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All Pairs Shortest Paths (APSP)

* oiven : directed graph G = (I, E ),
weight function w : E — R, | V| =7

* goal :createann X n matrix D = (d; )of shortest path distances
Le., d; = 0(v;, )

* trivial solution : run a SSSP algorithm 7 times, one for
each vertex as the source.
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All Pairs Shortest Paths (APSP)

P all edge weights are nonnegative : use Dijkstra’s algorithm
— PQ = linear array : O (V> + VE) = O (V)
— PQ = binary heap : O (VZIgV + EVIgV) = O (V’IgV )
for dense graphs
> better only for sparse graphs

— PQ = fibonacci heap : O (VgV + EV) = O (V)
for dense graphs
> better only for sparse graphs
P negative edge weights : use Bellman-Ford algorithm
— O (V°E) = O (V") on dense graphs
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Adjacency Matrix Representation of Graphs

P72 x 7 matrix W = (w;) of edge weights :

~
w(vi,vj) if(vi,vj) € E

P assume w. = 0 forall v. € V, because
— no neg-weight cycle

=> shortest path to itself has no edge,

te.,o6 (v,,v,)=0
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Dynamic Programming

(1) Characterize the structure of an optimal solution.
(2) Recursively define the value of an optimal solution.

(3) Compute the value of an optimal solution in a
bottom-up manner.

(4) Construct an optimal solution from information
constructed in (3).
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Shortest Paths and Matrix Multiplication

Assumption : negative edge weights may be present, but no negative weight cycles.

(1) Structure of a Shortest Path :

Consider a shortest path pijm from v; to v, such that | pijm | <

P ic., path pijm has at most 7z edges.

* no negative-weight cycle = all shortest paths are simple
= m 1sfinite =>mw Sn—1

i=j=[p;|=0 & ;) =0

1#] = decompose path pijm into pikm_1 & v — v;, where | pikm_1 | <m-1
> pikm_l should be a shortest path from v, to v, by optimal substructure

property.

» Therefore, 8 (v, ,Vj> =0 (V;,v) T Wy
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Shortest Paths and Matrix Multiplication

(2) A Recursive Solution to All Pairs Shortest Paths Problem :

m

1]
19 2o

at most “7/” edges.

minimum weight of any path from v; to v, that contains

* = 0:There exist a shortest path from v; to v, with no
edges <> 1=.

(0 if i=

> d =<

00 if 1F]
. . . 1 . -1
= 1 dy =min { 7, ming ey i Ty b
= min, o, {d, ™" + W } forallv, e V,

since W = O for all Vi € V.
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Shortest Paths and Matrix Multiplication

* to consider all possible shortest paths with = 77 edges from v, to v,

P consider shortest path with < 77 -7 edges, from v, to v, where

v, €R, and (v, ,Vj> e E Vk,S

O
O

W §‘
e qnote:d(v.,v.)=d=d"=d""" sincew<n-1=|1]-
1Y ij ij ij
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Shortest Paths and Matrix Multiplication

(3) Computing the shortest-path weights bottom-up :

* gtven W = D!, compute a series of matrices D D, .., D",
where D™ = (dijm) form=1,2,..., n1
» final matrix D™ contains actual shortest path weights,
ie,d™ =0 (v,v)

e SLOW-APSP(W)
D!'— W
for m<«— 2 to n-1 do
D™ «— EXTEND(D™' | W)

return D™!

Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms



Shortest Paths vs. Matrix Multiplication

EXTEND (D, W)
» D=(d;)isannx nmatrix
fori<« 1 ton do
forj < 1 ton do
d; oo
fork<— 1 ton do
d;; < min{d

1 °

dj + o}
return D
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MATRIX-MULT (A, B)
» C=(c;)i1sannxnresult
matrix
fori <1/ ton do
forj < 1 ton do
c; < 0
fork— 1ton do
Cij <= Cjj T @y X by
return C

CSE5311 Design and Analysis of Algorithms



Shortest Paths and Matrix Multiplication

* relation to matrix multiplication C = AXB : ¢;= >4, a3 X by,
» D" A & W B & D" C
“min” > “t,, & “t,, > “X,, & 66w9’ <> CCO?’

« Thus, we compute the sequence of matrix products

D!'=D%% W= W ; note D’ = identity matrix, 0 if i=j
D2 — Dl X W = W2 i.e., dijo —
DB%DZXW: W3 oo 1f l?é]

Dn-1: Dn-2 x W = Wn-l

e running time : O(n*)=O( V")
» cach matrix product : @(n’)
» number of matrix products : n-1
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Shortest Paths and Matrix Multiplication

* Example
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Shortest Paths and Matrix Multiplication

1 2 3 4 5
1103 |8 |0|-4
210 |0 ]oo| 1|7
3104 |0 ]|
412 oo |-5]0]|o
S|oow|w|o| 60

D'=D'w
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Shortest Paths and Matrix Multiplication

1 2 3 4 5
1103 |8(2]|-4
21310417
310410511
412 |-1-5101|-2
518 || 1]6]|0

D’=D'w
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Shortest Paths and Matrix Multiplication

12 3 4 5
1103 (-3]2 -4
21310141 /]-1
30714107511
412 1-11-5]0]-2
5185|1610

D’=D'W
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Shortest Paths and Matrix Multiplication

1 2 3 4 5
17101 -3]2]|-4
2131041 ]-1
31714 ]10]35 |3
412 -1]-5]10 (-2
50181511610

D'=D'w
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SSSP and Matrix-Vector Multiplication

 relation of APSP to one step of matrix multiplication

dijn{4 _ K N

«— N

D"— C D1« A W« B
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SSSP and Matrix-Vector Multiplication

. 51/4 at row 7; and column ¢;0f product matrix

=0 (v=y, ﬁ]) for;=1,2 3, ...,

* row 7; of the product matrix = solution to single-source
shortest path problem for s = »..

P . of C = matrix B multiplied by 7, of A
= D/”=D/""xW
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SSSP and Matrix-Vector Multiplication

K

0 if 1=}
letDO d’, where dO— <

L o0 otherwise

* we compute a sequence of n-1 “matrix-vector” products

d'=d’x W
d*=d!'x W
d°=d*x W

d™'=d™x W
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SSSP and Matrix-Vector Multiplication

 this sequence of matrix-vector products
» same as Bellman-Ford algorithm.

» vector d." = d values of Bellman-Ford
algorithm after m-th relaxation pass.

> 4" —d™'x W
= m-th relaxation pass over all edges.
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SSSP and Matrix-Vector Multiplication

BELLMAN-FORD (G, v,) EXTEND (d;, W)
» perform RELAX (u, V) » d, is an n-vector
for forj<« 1 tondo
» cvery edge (u,v) € E dj =0

fork«— 1 tondo

forj« I tondo d; — min {d . d, + oy}

tor k< [ ton do
RELAX (v, V;)

RELAX (u, V)
(1V:]:I]'ir1 { dV’ d'Ll—I_(DUV}
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Improving Running Time via Repeated Squaring

* 1dea: goal is not to compute all D™ matrices
» we are interested only in matrix D™

e recall : no negative-weight cycles = D™ = D™ for all # > #-1

* we can compute D™ with only Dg(n—lﬂ matrix products as

D!' = w
D? = W2=WxW
D* = W* = W2 x W2
D? = W =W* x W*
]
.
HMg-1T L Mg 5 Mg(n-1)l-1 > NgDl-1

= W = x W

* 'This technique 1s called repeated squaring.
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Improving Running Time via Repeated Squaring

« FASTER-APSP (W)
D! W
m <« |
while m < n-1 do
D*™« EXTEND ( D™, D™)
m <«— 2m
return D™

e final iteration computes D™ for some -1 < 2m < 24-2 = D*™ = D!
p

«  running time : (n’lgn ) = O( VgV )

» cach matrix product : @(n’)
P # of matrix products : ﬁg( n-1 )_‘

P simple code, no complex data structures, small hidden
constants in ®-notation.
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Idea Behind Repeated Squaring

* decompose pijzm as py. & py , where

2m
m °
P VTV

m

Py ViV
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Floyd-Warshall Algorithm

* Assumption : negative-weight edges, but no negative-weight cycles

(1) The Structure of a Shortest Path :

e Definition : intermediate vertex of apath D =< v, . v,. Va. ... .V, >
15 V25 V3 » Yk

P any vertex of p other than v, or v, .

. Pijm : a shortest path from v; to v, with all intermediate vertices

fromvm: {Vl )VZ > e )Vm}
: - m m-1
relationship between pij and pij -
P depends on whether v is an intermediate vertex of Pi

- case 1:  v_ 1s not an intermediate vertex of off

= all intermediate vertices of pijm arein V_

m m-1
= Py = Pjj
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Floyd-Warshall Algorithm

-case 2: v, 1s an intermediate vertex of P;

- decompose path as v, n_» v, A 7V,

2> P1:vin Ve & Privy AL

- by opt. structure property both p; & p, are shortest paths.

- v._ 1s not an intermediate vertex of Py &Py

=P =P’ & Py = Pmj

m

m-1
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Floyd-Warshall Algorithm

(2) A Recurstve Solution to APSP Problem :

* d;" = w(p;) : weight of a shortest path from v;to v,

with all intermediate vertices from

V. ={vi,V,, e,V }.

i n _ . _
* note: d;” =0 (v;,v;)since V, =V
P i.c., all vertices are considered for being intermediate vertices

of p;".
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Floyd-Warshall Algorithm

* compute d;" in terms of dijk with smaller £ <

* m=0: V,= empty set
= path from v; to v, with no intermediate vertex.
Le., v; to v; paths with at most one edge

0 —

* m=>1:d" = min {d™",d, ™" +d,;""}
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Floyd-Warshall Algorithm

(3) Computing Shortest Path Weights Bottom Up :

FLOYD-WARSHALL( W)
» D' D! ..., D"are #x # matrices
for m«— 1 to n do
forz«— 71 tondo
for j«— 7 to ndo
d;™ = min {d;"",d;, ™"+ d "}

return D"
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Floyd-Warshall Algorithm
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FLOYD-WARSHALL ( W)
» D is an z X n matrix
D—W
form <« I tondo
fori<«— [ tondo
forj« Itondo
it d; >d;, +d,,; then
dj; < d;, T dy,

return D
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Floyd-Warshall Algorithm

* maintaining » D matrices can be avoided by dropping all superscripts.

—  m-th iteration of outermost for-loop

begins with D = D™
ends with D = D™

—  computation of d;™ depends on d._"™"and dmjm‘1 :

no problem if d;, & d,; are already updated to d,," & d, ;"
sinced, "=d,_"" & dpi" = dmjm‘1.

* running time : ®( n’ ) = 0O( v )

simple code, no complex data structures, small hidden constants
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Transitive Closure of a Directed Graph

e G =(V,E): transitive closure of G = (V, E ), where

> E = {(v, v, ): there exists a path from v, to v, in G }

e trivial solution : assign W such that Lif (vi,v,) e E

(00 otherwise
» run Floyd-Warshall algorithm on W
P> d," <n = there exists a path from v; to v,
1.e., Vi,Vj> € KB
P d,” = %0 = no path from v; to v,
L.e., (v, Vj> =)
» running time : O(n’) =O( V)
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Transitive Closure of a Directed Graph

e Better @( V') algorithm : saves time and space.
e

1 iti=jor(v,v,)ek

12 7

P W = adjacency matrix : ;= 4

0 otherwise

P run Floyd-Warshall algorithm by replacing “min” — W g g\

( . . . . .
1 if Ja path from v, to v, with all intermediate vettices from V,,

* define ;" = |

| 0 otherwise

> .

] = 1= (v

1

v) el & t"=0 = (v,v,) €E

* recursive definition for ;™ = tijm‘1 Vit ™A tmjm'1 ) with tijO = o
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Transitive Closure of a Directed Graph

T-CLOSURE (G)
» T =(t;)1sann x n boolean matrix
fori« I tondo
forj« Itondo
it i=j or(v;,v;)eE then
t 1
else
t; <0
for m «— [ ton do
fori«— Itondo
forj<«— Itondo
G —t; vV (N )

1
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Johnson’s Algorithm for Sparse Graphs

(1) Preserving shortest paths by edge reweighting :

e Ll:givenG=(V,E)withow:E—>R
» leth:V — R be any weighting function on the vertex set
P definew(w,h):E—Rasw(u,v)=w(u,v)+h @ -h®)
» let po. = < vy, Vy, ...,V > beapath from v, to v,

(3) o po) = ©( poe) + h (v) - h (v)

(b) o(pgi) = 0(vg, Vi) In (G, w) & o(Ppgy) = (v, Vi) in (G, @)

(© (G, ®) has a neg-wgt cycle <@ (G, ) has a neg-wgt cycle
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Johnson’s Algorithm for Sparse Graphs

(2) Producing nonnegative edge weights by reweighting :

* given (G,w) withG=(V,E)andw:E—R
construct a new graph (G, w ) with G = (V, E') and
v =E —R
» V =V U {s} for some new vertex s ¢ V
»E=E U {(s,v);ve V)
> »(1,y) = o(u,y) Yu,v) e Eand 0 (s,v) =0, VveV

* vertex s has no incoming edges = s ¢ R foranyvinV
P no shortest paths from u # s to v in G contains vertex s

» (G, w ) has no neg-wet cycle < (G, ) has no neg-wet cycle
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Johnson’s Algorithm for Sparse Graphs

* suppose that G and G have no neg-wgt cycle

e 12: ifwedefineh ) =8 (,v) ¥ veVinG and & according
to 1.

P we will have 0(u,v) = o(u,y) + h) —hF) >0 VveV
proof : for every edge (u,v) € E

§(s,v) <8 (s,u) + uy,v)in G due to triangle inequality
hv)=h@W + wl,v)=0= o, v)+ hu-hyv)= o, v)
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Johnson’s Algorithm for Sparse Graphs

Computing All-Pairs Shortest Paths
* adjacency list representation of G.
* returns 7 x 7 matrix D = (d; ) where

i = Oy

or reports the existence of a neg-wgt cycle.
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Johnson’s Algorithm for Sparse Graphs

¢ JOHNSON(G,w)
» D=(d;) is an nxn matrix
» construct (G = (V,E),0) st. V=VU{s}; E=EU{(Gv):V veV}
> ouy) =owy),V W) eE & o(Ev)=0YYveV
if BELLMAN-FORD(G, w, s) = FALSE then
return “negative-weight cycle”
else
for each vertex v e V- {s} =V do
h[v] «— d'[v] » d'[v] = 8 (s,v) computed by BELLMAN-FORD(G, , s)
for cach edge (u,v) € E do
w(u,v) <= o) + h[u] —h[v] P edge reweighting
for each vertex u € V do
run DIJKSTRA(G, o, u) to compute d[v] = 8 (u,v) forall vin V € (G,w)
for each vertex v € V do
d,, = d[v] = (h[u] —h[v])

return D
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Johnson’s Algorithm for Sparse Graphs

+ running time: O (VZgV + EV)
P cdge reweighting
BELLMAN-FORD(G, w,s) : O (EV)
computing o values : O (E)
» | V| runs of DIJKSTRA: | V | x O (VlgV + EV)
= O (VgV + EV);
PQ = tibonacci heap
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