topologically sort vertices in G;
Initialize(G, s);
for each u in V[G] (in order) do

for each v in Adj[u] do
Relax(u, v, w)

od
od
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Example

 0    
r s t u v w

5 2 7 –1 –2

6 1

3
2

4



CSE5311 Design and Analysis of  Algorithms 32Dept. CSE, UT Arlington

Example
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Example
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Example
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Example
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Example
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Example
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Dijkstra’s Algorithm

Assumes no negative-weight edges.

Maintains a set S of  vertices whose SP from s has been determined.

Repeatedly selects u in V–S with minimum SP estimate (greedy choice).

Store V–S in priority queue Q.
Initialize(G, s);
S := ;
Q := V[G];
while Q   do

u := Extract-Min(Q);
S := S  {u};
for each v Adj[u] do

Relax(u, v, w)
od

od
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Example
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Example
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Example
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Example
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Example
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Example

0

75

98

s

u v

x y

10

1

9

2

4 6

5

2 3

7



CSE5311 Design and Analysis of  Algorithms 45Dept. CSE, UT Arlington

Correctness

Theorem 24.6: Upon termination, d[u] = δ(s, u) for all u in V
(assuming non-negative weights).

Proof:

By Lemma 24.11, once d[u] = δ(s, u) holds, it continues to hold.

We prove: For each u in V, d[u] = (s, u) when u is inserted in S.

Suppose not.  Let u be the first vertex such that d[u]  (s, u) when
inserted in S.

Note that d[s] = (s, s) = 0 when s is inserted, so u  s.

 S   just before u is inserted (in fact, s  S).
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Proof (Continued)

Note that there exists a path from s to u, for otherwise 
d[u] = (s, u) =  by Corollary 24.12.

 there exists a SP from s to u.   SP looks like this:

x

s

y

u

S

p1

p2
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Proof (Continued)

Claim: d[y] = (s, y) when u is inserted into S.

We had d[x] = (s, x) when x was inserted into S.

Edge (x, y) was relaxed at that time.

By Lemma 24.14, this implies the claim.

Now, we have: d[y] = (s, y)    , by Claim.
 (s, u)    , nonnegative edge weights.
 d[u]        , by Lemma 24.11.

Because u was added to S before y, d[u]  d[y].

Thus, d[y] = (s, y) = (s, u) = d[u].

Contradiction.
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Complexity

Running time is

O(V2) using linear array for priority queue.

O((V + E) lg V) using binary heap.

O(V lg V + E) using Fibonacci heap.

(See book.)


