Design and Analysis of Algorithms

CSE 5311

Lecture 22 All-Pairs Shortest Paths

Junzhou Huang, Ph.D.

Department of Computer Science and Engineering

All Pairs Shortest Paths (APSP)

- given : directed graph G = (V, E), weight function $\omega : E \to R$, |V| = n
- goal : create an $n \times n$ matrix $D = (d_{ij})$ of shortest path distances i.e., $d_{ij} = \delta(v_i, v_j)$
- trivial solution : run a SSSP algorithm *n* times, one for each vertex as the source.

All Pairs Shortest Paths (APSP)

- lack algorithm all edge weights are nonnegative : use Dijkstra's algorithm
 - PQ = linear array : O $(V^3 + VE) = O(V^3)$
 - PQ = binary heap : O ($V^2 lgV + EV lgV$) = O ($V^3 lgV$) for dense graphs
 - better only for sparse graphs
 - PQ = fibonacci heap : O ($V^2 lgV + EV$) = O (V^3) for dense graphs
 - better only for sparse graphs
- negative edge weights: use Bellman-Ford algorithm
 - $O(V^2E) = O(V^4)$ on dense graphs

Adjacency Matrix Representation of Graphs

- rightharpoonup assume $\omega_{ii} = 0$ for all $v_i \in V$, because
 - no neg-weight cycle

 \Rightarrow shortest path to itself has no edge,

i.e.,
$$\delta (v_i, v_i) = 0$$

Dynamic Programming

- (1) Characterize the structure of an optimal solution.
- (2) Recursively define the value of an optimal solution.
- (3) Compute the value of an optimal solution in a bottom-up manner.
- (4) Construct an optimal solution from information constructed in (3).

Assumption: negative edge weights may be present, but no negative weight cycles.

(1) Structure of a Shortest Path:

- Consider a shortest path p_{ij}^{m} from v_i to v_j such that $|p_{ij}^{m}| \le m$
 - \triangleright i.e., path p_{ij}^{m} has at most m edges.
- no negative-weight cycle \Rightarrow all shortest paths are simple \Rightarrow m is finite \Rightarrow $m \le n 1$
- $i = j \Rightarrow |p_{ii}| = 0 \& \omega(p_{ii}) = 0$
- $i \neq j \implies$ decompose path p_{ij}^{m} into $p_{ik}^{m-1} \& v_k \rightarrow v_j$, where $|p_{ik}^{m-1}| \leq m-1$
 - \triangleright p_{ik}^{m-1} should be a shortest path from v_i to v_k by optimal substructure property.
 - ► Therefore, $\delta(v_i, v_j) = \delta(v_i, v_k) + \omega_{kj}$

(2) A Recursive Solution to All Pairs Shortest Paths Problem:

- d_{ij}^{m} = minimum weight of any path from v_i to v_j that contains at most "m" edges.
- m = 0: There exist a shortest path from v_i to v_j with no edges $\leftrightarrow i = j$.

• $m \ge 1 : d_{ij}^{m} = \min \{ d_{ij}^{m-1}, \min_{1 \le k \le n \ \Lambda \ k \ne j} \{ d_{ik}^{m-1} + \omega_{kj} \} \}$ $= \min_{1 \le k \le n} \{ d_{ik}^{m-1} + \omega_{kj} \} \text{ for all } v_k \in V,$ $\text{since } \omega_{j,j} = 0 \text{ for all } v_j \in V.$

- to consider all possible shortest paths with $\leq m$ edges from v_i to v_j
 - ightharpoonup consider shortest path with $\leq m$ -1 edges, from v_i to v_k , where

• note: $\delta(v_i, v_j) = d_{ij}^{n-1} = d_{ij}^n = d_{ij}^{n+1}$, since $m \le n - 1 = |V| - 1$

(3) Computing the shortest-path weights bottom-up:

- given $W = D^1$, compute a series of matrices D^2 , D^3 , ..., D^{n-1} , where $D^m = (d_{ij}^m)$ for m = 1, 2, ..., n-1
 - ► final matrix D^{n-1} contains actual shortest path weights, i.e., $d_{ij}^{n-1} = \delta(v_i, v_j)$
- SLOW-APSP(W) $D^{1} \leftarrow W$ for $m \leftarrow 2$ to n-1 do $D^{m} \leftarrow \text{EXTEND}(D^{m\text{-}1}, W)$ return $D^{n\text{-}1}$

MATRIX-MULT (A, B)

 $ightharpoonup C = (c_{ij})$ is an n x n result matrix

```
for i \leftarrow 1 to n do

for j \leftarrow 1 to n do

c_{ij} \leftarrow 0

for k \leftarrow 1 to n do

c_{ij} \leftarrow c_{ij} + a_{ik} \times b_{kj}

return C
```

- relation to matrix multiplication $C = A \times B$: $\mathbf{c}_{ij} = \sum_{1 \le k \le n} \mathbf{a}_{ik} \times \mathbf{b}_{kj}$,
 - ightharpoonup D^{m-1} \leftrightarrow A & W \leftrightarrow B & D^m \leftrightarrow C "min" \leftrightarrow "t" & "t" \leftrightarrow "x" & " ∞ " \leftrightarrow "0"
- Thus, we compute the sequence of matrix products

So, we compute the sequence of matrix products
$$D^{1} = D^{0} \times W = W \text{ ; note } D^{0} = \text{identity matrix,}$$

$$D^{2} = D^{1} \times W = W^{2} \text{ i.e., } d_{ij}^{0} = \begin{cases} 0 & \text{if } i = j \\ \infty & \text{if } i \neq j \end{cases}$$

$$D^{3} = D^{2} \times W = W^{3}$$

$$D^{n-1} = D^{n-2} \times W = W^{n-1}$$

- running time: $\Theta(n^4) = \Theta(V^4)$
 - \triangleright each matrix product : $\Theta(n^3)$
 - \triangleright number of matrix products : n-1

• Example

	1	2	3	4	5
1	0	3	8	8	-4
2	8	0	8	1	7
3	8	4	0	8	8
4	2	8	-5	0	8
5	8	8	8	6	0

$$D^I = D^0 W$$

	1	2	3	4	5
1	0	3	8	2	-4
2	3	0	-4	1	7
3	8	4	0	5	11
4	2	-1	-5	0	-2
5	8	8	1	6	0

$$D^2 = D^1 W$$

	1	2	3	4	5
1	0	3	-3	2	-4
2	3	0	-4	1	-1
3	7	4	0	5	11
4	2	-1	-5	0	-2
5	8	5	1	6	0

$$D^3 = D^2 W$$

	1	2	3	4	5
1	0	1	-3	2	-4
2	3	0	-4	1	-1
3	7	4	0	5	3
4	2	-1	-5	0	-2
5	8	5	1	6	0

$$D^4 = D^3 W$$

• relation of APSP to one step of matrix multiplication

- d_{ij}^{n-1} at row r_i and column c_j of product matrix $= \delta (v_i = s, v_j)$ for j = 1, 2, 3, ..., n
- row r_i of the product matrix = solution to single-source shortest path problem for $s = v_i$.
 - ► r_i of C = matrix B multiplied by r_i of A $\Rightarrow D_i^m = D_i^{m-1} \times W$

• let
$$D_i^0 = d^0$$
, where $d_j^0 = \begin{cases} 0 & \text{if } i = j \\ \infty & \text{otherwise} \end{cases}$

• we compute a sequence of n-1 "matrix-vector" products

$$d_i^{1} = d_i^{0} \times W$$

$$d_i^{2} = d_i^{1} \times W$$

$$d_i^{3} = d_i^{2} \times W$$

$$\vdots$$

$$d_i^{n-1} = d_i^{n-2} \times W$$

- this sequence of matrix-vector products
 - ➤ same as Bellman-Ford algorithm.
 - ► vector $d_i^m \Rightarrow d$ values of Bellman-Ford algorithm after m-th relaxation pass.
 - ► $d_i^m \leftarrow d_i^{m-1}x W$ ⇒ m-th relaxation pass over all edges.

BELLMAN-FORD (G, v_i)

- ► perform RELAX (u, v) for
- ► every edge $(u, v) \in E$ for $j \leftarrow 1$ to n do for $k \leftarrow 1$ to n do RELAX (v_k, v_i)

RELAX (u, v)

$$d_v = \min \{ d_v, d_u + \omega_{uv} \}$$

Improving Running Time via Repeated Squaring

- idea: goal is not to compute all D^m matrices
 - \triangleright we are interested only in matrix D^{n-1}
- recall: no negative-weight cycles \Rightarrow D^m = Dⁿ⁻¹ for all $m \ge n-1$
- we can compute D^{n-1} with only $\lceil \lg(n-1) \rceil$ matrix products as

$$D^{1} = W$$
 $D^{2} = W^{2} = W \times W$
 $D^{4} = W^{4} = W^{2} \times W^{2}$
 $D^{8} = W^{8} = W^{4} \times W^{4}$

$$\mathbf{D}^{2^{\lceil \lg(n-1) \rceil}} = \mathbf{W}^{2^{\lceil \lg(n-1) \rceil}} = \mathbf{W}^{2^{\lceil \lg(n-1) \rceil - 1}} \times \mathbf{W}^{2^{\lceil \lg(n-1) \rceil - 1}}$$

• This technique is called repeated squaring.

Improving Running Time via Repeated Squaring

- FASTER-APSP (W) $D^{1} \leftarrow W$ $m \leftarrow 1$ while m < n-1 do $D^{2m} \leftarrow EXTEND (D^{m}, D^{m})$ $m \leftarrow 2m$ return D^{m}
- final iteration computes D^{2m} for some $n-1 \le 2m \le 2n-2 \Rightarrow D^{2m} = D^{n-1}$
- running time: $\Theta(n^3 \lg n) = \Theta(V^3 \lg V)$
 - \triangleright each matrix product : $\Theta(n^3)$
 - ► # of matrix products : lg(n-1)
 - ightharpoonup simple code, no complex data structures, small hidden constants in Θ -notation.

Idea Behind Repeated Squaring

• decompose p_{ij}^{2m} as p_{ik}^{m} & p_{kj}^{m} , where

$$p_{ij}^{2m} : \mathbf{v_i} \sim \mathbf{v_j}$$

$$p_{ik}^{m}: v_i \sim v_k$$

$$p_{kj}^{m}: v_k v_j$$

- Assumption: negative-weight edges, but no negative-weight cycles
 - (1) The Structure of a Shortest Path:
- Definition: intermediate vertex of a path p = < v₁, v₂, v₃, ..., v_k >
 any vertex of p other than v₁ or v_k.
- p_{ij}^{m} : a shortest path from v_i to v_j with all intermediate vertices from $V_m = \{v_1, v_2, ..., v_m\}$
- relationship between p_{ij}^{m} and p_{ij}^{m-1}
 - \triangleright depends on whether v_m is an intermediate vertex of p_{ij}^{m}
 - case 1: v_m is not an intermediate vertex of $p_{ij}^{\ m}$
 - \Rightarrow all intermediate vertices of p_{ij}^{m} are in V_{m-1}

$$\Rightarrow p_{ij}^{m} = p_{ij}^{m-1}$$

- case 2: v_m is an intermediate vertex of p_{ij}^{m}
 - decompose path as $v_i \wedge v_m \wedge v_j$

$$\Rightarrow p_1: v_i \wedge v_m \& p_2: v_m \wedge v_j$$

- by opt. structure property both $p_1 & p_2$ are shortest paths.
- v_m is not an intermediate vertex of $p_1 \& p_2$

$$\Rightarrow p_1 = p_{im}^{m-1} \& p_2 = p_{mj}^{m-1}$$

(2) A Recursive Solution to APSP Problem:

• $d_{ij}^{m} = \omega(p_{ij})$: weight of a shortest path from v_i to v_j with all intermediate vertices from

$$V_{m} = \{ v_{1}, v_{2}, ..., v_{m} \}.$$

- note: $d_{ij}^{n} = \delta(v_i, v_j)$ since $V_n = V$
 - \blacktriangleright i.e., all vertices are considered for being intermediate vertices of $p_{ij}^{\ n}$.

- compute d_{ij}^{m} in terms of d_{ij}^{k} with smaller k < m
- $\mathbf{m} = 0$: $V_0 = \text{empty set}$ $\Rightarrow \text{ path from } v_i \text{ to } v_j \text{ with no intermediate vertex.}$ i.e., v_i to v_j paths with at most one edge $\Rightarrow \mathbf{d}_{ij}^{\ 0} = \omega_{ij}$
- $m \ge 1 : d_{ij}^{m} = \min \{d_{ij}^{m-1}, d_{im}^{m-1} + d_{mj}^{m-1}\}$

(3) Computing Shortest Path Weights Bottom Up:

```
FLOYD-WARSHALL(W)
      \triangleright D^0, D^1, ..., D^n are n \times n matrices
      for m \leftarrow 1 to n do
           for i \leftarrow 1 to n do
                for j \leftarrow 1 to n do
                d_{ij}^{m} \leftarrow \min \{d_{ij}^{m-1}, d_{im}^{m-1} + d_{mj}^{m-1}\}
      return D<sup>n</sup>
```

```
FLOYD-WARSHALL (W)
        \triangleright D is an n \times n matrix
        D \leftarrow W
        for m \leftarrow 1 to n do
           for i \leftarrow 1 to n do
                 for j \leftarrow 1 to n do
                    if d_{ij} > d_{im} + d_{mj} then
                       d_{ii} \leftarrow d_{im} + d_{mi}
        return D
```

- maintaining n D matrices can be avoided by dropping all superscripts.
 - *m-th* iteration of outermost for-loop

```
begins with D = D^{m-1}
ends with D = D^m
```

- computation of d_{ij}^{m} depends on d_{im}^{m-1} and d_{mj}^{m-1} .

 no problem if $d_{im} & d_{mj}$ are already updated to $d_{im}^{m} & d_{mj}^{m}$ since $d_{im}^{m} = d_{im}^{m-1} & d_{mj}^{m} = d_{mj}^{m-1}$.
- running time : $\Theta(n^3) = \Theta(V^3)$ simple code, no complex data structures, small hidden constants

Transitive Closure of a Directed Graph

- G' = (V, E'): transitive closure of G = (V, E), where
 E' = { (v_i, v_j): there exists a path from v_i to v_j in G }
- trivial solution : assign W such that $\omega_{ij} = \begin{cases} 1 \text{ if } (v_i, v_j) \in E \\ \infty \text{ otherwise} \end{cases}$
 - run Floyd-Warshall algorithm on W
 - ► $d_{ij}^{n} \le n$ ⇒ there exists a path from v_i to v_j , i.e., $(v_i, v_i) \in E'$
 - ► $d_{ij}^{n} = \infty \Rightarrow$ no path from v_i to v_i , i.e., $(v_i, v_j) \notin E'$
 - running time: $\Theta(n^3) = \Theta(V^3)$

Transitive Closure of a Directed Graph

• Better $\Theta(V^3)$ algorithm : saves time and space.

► W = adjacency matrix :
$$ω_{ij}$$
 =
$$\begin{cases} 1 & \text{if } i = j \text{ or } (v_i, v_j) ∈ E \\ 0 & \text{otherwise} \end{cases}$$

- ▶ run Floyd-Warshall algorithm by replacing "min" \rightarrow " $^{\vee}$ " & "+" \rightarrow " $^{\wedge}$ "
- define $t_{ij}^{\ m} = \begin{cases} 1 \text{ if } \exists \text{ a path from } v_i \text{ to } v_j \text{ with all intermediate vertices from } V_m \\ 0 \text{ otherwise} \end{cases}$

• recursive definition for $t_{ij}^{m} = t_{ij}^{m-1} \lor (t_{im}^{m-1} \land t_{mj}^{m-1})$ with $t_{ij}^{0} = \omega_{ij}$

Transitive Closure of a Directed Graph

```
T-CLOSURE (G)

ightharpoonup T = (t_{ii}) is an n \times n boolean matrix
          for i \leftarrow 1 to n do
             for j \leftarrow 1 to n do
                  if i = j or (v_i, v_i) \in E then
                       t_{ii} \leftarrow 1
                   else
                       t_{ii} \leftarrow 0
           for m \leftarrow 1 to n do
              for i \leftarrow 1 to n do
                   for j \leftarrow 1 to n do
                        t_{ii} \leftarrow t_{ii} \lor (t_{im} \land t_{mi})
```

- (1) Preserving shortest paths by edge reweighting:
- L1 : given G = (V, E) with $\omega : E \to R$
 - ightharpoonup let $h: V \to R$ be any weighting function on the vertex set
 - ► define $\omega(\omega, h) : E \to R$ as $\omega(u, v) = \omega(u, v) + h(u) h(v)$
 - let $p_{0k} = \langle v_0, v_1, ..., v_k \rangle$ be a path from v_0 to v_k
 - (a) $\hat{\omega}(p_{0k}) = \omega(p_{0k}) + h(v_0) h(v_k)$
 - (b) $\omega(p_{0k}) = \delta(v_0, v_k)$ in $(G, \omega) \Leftrightarrow \omega(p_{0k}) = \delta(v_0, v_k)$ in (G, ω)
 - (c) (G, ω) has a neg-wgt cycle \Leftrightarrow (G, ω) has a neg-wgt cycle

- (2) Producing nonnegative edge weights by reweighting:
- given (G, ω) with G = (V, E) and $\omega : E \to R$ construct a new graph (G', ω') with G' = (V', E') and $\omega' = E' \rightarrow R$
 - $V' = V U \{ s \}$ for some new vertex $s \notin V$

 - ► E' = E U { (s,v): $v \in V$ } ► $\omega'(u,v) = \omega(u,v)$ $(u,v) \in E$ and $\omega'(s,v) = 0$, $\forall v \in V$
- vertex s has no incoming edges \Rightarrow s $\notin R_v$ for any v in V
 - \triangleright no shortest paths from $u \neq s$ to v in G' contains vertex s
 - \blacktriangleright (G', ω ') has no neg-wgt cycle \Leftrightarrow (G, ω) has no neg-wgt cycle

- suppose that G and G' have no neg-wgt cycle
- L2: if we define h (v) = δ (s ,v) \forall v \in V in G and $\hat{\omega}$ according to L1.
 - ► we will have $\hat{\omega}(u,v) = \omega(u,v) + h(u) h(v) \ge 0 \quad \forall v \in V$

proof: for every edge $(u, v) \in E$ $\delta(s, v) \le \delta(s, u) + \omega(u, v)$ in G' due to triangle inequality $h(v) \le h(u) + \omega(u, v) \Rightarrow 0 \le \omega(u, v) + h(u) - h(v) = \omega(u, v)$

Computing All-Pairs Shortest Paths

- adjacency list representation of G.
- returns $n \times n$ matrix $D = (d_{ij})$ where

$$d_{ij} = \delta_{ij}$$
,

or reports the existence of a neg-wgt cycle.

```
JOHNSON(G,\omega)

ightharpoonup D=(d<sub>ii</sub>) is an nxn matrix
    ► construct (G' = (V', E'), \omega') s.t. V' = V \cup \{s\}; E' = E \cup \{(s,v) : \forall v \in V\}
    \blacktriangleright \omega'(u,v) = \omega(u,v), \forall (u,v) \in E \& \omega'(s,v) = 0 \forall v \in V
    if BELLMAN-FORD(G', \omega', s) = FALSE then
         return "negative-weight cycle"
    else
         for each vertex v \in V'- \{s\} = V do
             h[v] \leftarrow d'[v] \triangleright d'[v] = \delta'(s,v) computed by BELLMAN-FORD(G', \omega', s)
         for each edge (u,v) \in E do
             \omega(u,v) \leftarrow \omega(u,v) + h[u] - h[v] \triangleright edge reweighting
         for each vertex u \in V do
             run DIJKSTRA(G, \omega, u) to compute d[v] = \delta(u,v) for all v in V \in (G,\omega)
             for each vertex v \in V do
                 d_{uv} = \hat{d}[v] - (h[u] - h[v])
     return D
```

- running time : $O(V^2 \lg V + EV)$
 - edge reweighting

```
BELLMAN-FORD(G', \omega', s) : O (EV) computing \hat{\omega} values : O (E)
```

► |V| runs of DIJKSTRA : | V | x O (VlgV + EV) = O (V^2 lgV + EV);

PQ = fibonacci heap