Design and Analysis of Algorithms

CSE 5311 Lecture 21 Single-Source Shortest Paths

Junzhou Huang, Ph.D.

Department of Computer Science and Engineering

Dept. CSE, UT Arlington

Single-Source Shortest Paths

- <u>Given:</u> A single <u>source</u> vertex in a <u>weighted</u>, <u>directed</u> graph.
- Want to compute a shortest path for each possible destination.
 - Similar to BFS.
- We will assume either
 - no negative-weight edges, or
 - no <u>reachable</u> negative-weight cycles.
- Algorithm will compute a shortest-path tree.
 - Similar to BFS tree.

Outline

- General Lemmas and Theorems.
- Bellman-Ford algorithm.
- DAG algorithm.
- Dijkstra's algorithm.

General Results (Relaxation)

Lemma 24.1: Let $p = \langle v_1, v_2, \dots, v_k \rangle$ be a SP from v_1 to v_k . Then, $p_{ij} = \langle v_i, v_{i+1}, \dots, v_j \rangle$ is a SP from v_i to v_j , where $1 \le i \le j \le k$.

So, we have the optimal-substructure property.

Bellman-Ford's algorithm uses dynamic programming.

Dijkstra's algorithm uses the greedy approach.

Let $\delta(u, v)$ = weight of SP from u to v.

<u>**Corollary:**</u> Let p = SP from s to v, where p = s $\rightarrow v$. Then, $\delta(s, v) = \delta(s, u) + w(u, v)$.

Lemma 24.10: Let $s \in V$. For all edges $(u,v) \in E$, we have $\delta(s, v) \le \delta(s, u) + w(u,v)$.

Dept. CSE, UT Arlington

• Lemma 24.1 holds because one edge gives the shortest path, so the other edges must give sums that are at least as large.

Relaxation

Algorithms keep track of d[v], π [v]. Initialized as follows:

```
Initialize(G, s)

for each v \in V[G] do

d[v] := \infty;

\pi[v] := NIL

end;

d[s] := 0
```

These values are changed when an edge (u, v) is **relaxed**:

```
Relax(u, v, w)

if d[v] > d[u] + w(u, v) then

d[v] := d[u] + w(u, v);

\pi[v] := u

end
```

Dept. CSE, UT Arlington

Properties of Relaxation

- d[v], if not ∞ , is the length of *some* path from s to v.
- d[v] either stays the same or decreases with time
- Therefore, if $d[v] = \delta(s, v)$ at any time, this holds thereafter
- Note that $d[v] \ge \delta(s, v)$ always
- After *i* iterations of relaxing on all (u,v), if the shortest path to v has *i* edges, then $d[v] = \delta(s, v)$.

Properties of Relaxation

Consider any algorithm in which d[v], and π [v] are first initialized by calling Initialize(G, s) [s is the source], and are only changed by calling Relax. We have:

Lemma 24.11: $(\forall v:: d[v] \ge \delta(s, v))$ is an invariant.

Implies d[v] doesn't change once $d[v] = \delta(s, v)$.

Proof:

Initialize(G, s) establishes invariant. If call to Relax(u, v, w) changes d[v], then it establishes:

$$\begin{split} d[v] &= d[u] + w(u, v) \\ &\geq \delta(s, u) + w(u, v) \\ &\geq \delta(s, v) \end{split} , invariant holds before call. , by Lemma 24.10. \end{split}$$

<u>Corollary 24.12</u>: If there is no path from s to v, then $d[v] = \delta(s, v) = \infty$ is an invariant.

• For lemma 24.11, note that initialization makes the invariant true at the beginning.

More Properties

Lemma 24.13: Immediately after relaxing edge (u, v) by calling Relax(u, v, w), we have $d[v] \le d[u] + w(u, v)$.

Lemma 24.14: Let p = SP from s to v, where p = s $u \rightarrow v$. If $d[u] = \delta(s, u)$ holds at any time prior to calling Relax(u, v, w), then $d[v] = \delta(s, v)$ holds at all times after the call.

Proof:

After the call we have:

$$\begin{split} d[v] &\leq d[u] + w(u, v) &, \text{ by Lemma 24.13.} \\ &= \delta(s, u) + w(u, v) &, d[u] = \delta(s, u) \text{ holds.} \\ &= \delta(s, v) &, \text{ by corollary to Lemma 24.1.} \end{split}$$

By Lemma 24.11, $d[v] \ge \delta(s, v)$, so $d[v] = \delta(s, v)$.

Dept. CSE, UT Arlington

- Lemma 24.13 follows simply from the structure of Relax.
- Lemma 24.14 shows that the shortest path will be found one vertex at a time, if not faster. Thus after a number of iterations of Relax equal to V(G) 1, all shortest paths will be found.

• Bellman-Ford returns a compact representation of the set of shortest paths from s to all other vertices in the graph reachable from s. This is contained in the predecessor subgraph.

Predecessor Subgraph

Lemma 24.16: Assume given graph G has no negative-weight cycles reachable from s. Let G_{π} = predecessor subgraph. G_{π} is always a tree with root s (i.e., this property is an invariant).

Proof:

Two proof obligations:

(1) G_{π} is acyclic.

(2) There exists a unique path from source s to each vertex in V_{π} . <u>**Proof of (1):</u></u></u>**

Suppose there exists a cycle $c = \langle v_0, v_1, \dots, v_k \rangle$, where $v_0 = v_k$. We have $\pi[v_i] = v_{i-1}$ for $i = 1, 2, \dots, k$.

Assume relaxation of (v_{k-1}, v_k) created the cycle. We show cycle has a negative weight.

Note:Cycle must be reachable from s.Dept. CSE, UT ArlingtonCSE5311 Design and Analysis of Algorithms

Proof of (1) (Continued) Before call to $Relax(v_{k-1}, v_k, w)$:

 $\pi[v_i] = v_{i-1}$ for i = 1, ..., k-1.

Implies $d[v_i]$ was last updated by " $d[v_i] := d[v_{i-1}] + w(v_{i-1}, v_i)$ " for i = 1, ..., k-1. [Because Relax updates π .]

Implies $d[v_i] \ge d[v_{i-1}] + w(v_{i-1}, v_i)$ for i = 1, ..., k-1. [Lemma 24.13]

Because $\pi[v_k]$ is changed by call, $d[v_k] > d[v_{k-1}] + w(v_{k-1}, v_k)$. Thus,

$$\sum_{i=1}^{k} d[v_i] > \sum_{i=1}^{k} (d[v_{i-1}] + w(v_{i-1}, v_i))$$

=
$$\sum_{i=1}^{k} d[v_{i-1}] + \sum_{i=1}^{k} w(v_{i-1}, v_i)$$

Because
$$\sum_{i=1}^{k} d[v_i] = \sum_{i=1}^{k} d[v_{i-1}], \sum_{i=1}^{k} w(v_{i-1}, v_i) < 0, i.e., \text{ neg.-weight cycle!}$$

Dept. CSE, UT Arlington

Comment on Proof

- $d[v_i] \ge d[v_{i-1}] + w(v_{i-1}, v_i)$ for i = 1, ..., k-1 because when Relax (v_{i-1}, v_i, w) was called, there was an equality, and $d[v_{i-1}]$ may have gotten smaller by further calls to Relax.
- $d[v_k] > d[v_{k-1}] + w(v_{k-1}, v_k)$ before the last call to Relax because that last call changed $d[v_k]$.

Lemma 24.17

Lemma 24.17: Same conditions as before. Call Initialize & repeatedly call Relax until $d[v] = \delta(s, v)$ for all v in V. Then, G_{π} is a shortest-path tree rooted at s.

Proof:

Key Proof Obligation: For all v in V_{π} , the unique simple path p from s to v in G_{π} (path exists by Lemma 24.16) is a shortest path from s to v in G.

Let
$$p = \langle v_0, v_1, \dots, v_k \rangle$$
, where $v_0 = s$ and $v_k = v$.

We have
$$d[v_i] = \delta(s, v_i)$$

 $d[v_i] \ge d[v_{i-1}] + w(v_{i-1}, v_i)$ (reasoning as before

Implies $w(v_{i-1}, v_i) \le \delta(s, v_i) - \delta(s, v_{i-1})$.

Dept. CSE, UT Arlington

Proof (Continued)

$$w(p)$$

= $\sum_{i=1}^{k} w(v_{i-1}, v_i)$
 $\leq \sum_{i=1}^{k} (\delta(s, v_i) - \delta(s, v_{i-1}))$
= $\delta(s, v_k) - \delta(s, v_0)$
= $\delta(s, v_k)$

So, equality holds and p is a shortest path.

Dept. CSE, UT Arlington

• And note that this shortest path tree will be found after V(G) - 1 iterations of Relax.

Bellman-Ford Algorithm

Can have negative-weight edges. Will "detect" <u>reachable</u> negativeweight cycles.

```
Initialize(G, s);
for i := 1 to |V[G]| - 1 do
   for each (u, v) in E[G] do
       Relax(u, v, w)
    od
od;
for each (u, v) in E[G] do
   if d[v] > d[u] + w(u, v) then
        return false
    fi
od;
return true
```

Time Complexity is O(VE).

Dept. CSE, UT Arlington

• So if Bellman-Ford has not converged after V(G) - 1 iterations, then there cannot be a shortest path tree, so there must be a negative weight cycle.

Another Look

Note: This is essentially **dynamic programming**.

Let d(i, j) = cost of the shortest path from s to i that is at most j hops.

Dept. CSE, UT Arlington

Lemma 24.2

<u>Lemma 24.2</u>: Assuming no negative-weight cycles reachable from s, $d[v] = \delta(s, v)$ holds upon termination for all vertices v reachable from s.

Proof:

Consider a SP p, where $p = \langle v_0, v_1, \dots, v_k \rangle$, where $v_0 = s$ and $v_k = v$.

Assume $k \leq |V| - 1$, otherwise p has a cycle.

<u>Claim</u>: $d[v_i] = \delta(s, v_i)$ holds after the ith pass over edges. Proof follows by induction on i.

By Lemma 24.11, once $d[v_i] = \delta(s, v_i)$ holds, it continues to hold.

Dept. CSE, UT Arlington

Correctness

<u>Claim:</u> Algorithm returns the correct value.

(Part of Theorem 24.4. Other parts of the theorem follow easily from earlier results.)

Case 1: There is no reachable negative-weight cycle.

Upon termination, we have for all (u, v): $\begin{aligned}
d[v] &= \delta(s, v) &, \text{ by lemma 24.2 (last slide) if v is reachable;} \\
d[v] &= \delta(s, v) = \infty \text{ otherwise.} \\
&\leq \delta(s, u) + w(u, v) &, \text{ by Lemma 24.10.} \\
&= d[u] + w(u, v)
\end{aligned}$

So, algorithm returns true.

Dept. CSE, UT Arlington

Case 2

<u>Case 2</u>: There exists a reachable negative-weight cycle $c = \langle v_0, v_1, \dots, v_k \rangle$, where $v_0 = v_k$.

We have
$$\sum_{i=1,...,k} w(v_{i-1}, v_i) < 0.$$
 (*)

Suppose algorithm returns true. Then, $d[v_i] \le d[v_{i-1}] + w(v_{i-1}, v_i)$ for i = 1, ..., k. (because Relax didn't change any $d[v_i]$). Thus,

$$\sum_{i=1,...,k} d[v_i] \leq \sum_{i=1,...,k} d[v_{i-1}] + \sum_{i=1,...,k} w(v_{i-1}, v_i)$$

But, $\sum_{i=1,...,k} d[v_i] = \sum_{i=1,...,k} d[v_{i-1}].$

Can show no d[v_i] is infinite. Hence, $0 \le \sum_{i=1,...,k} w(v_{i-1}, v_i)$. Contradicts (*). Thus, algorithm returns **false**.

Dept. CSE, UT Arlington

```
Topologically sort vertices in G;
Initialize(G, s);
for each u in V[G] (in order) do
for each v in Adj[u] do
Relax(u, v, w)
od
od
```

Dept. CSE, UT Arlington

Dept. CSE, UT Arlington

Dijkstra's Algorithm

Assumes no negative-weight edges.

Maintains a set S of vertices whose SP from s has been determined.

Repeatedly selects u in V–S with minimum SP estimate (greedy choice).

Store V–S in priority queue Q.

```
Initialize(G, s);
S := \emptyset:
Q := V[G];
while Q \neq \emptyset do
    u := Extract-Min(Q);
    S := S \cup \{u\};
    for each v \in Adj[u] do
        Relax(u, v, w)
    0d
0d
```


Correctness

<u>**Theorem 24.6:**</u> Upon termination, $d[u] = \delta(s, u)$ for all u in V (assuming non-negative weights).

Proof:

By Lemma 24.11, once $d[u] = \delta(s, u)$ holds, it continues to hold. We prove: For each u in V, $d[u] = \delta(s, u)$ when u is inserted in S. Suppose not. Let u be the first vertex such that $d[u] \neq \delta(s, u)$ when inserted in S.

Note that $d[s] = \delta(s, s) = 0$ when s is inserted, so $u \neq s$.

 \Rightarrow S $\neq \emptyset$ just before u is inserted (in fact, s \in S).

Dept. CSE, UT Arlington

Proof (Continued)

Note that there exists a path from s to u, for otherwise $d[u] = \delta(s, u) = \infty$ by Corollary 24.12.

 \Rightarrow there exists a SP from s to u. SP looks like this:

Proof (Continued)

<u>Claim</u>: $d[y] = \delta(s, y)$ when u is inserted into S.

We had $d[x] = \delta(s, x)$ when x was inserted into S.

Edge (x, y) was relaxed at that time.

By Lemma 24.14, this implies the claim.

Now, we have:
$$d[y] = \delta(s, y)$$
, by Claim.
 $\leq \delta(s, u)$, nonnegative edge weights.
 $\leq d[u]$, by Lemma 24.11.

Because u was added to S before y, $d[u] \le d[y]$.

Thus,
$$d[y] = \delta(s, y) = \delta(s, u) = d[u]$$
.

Contradiction.

Dept. CSE, UT Arlington

Complexity

Running time is

 $O(V^2)$ using linear array for priority queue.

 $O((V + E) \lg V)$ using binary heap.

 $O(V \lg V + E)$ using Fibonacci heap.

(See book.)