Design and Analysis of Algorithms

CSE 5311
Lecture 22 All-Pairs Shortest Paths

Junzhou Huang, Ph.D.
Department of Computer Science and Engineering

All Pairs Shortest Paths (APSP)

- given : directed graph $G=(V, E)$, weight function $\omega: \mathrm{E} \rightarrow \mathrm{R},|\mathrm{V}|=n$
- goal : create an $n \times n$ matrix $D=\left(d_{i j}\right)$ of shortest path distances i.e., $d_{i j}=\delta\left(v_{i}, v_{j}\right)$
- trivial solution : run a SSSP algorithm n times, one for each vertex as the source.

All Pairs Shortest Paths (APSP)

- all edge weights are nonnegative : use Dijkstra's algorithm
$-\mathrm{PQ}=$ linear array : $\mathrm{O}\left(\mathrm{V}^{3}+\mathrm{VE}\right)=\mathrm{O}\left(\mathrm{V}^{3}\right)$
$-\mathrm{PQ}=$ binary heap $: \mathrm{O}\left(\mathrm{V}^{2} \lg \mathrm{~V}+\mathrm{EV} \lg \mathrm{V}\right)=\mathrm{O}\left(\mathrm{V}^{3} \lg V\right)$
for dense graphs
$>$ better only for sparse graphs
$-\mathrm{PQ}=$ fibonacci heap : $\mathrm{O}\left(\mathrm{V}^{2} \lg \mathrm{~V}+\mathrm{EV}\right)=\mathrm{O}\left(\mathrm{V}^{3}\right)$
for dense graphs
$>$ better only for sparse graphs
- negative edge weights : use Bellman-Ford algorithm
$-\mathrm{O}\left(\mathrm{V}^{2} \mathrm{E}\right)=\mathrm{O}\left(\mathrm{V}^{4}\right)$ on dense graphs

Adjacency Matrix Representation of Graphs

- $n \times n$ matrix $\mathrm{W}=\left(\omega_{\mathrm{ij}}\right)$ of edge weights :

$$
\omega_{\mathrm{ij}}= \begin{cases}\omega\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right) & \text { if }\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right) \in \mathrm{E} \\ \infty & \text { if }\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right) \notin \mathrm{E}\end{cases}
$$

- assume $\omega_{\mathrm{ii}}=0$ for all $\mathrm{v}_{\mathrm{i}} \in \mathrm{V}$, because
- no neg-weight cycle
\Rightarrow shortest path to itself has no edge,
i.e., $\delta\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}}\right)=0$

Dynamic Programming

(1) Characterize the structure of an optimal solution.
(2) Recursively define the value of an optimal solution.
(3) Compute the value of an optimal solution in a bottom-up manner.
(4) Construct an optimal solution from information constructed in (3).

Shortest Paths and Matrix Multiplication

Assumption : negative edge weights may be present, but no negative weight cycles.
(1) Structure of a Shortest Path :

- Consider a shortest path $p_{i j}{ }^{m}$ from v_{i} to v_{j} such that $\left|p_{i j}{ }^{m}\right| \leq m$
\rightarrow i.e., path $\mathrm{p}_{\mathrm{ij}}{ }^{\mathrm{m}}$ has at most m edges.
- no negative-weight cycle \Rightarrow all shortest paths are simple
$\Rightarrow \mathrm{m}$ is finite $\Rightarrow m \leq n-1$
- $\quad i=j \Rightarrow\left|p_{i i}\right|=0 \& \omega\left(p_{i i}\right)=0$
- $\quad i \neq j \Rightarrow$ decompose path $p_{i j}{ }^{m}$ into $p_{i k}{ }^{m-1} \& v_{k} \rightarrow v_{j}$, where $\left|p_{i k}{ }^{m-1}\right| \leq m-1$
- $\mathrm{p}_{\mathrm{ik}}{ }^{\mathrm{m}-1}$ should be a shortest path from v_{i} to v_{k} by optimal substructure property.
Therefore, $\delta\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)=\delta\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{k}}\right)+\omega_{\mathrm{k} \mathrm{j}}$

Shortest Paths and Matrix Multiplication

(2) A Recursive Solution to All Pairs Shortest Paths Problem :

- $\mathrm{d}_{\mathrm{ij}}{ }^{\mathrm{m}}=$ minimum weight of any path from v_{i} to v_{j} that contains at most " m " edges.
- $m=0$: There exist a shortest path from v_{i} to v_{j} with no edges $\leftrightarrow \mathrm{i}=\mathrm{j}$.

$$
-\mathrm{d}_{\mathrm{ij}}^{0}=\left\{\begin{array}{lll}
0 & \text { if } & \mathrm{i}=\mathrm{j} \\
\infty & \text { if } & \mathrm{i} \neq \mathrm{j}
\end{array}\right.
$$

- $m \geq 1: \mathrm{d}_{\mathrm{ij}}^{\mathrm{m}}=\min \left\{\mathrm{d}_{\mathrm{ij}}^{\mathrm{m}-1}, \min _{1 \leq \mathrm{k} \leq \mathrm{n} \Lambda \mathrm{k} \neq \mathrm{j}}\left\{\mathrm{d}_{\mathrm{ik}}^{\mathrm{m}-1}+\omega_{\mathrm{kj}}\right\}\right\}$

$$
\begin{aligned}
& =\min _{1 \leq \mathrm{k} \leq \mathrm{n}}\left\{\mathrm{~d}_{\mathrm{ik}}^{\mathrm{m}-1}+\omega_{\mathrm{kj}}\right\} \text { for all } \mathrm{v}_{\mathrm{k}} \in \mathrm{~V}, \\
& \\
& \text { since } \omega_{\mathrm{j} j}=0 \text { for all } \mathrm{v}_{\mathrm{j}} \in \mathrm{~V} .
\end{aligned}
$$

Shortest Paths and Matrix Multiplication

- to consider all possible shortest paths with $\leq m$ edges from v_{i} to v_{j}
- consider shortest path with $\leq m-1$ edges, from v_{i} to v_{k}, where $\mathrm{v}_{\mathrm{k}} \in \mathrm{R}_{v_{i}}$ and $\left(\mathrm{v}_{\mathrm{k}}, \mathrm{v}_{\mathrm{j}}\right) \in \mathrm{E}$

- note : $\delta\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)=\mathrm{d}_{\mathrm{ij}}{ }^{\mathrm{n}-1}=\mathrm{d}_{\mathrm{ij}}{ }^{\mathrm{n}}=\mathrm{d}_{\mathrm{ij}}{ }^{\mathrm{n}+1}$, since $m \leq n-1=|V|-1$

Shortest Paths and Matrix Multiplication

(3) Computing the shortest-path weights bottom-up:

- given $W=D^{1}$, compute a series of matrices $\mathrm{D}^{2}, \mathrm{D}^{3}, \ldots, \mathrm{D}^{\mathrm{n}-1}$, where $\mathrm{D}^{\mathrm{m}}=\left(\mathrm{d}_{\mathrm{ij}}^{\mathrm{m}}\right)$ for $m=1,2, \ldots, n-1$
- final matrix $\mathrm{D}^{\mathrm{n}-1}$ contains actual shortest path weights, i.e., $\mathrm{d}_{\mathrm{ij}}^{\mathrm{n}-1}=\delta\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)$
- SLOW-APSP(W)

$$
\begin{aligned}
& \mathrm{D}^{1} \leftarrow \mathrm{~W} \\
& \text { for } m \leftarrow 2 \text { to } n-1 \text { do } \\
& \quad \mathrm{D}^{\mathrm{m}} \leftarrow \operatorname{EXTEND}\left(\mathrm{D}^{\mathrm{m}-1}, \mathrm{~W}\right) \\
& \text { return } \mathrm{D}^{\mathrm{n}-1}
\end{aligned}
$$

Shortest Paths vs. Matrix Multiplication

EXTEND (D, \mathbf{W})

- $\mathrm{D}=\left(\mathrm{d}_{\mathrm{ij}}\right)$ is an nx n matrix
for $i \leftarrow 1$ to n do
for $j \leftarrow 1$ to n do
$\mathrm{d}_{\mathrm{ij}} \leftarrow \infty$
for $k \leftarrow 1$ to n do

$$
\mathrm{d}_{\mathrm{ij}} \leftarrow \min \left\{\mathrm{~d}_{\mathrm{ij}}, \mathrm{~d}_{\mathrm{ik}}+\omega_{\mathrm{kj}}\right\}
$$

return D

MATRIX-MULT (\mathbf{A}, \mathbf{B})

$-\mathbf{C}=\left(\mathrm{c}_{\mathrm{ij}}\right)$ is an $\mathrm{n} \mathrm{x} \cap$ result matrix
for $i \leftarrow 1$ to n do
for $j \leftarrow 1$ to n do
$\mathrm{c}_{\mathrm{ij}} \leftarrow 0$
for $k \leftarrow 1$ to n do

$$
\mathrm{c}_{\mathrm{ij}} \leftarrow \mathrm{c}_{\mathrm{ij}}+\mathrm{a}_{\mathrm{ik}} \times \mathrm{b}_{\mathrm{kj}}
$$

return \mathbf{C}

Shortest Paths and Matrix Multiplication

- relation to matrix multiplication $\mathrm{C}=\mathrm{A} \times \mathrm{B}: \mathbf{c}_{\mathrm{ij}}=\sum_{1 \leq \mathrm{k} \leq \mathrm{n}} \mathbf{a}_{\mathrm{ik}} \times \mathbf{b}_{\mathrm{kj}}$,
$-\mathrm{D}^{\mathrm{m}-1} \leftrightarrow \mathrm{~A} \quad \& \quad \mathbf{W} \leftrightarrow \mathrm{~B} \quad \& \quad \mathrm{D}^{\mathrm{m}} \leftrightarrow \mathrm{C}$

$$
" m i n " \leftrightarrow " t " \quad \& \quad " t " \leftrightarrow " x " \quad \& \quad " \infty \ggg " 0 "
$$

- Thus, we compute the sequence of matrix products

$$
\begin{aligned}
& \mathrm{D}^{1}=\mathrm{D}^{0} \mathrm{x} \mathrm{~W}=\mathrm{W} ; \text { note } \mathrm{D}^{0}=\text { identity matrix, } \\
& \mathrm{D}^{2}=\mathrm{D}^{1} \mathrm{x} \mathrm{~W}=\mathrm{W}^{2} \quad \text { i.e., } \mathrm{d}_{\mathrm{ij}}^{0} \\
& \mathrm{D}^{3} \doteqdot \mathrm{D}^{2} \times \mathrm{W}=\mathrm{W}^{3}
\end{aligned}= \begin{cases}0 & \text { if } i=j \\
\infty & \text { if } i \neq j\end{cases}
$$

- running time : $\Theta\left(\mathrm{n}^{4}\right)=\Theta\left(\mathrm{V}^{4}\right)$
- each matrix product : $\Theta\left(\mathrm{n}^{3}\right)$
- number of matrix products : $n-1$

Shortest Paths and Matrix Multiplication

- Example

Shortest Paths and Matrix Multiplication

	1	2	3	4	5
1	0	3	8	∞	-4
2	∞	0	∞	1	7
3	∞	4	0	∞	∞
4	2	∞	-5	0	∞
5	∞	∞	∞	6	0

$$
D^{I}=D^{0} W
$$

Shortest Paths and Matrix Multiplication

	1			2	
3	4	5			
1	0	3	8	2	-4
2	3	0	-4	1	7
3	∞	4	0	5	11
4	2	-1	-5	0	-2
5	8	∞	1	6	0

$$
D^{2}=D^{l} W
$$

Shortest Paths and Matrix Multiplication

	1				2			3		5
		0	3	-3	2					

$$
D^{3}=D^{2} W
$$

Shortest Paths and Matrix Multiplication

SSSP and Matrix-Vector Multiplication

- relation of APSP to one step of matrix multiplication

SSSP and Matrix-Vector Multiplication

- $d_{i j}^{n-1}$ at row r_{i} and column c_{j} of product matrix
$=\delta\left(v_{i}=s, v_{j}\right)$ for $j=1,2,3, \ldots, n$
- row r_{i} of the product matrix $=$ solution to single-source shortest path problem for $s=v_{i}$.
- r_{i} of $\mathrm{C}=$ matrix B multiplied by r_{i} of A

$$
\Rightarrow D_{i}^{m}=D_{i}^{m-1} \times W
$$

SSSP and Matrix-Vector Multiplication

```
0 if i= j
```

- let $D_{i}^{0}=d^{0}$, where $d_{j}^{0}=\left\{\begin{array}{cc}0 & \text { if } \mathrm{i}=\mathrm{j} \\ \infty & \text { otherwise }\end{array}\right.$
- we compute a sequence of $n-1$ "matrix-vector" products

$$
\begin{aligned}
\mathrm{d}_{\mathrm{i}}^{1} & =\mathrm{d}_{\mathrm{i}}^{0} \times \mathrm{W} \\
\mathrm{~d}_{\mathrm{i}}{ }^{2} & =\mathrm{d}_{\mathrm{i}}^{1} \times \mathrm{W} \\
\mathrm{~d}_{\mathrm{i}}^{3} & =\mathrm{d}_{\mathrm{i}}^{2} \times \mathrm{W} \\
& : \\
\mathrm{d}_{\mathrm{i}}^{\mathrm{n}-1} & =\mathrm{d}_{\mathrm{i}}^{\mathrm{n}-2} \times \mathrm{W}
\end{aligned}
$$

SSSP and Matrix-Vector Multiplication

- this sequence of matrix-vector products
- same as Bellman-Ford algorithm.
- vector $\mathrm{d}_{\mathrm{i}}^{\mathrm{m}} \Rightarrow \mathrm{d}$ values of Bellman-Ford algorithm after m -th relaxation pass.
$-\mathrm{d}_{\mathrm{i}}^{\mathrm{m}} \leftarrow \mathrm{d}_{\mathrm{i}}{ }^{\mathrm{m}-1} \mathrm{X} \mathrm{W}$
$\Rightarrow m$-th relaxation pass over all edges.

SSSP and Matrix-Vector Multiplication

```
BELLMAN-FORD (G , vi}
    - perform RELAX (u, v )
    for
    - every edge (u,v) \in E
    for }j\leftarrow1\mathrm{ to }n\mathrm{ do
        for }k\leftarrow1\mathrm{ to }n\mathrm{ do
        RELAX ( }\mp@subsup{\textrm{v}}{\textrm{k}}{},\mp@subsup{\textrm{v}}{\textrm{j}}{}
RELAX(u,v )
    d
\(\operatorname{RELAX}(u, v)\)
\(\mathrm{d}_{\mathrm{v}}=\min \left\{\mathrm{d}_{\mathrm{v}}, \mathrm{d}_{\mathrm{u}}+\omega_{\mathrm{uv}}\right\}\)
```

EXTEND $\left(\mathrm{d}_{\mathrm{i}}, \mathrm{W}\right)$

- d_{i} is an n-vector
for $j \leftarrow 1$ to n do
$\mathrm{d}_{\mathrm{j}} \leftarrow \infty$
for $k \leftarrow 1$ to n do
$\mathrm{d}_{\mathrm{j}} \leftarrow \min \left\{\mathrm{d}_{\mathrm{j}}, \mathrm{d}_{\mathrm{k}}+\omega_{\mathrm{kj}}\right\}$

Improving Running Time via Repeated Squaring

- idea : goal is not to compute all D^{m} matrices
- we are interested only in matrix $\mathrm{D}^{\mathrm{n}-1}$
- recall : no negative-weight cycles $\Rightarrow \mathrm{D}^{\mathrm{m}}=\mathrm{D}^{\mathrm{n}-1}$ for all $m \geq n-1$
- we can compute $\mathrm{D}^{\mathrm{n}-1}$ with only $\lceil\lg (\mathrm{n}-1)\rceil$ matrix products as

$$
\begin{aligned}
& \mathrm{D}^{1}=\mathrm{W} \\
& \mathrm{D}^{2}=\mathrm{W}^{2}=\mathrm{W} \times \mathrm{W}^{2} \\
& \mathrm{D}^{4}=\mathrm{W}^{4}=\mathrm{W}^{2} \times \mathrm{W}^{2} \\
& \mathrm{D}^{8}=\mathrm{W}^{8}=\mathrm{W}^{4} \times \mathrm{W}^{4} \\
& \quad: \\
& \mathrm{D}^{2} \stackrel{2^{[\lg (\mathrm{n}-1)\rceil}}{=} \mathrm{W}^{2^{\lceil\lg (n-1)\rceil}}=\mathrm{W}^{2} \stackrel{[\lg (n-1)-1}{ } \times \mathrm{W}^{2}{ }^{[\lg (n-1)-1}
\end{aligned}
$$

- This technique is called repeated squaring.

Improving Running Time via Repeated Squaring

- FASTER-APSP (W)

$$
\begin{aligned}
& \mathrm{D}^{1} \leftarrow \mathrm{~W} \\
& m \leftarrow 1
\end{aligned}
$$

while $m<n-1$ do

$$
\begin{aligned}
& \quad \mathrm{D}^{2 \mathrm{~m}} \leftarrow \operatorname{EXTEND}\left(\mathrm{D}^{\mathrm{m}}, \mathrm{D}^{\mathrm{m}}\right) \\
& m \leftarrow 2 m \\
& \text { return } \mathrm{D}^{\mathrm{m}}
\end{aligned}
$$

- final iteration computes $\mathrm{D}^{2 \mathrm{~m}}$ for some $n-1 \leq 2 m \leq 2 n-2 \Rightarrow \mathrm{D}^{2 \mathrm{~m}}=\mathrm{D}^{\mathrm{n}-1}$
- running time : $\Theta\left(n^{3} \operatorname{lgn}\right)=\Theta\left(\mathrm{V}^{3} \lg \mathrm{~V}\right)$
- each matrix product: $\Theta\left(\mathrm{n}^{3}\right)$
- \# of matrix products : $\lceil\lg (\mathrm{n}-1)\rceil$
- simple code, no complex data structures, small hidden constants in Θ-notation.

Idea Behind Repeated Squaring

- decompose $\mathrm{p}_{\mathrm{ij}}{ }^{2 \mathrm{~m}}$ as $\mathrm{p}_{\mathrm{ik}}{ }^{m} \& \mathrm{p}_{\mathrm{kj}}{ }^{\mathrm{m}}$, where

$$
\begin{aligned}
& \mathrm{p}_{\mathrm{ij}}{ }^{2 \mathrm{~m}}: \mathrm{v}_{\mathrm{i}} \sim \pi_{\mathrm{j}} \\
& \mathrm{p}_{\mathrm{ik}}^{\mathrm{m}}: \mathrm{v}_{\mathrm{i}} \sim v_{\mathrm{k}} \\
& \mathrm{p}_{\mathrm{kj}}^{\mathrm{m}}: \mathrm{v}_{\mathrm{k}} \sim \mathrm{v}_{\mathrm{j}}
\end{aligned}
$$

Floyd-Warshall Algorithm

- Assumption : negative-weight edges, but no negative-weight cycles
(1) The Structure of a Shortest Path :
- Definition : intermediate vertex of a path $\mathrm{p}=\left\langle\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \ldots, \mathrm{v}_{\mathrm{k}}\right\rangle$
- any vertex of p other than v_{1} or v_{k}.
- $\quad p_{i j}{ }^{m}$: a shortest path from v_{i} to v_{j} with all intermediate vertices from $V_{m}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{m}}\right\}$
- relationship between $\mathrm{p}_{\mathrm{ij}}{ }^{\mathrm{m}}$ and $\mathrm{p}_{\mathrm{ij}}{ }^{\mathrm{m}-1}$
- depends on whether v_{m} is an intermediate vertex of $\mathrm{p}_{\mathrm{ij}}{ }^{\mathrm{m}}$
- case 1: v_{m} is not an intermediate vertex of $\mathrm{p}_{\mathrm{ij}}{ }^{\mathrm{m}}$
\Rightarrow all intermediate vertices of $\mathrm{p}_{\mathrm{ij}}{ }^{\mathrm{m}}$ are in $\mathrm{V}_{\mathrm{m}-1}$
$\Rightarrow \mathrm{p}_{\mathrm{ij}}^{\mathrm{m}}=\mathrm{p}_{\mathrm{ij}}^{\mathrm{m}-1}$

Floyd-Warshall Algorithm

- case 2: v_{m} is an intermediate vertex of $\mathrm{p}_{\mathrm{ij}}^{\mathrm{m}}$
- decompose path as $\mathrm{v}_{\mathrm{i}} \sim \not \mathrm{v}_{\mathrm{m}} \sim \mathrm{v}_{\mathrm{j}}$

$$
\Rightarrow p_{1}: v_{i} \leadsto v_{m} \quad \& \quad p_{2}: v_{m} \leadsto v_{j}
$$

- by opt. structure property both $\mathrm{p}_{1} \& \mathrm{p}_{2}$ are shortest paths.
- v_{m} is not an intermediate vertex of $\mathrm{p}_{1} \& \mathrm{p}_{2}$

$$
\Rightarrow \mathrm{p}_{1}=\mathrm{p}_{\mathrm{im}}^{\mathrm{m}-1} \quad \& \mathrm{p}_{2}=\mathrm{p}_{\mathrm{mj}}^{\mathrm{m}-1}
$$

Floyd-Warshall Algorithm

(2) A Recursive Solution to APSP Problem :

- $d_{i j}^{m}=\omega\left(p_{i j}\right)$: weight of a shortest path from v_{i} to v_{j} with all intermediate vertices from

$$
\mathrm{V}_{\mathrm{m}}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{m}}\right\} .
$$

- note: $\mathrm{d}_{\mathrm{ij}}{ }^{\mathrm{n}}=\delta\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)$ since $\mathrm{V}_{\mathrm{n}}=\mathrm{V}$
- i.e., all vertices are considered for being intermediate vertices of $\mathrm{p}_{\mathrm{ij}}{ }^{\mathrm{n}}$.

Floyd-Warshall Algorithm

- compute $\mathrm{d}_{\mathrm{ij}}{ }^{\mathrm{m}}$ in terms of $\mathrm{d}_{\mathrm{ij}}{ }^{\mathrm{k}}$ with smaller $k<m$
- $\mathrm{m}=0: \mathrm{V}_{0}=$ empty set
\Rightarrow path from v_{i} to v_{j} with no intermediate vertex. i.e., v_{i} to v_{j} paths with at most one edge

$$
\Rightarrow \mathrm{d}_{\mathrm{ij}}^{0}=\omega_{\mathrm{ij}}
$$

- $m \geq 1: d_{i j}^{m}=\min \left\{d_{i j}^{m-1}, d_{i m}^{m-1}+d_{m j}{ }^{m-1}\right\}$

Floyd-Warshall Algorithm

(3) Computing Shortest Path Weights Bottom Up :

```
FLOYD-WARSHALL( W )
    \(-\mathrm{D}^{0}, \mathrm{D}^{1}, \ldots, \mathrm{D}^{\mathrm{n}}\) are \(n \mathrm{x} n\) matrices
    for \(m \leftarrow 1\) to \(n\) do
        for \(i \leftarrow 1\) to \(n\) do
        for \(j \leftarrow 1\) to \(n\) do
        \(\mathrm{d}_{\mathrm{ij}}^{\mathrm{m}} \leftarrow \min \left\{\mathrm{d}_{\mathrm{ij}}^{\mathrm{m}-1}, \mathrm{~d}_{\mathrm{im}}{ }^{\mathrm{m}-1}+\mathrm{d}_{\mathrm{mj}}{ }^{\mathrm{m}-1}\right\}\)
    return \(\mathrm{D}^{\mathrm{n}}\)
```


Floyd-Warshall Algorithm

$$
\begin{aligned}
& \text { FLOYD-WARSHALL }(\mathrm{W}) \\
& \mathrm{D} \text { is an } n \mathrm{x} n \text { matrix } \\
& \mathrm{D} \leftarrow \mathrm{~W} \\
& \text { for } m \leftarrow 1 \text { to } n \text { do } \\
& \text { for } i \leftarrow 1 \text { to } n \text { do } \\
& \text { for } j \leftarrow 1 \text { to } n \text { do } \\
& \text { if } \mathrm{d}_{\mathrm{ij}}>\mathrm{d}_{\mathrm{im}}+\mathrm{d}_{\mathrm{mj}} \text { then } \\
& \qquad \mathrm{d}_{\mathrm{ij}} \leftarrow \mathrm{~d}_{\mathrm{im}}+\mathrm{d}_{\mathrm{mj}}
\end{aligned}
$$

Floyd-Warshall Algorithm

- maintaining $n \mathrm{D}$ matrices can be avoided by dropping all superscripts.
- m-th iteration of outermost for-loop
begins with $\mathrm{D}=\mathrm{D}^{\mathrm{m}-1}$
ends with $\mathrm{D}=\mathrm{D}^{\mathrm{m}}$
- computation of $\mathrm{d}_{\mathrm{ij}}^{\mathrm{m}}$ depends on $\mathrm{d}_{\mathrm{im}}{ }^{\mathrm{m}-1}$ and $\mathrm{d}_{\mathrm{mj}}{ }^{\mathrm{m}-1}$. no problem if $d_{i m} \& d_{m j}$ are already updated to $d_{i m}{ }^{m} \& d_{m j}{ }^{m}$ since $d_{i m}{ }^{m}=d_{i m}{ }^{m-1} \& d_{m j}{ }^{m}=d_{m j}{ }^{m-1}$.
- running time : $\Theta\left(\mathrm{n}^{3}\right)=\Theta\left(\mathrm{V}^{3}\right)$
simple code, no complex data structures, small hidden constants

Transitive Closure of a Directed Graph

- $G^{\prime}=\left(V, E^{\prime}\right)$: transitive closure of $G=(V, E)$, where - $E^{\prime}=\left\{\left(v_{i}, v_{j}\right)\right.$: there exists a path from v_{i} to v_{j} in $\left.G\right\}$
- trivial solution : assign W such that

$$
\omega_{\mathrm{ij}}=\left\{\begin{array}{l}
1 \text { if }\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right) \in \mathrm{E} \\
\infty \text { otherwise }
\end{array}\right.
$$

- run Floyd-Warshall algorithm on W
$-\mathrm{d}_{\mathrm{ij}}{ }^{\mathrm{n}}<\mathrm{n} \Rightarrow$ there exists a path from v_{i} to v_{j},

$$
\text { i.e., }\left(v_{i}, v_{j}\right) \in E^{\prime}
$$

- $\mathrm{d}_{\mathrm{ij}}{ }^{\mathrm{n}}=\infty \Rightarrow$ no path from v_{i} to v_{i},

$$
\text { i.e., }\left(v_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right) \notin \mathrm{E}^{\prime}
$$

- running time: $\Theta\left(\mathrm{n}^{3}\right)=\Theta\left(\mathrm{V}^{3}\right)$

Transitive Closure of a Directed Graph

- Better $\Theta\left(\mathrm{V}^{3}\right)$ algorithm: saves time and space.
$-\mathrm{W}=$ adjacency matrix: $\quad \omega_{\mathrm{ij}}= \begin{cases}1 & \text { if } \mathrm{i}=\mathrm{j} \text { or }\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right) \in \mathrm{E} \\ 0 & \text { otherwise }\end{cases}$
run Floyd-Warshall algorithm by replacing "min" \rightarrow ' ${ }^{\prime}$ " \& " + " \rightarrow " $\wedge "$
- define $t_{i j}^{m}=\left\{\begin{array}{l}1 \text { if } \exists \text { a path from } v_{i} \text { to } v_{j} \text { with all intermediate vertices from } V_{m} \\ 0 \text { otherwise }\end{array}\right.$

$$
\mathrm{t}_{\mathrm{ij}}^{\mathrm{n}}=1 \Rightarrow\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right) \in \mathrm{E}^{\prime} \quad \& \quad \mathrm{t}_{\mathrm{ij}}^{\mathrm{n}}=0 \Rightarrow\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right) \notin \mathrm{E}^{\prime}
$$

- recursive definition for $t_{i j}^{m}=t_{i j}^{m-1} \vee\left(t_{i m}^{m-1} \wedge t_{m j}^{m-1}\right)$ with $t_{i j}^{0}=\omega_{i j}$

Transitive Closure of a Directed Graph

T-CLOSURE (G)

- $\mathrm{T}=\left(\mathrm{t}_{\mathrm{ij}}\right)$ is an $n \times n$ boolean matrix for $i \leftarrow 1$ to n do

$$
\text { for } j \leftarrow 1 \text { to } n \text { do }
$$

if $i=j$ or $\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right) \in \mathrm{E}$ then

else

$$
\mathrm{t}_{\mathrm{ij}} \leftarrow 0
$$

for $m \leftarrow 1$ to n do
for $i \leftarrow 1$ to n do
for $j \leftarrow 1$ to n do

$$
\mathrm{t}_{\mathrm{ij}} \leftarrow \mathrm{t}_{\mathrm{ij}} \vee\left(\mathrm{t}_{\mathrm{im}} \wedge \mathrm{t}_{\mathrm{mj}}\right)
$$

Johnson's Algorithm for Sparse Graphs

(1) Preserving shortest paths by edge reweighting :

- L1 : given $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ with $\omega: \mathrm{E} \rightarrow \mathrm{R}$
let $\mathrm{h}: \hat{\mathrm{V}} \rightarrow \mathrm{R}$ be any weighting function on the vertex set
- define $\omega(\omega, h): E \rightarrow R$ as $\omega(u, v)=\omega(u, v)+h(u)-h(v)$
- let $\left.\mathrm{p}_{0 \mathrm{k}}=<\mathrm{v}_{0}, \mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{k}}\right\rangle$ be a path from v_{0} to v_{k}
(a) $\hat{\omega}\left(\mathrm{p}_{0 \mathrm{k}}\right)=\omega\left(\mathrm{p}_{0 \mathrm{k}}\right)+\mathrm{h}\left(\mathrm{v}_{0}\right)-\mathrm{h}\left(\mathrm{v}_{\mathrm{k}}\right)$
(b) $\omega\left(\mathrm{p}_{0 \mathrm{k}}\right)=\delta\left(\mathrm{v}_{0}, \mathrm{v}_{\mathrm{k}}\right)$ in $(\mathrm{G}, \omega) \Leftrightarrow \hat{\omega}\left(\mathrm{p}_{0 \mathrm{k}}\right)=\hat{\delta}\left(\mathrm{v}_{0}, \mathrm{v}_{\mathrm{k}}\right)$ in $(\mathrm{G}, \hat{\omega})$
(c) (G, ω) has a neg-wgt cycle $\Leftrightarrow(G, \omega)$ has a neg-wgt cycle

Johnson's Algorithm for Sparse Graphs

(2) Producing nonnegative edge weights by reweighting :

- given (G, ω) with $G=(V, E)$ and $\omega: E \rightarrow R$ construct a new graph $\left(G^{\prime}, \omega^{\prime}\right)$ with $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ and $\omega^{\prime}=\mathrm{E}^{\prime} \rightarrow \mathrm{R}$
$-\mathrm{V}^{\prime}=\mathrm{VU}\{\mathrm{s}\}$ for some new vertex $\mathrm{s} \notin \mathrm{V}$
- $\mathrm{E}^{\prime}=\mathrm{E} U\{(\mathrm{~s}, \mathrm{v}) \dot{\dot{q}} \mathrm{v} \in \mathrm{V}\}$
- $\omega^{\prime}(\mathrm{u}, \mathrm{v})=\omega(\mathrm{u}, \mathrm{v}) \quad(\mathrm{u}, \mathrm{v}) \in \mathrm{E}$ and $\omega^{\prime}(\mathrm{s}, \mathrm{v})=0, \forall \mathrm{v} \in \mathrm{V}$
- vertex s has no incoming edges $\Rightarrow s \notin R_{v}$ for any v in V
- no shortest paths from $\mathrm{u} \neq \mathrm{s}$ to v in G^{\prime} contains vertex s
- $\left(\mathrm{G}^{\prime}, \omega^{\prime}\right)$ has no neg-wgt cycle $\Leftrightarrow(\mathrm{G}, \omega)$ has no neg-wgt cycle

Johnson's Algorithm for Sparse Graphs

- suppose that G and G^{\prime} have no neg-wgt cycle
- L2: if we define $\mathrm{h}(\mathrm{v})=\delta(\mathrm{s}, \mathrm{v}) \forall \mathrm{v} \in \mathrm{V}$ in G^{\prime} and $\hat{\omega}$ according to L1.
- we will have $\hat{\omega}(\mathrm{u}, \mathrm{v})=\omega(\mathrm{u}, \mathrm{v})+\mathrm{h}(\mathrm{u})-\mathrm{h}(\mathrm{v}) \geq 0 \quad \forall \mathrm{v} \in \mathrm{V}$
proof : for every edge $(\mathrm{u}, \mathrm{v}) \in \mathrm{E}$
$\delta(\mathrm{s}, \mathrm{v}) \leq \delta(\mathrm{s}, \mathrm{u})+\omega(\mathrm{u}, \mathrm{v})$ in G^{\prime} due to triangle inequality
$h(v) \leq h(u)+\omega(u, v) \Rightarrow 0 \leq \omega(u, v)+h(u)-h(v)=\omega(u, v)$

Johnson's Algorithm for Sparse Graphs

Computing All-Pairs Shortest Paths

- adjacency list representation of G.
- returns $n \times n$ matrix $\mathrm{D}=\left(\mathrm{d}_{\mathrm{ij}}\right)$ where $\mathrm{d}_{\mathrm{ij}}=\delta_{\mathrm{ij}}$, or reports the existence of a neg-wgt cycle.

Johnson's Algorithm for Sparse Graphs

- JOHNSON(G, ω)
- $\mathrm{D}=\left(\mathrm{d}_{\mathrm{ij}}\right)$ is an nxn matrix
- construct $\left(\mathrm{G}^{\prime}=\left(\mathrm{V}^{\prime}, \mathrm{E}^{\prime}\right), \omega^{\prime}\right)$ s.t. $\mathrm{V}^{\prime}=\mathrm{V} \mathrm{U}\{\mathrm{s}\} ; \mathrm{E}^{\prime}=\mathrm{E} \mathrm{U}\{(\mathrm{s}, \mathrm{v}): \forall \mathrm{v} \in \mathrm{V}\}$
$\omega^{\prime}(\mathrm{u}, \mathrm{v})=\omega(\mathrm{u}, \mathrm{v}), \forall(\mathrm{u}, \mathrm{v}) \in \mathrm{E} \quad \& \quad \omega^{\prime}(\mathrm{s}, \mathrm{v})=0 \quad \forall \mathrm{v} \in \mathrm{V}$
if BELLMAN-FORD $\left(\mathrm{G}^{\prime}, \omega^{\prime}, \mathrm{s}\right)=$ FALSE then
return "negative-weight cycle"
else
for each vertex $\mathrm{v} \in \mathrm{V}^{\prime}-\{\mathrm{s}\}=\mathrm{V}$ do
$\mathrm{h}[\mathrm{v}] \leftarrow \mathrm{d}^{\prime}[\mathrm{v}]>\mathrm{d}^{\prime}[\mathrm{v}]=\delta^{\prime}(\mathrm{s}, \mathrm{v})$ computed by BELLMAN-FORD $\left(\mathrm{G}^{\prime}, \omega^{\prime}, \mathrm{s}\right)$
for each edge $(u, v) \in E$ do

$$
\hat{\omega(\mathrm{u}, \mathrm{v})} \leftarrow \omega(\mathrm{u}, \mathrm{v})+\mathrm{h}[\mathrm{u}]-\mathrm{h}[\mathrm{v}]>\text { edge reweighting }
$$

for each vertex $u \in V$ do
run $\operatorname{DIJKSTRA}(G, \hat{\omega}, u)$ to compute $\hat{d[v]}=\hat{\delta}(u, v)$ for all v in $V \in(G, \hat{\omega})$
for each vertex $v \in V$ do

$$
\mathrm{d}_{\mathrm{uv}}=\mathrm{d}[\mathrm{v}]-(\mathrm{h}[\mathrm{u}]-\mathrm{h}[\mathrm{v}])
$$

return D

Johnson's Algorithm for Sparse Graphs

- running time : $O\left(V^{2} \lg V+E V\right)$
$>$ edge reweighting

$$
\text { BELLMAN-FORD }\left(G^{\prime}, \omega^{\prime}, s\right): O(E V)
$$

$$
\text { computing } \hat{\omega} \text { values }: O(\mathrm{E})
$$

$>|\mathrm{V}|$ runs of $\mathrm{DIJKSTRA}:|\mathrm{V}| \mathrm{x} \mathrm{O}(\mathrm{VlgV}+\mathrm{EV})$
$=\mathrm{O}\left(\mathrm{V}^{2} \lg \mathrm{~V}+\mathrm{EV}\right) ;$
$P Q=$ fibonacci heap

