Design and Analysis of Algorithms

CSE 5311
Lecture 22 All-Pairs Shortest Paths

Junzhou Huang, Ph.D.

Department of Computer Science and Engineering

Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms

All Pairs Shortest Paths (APSP)

* oiven : directed graph G = (I, E),
weight function w : E — R, | V| =7

* goal :createann X n matrix D = (d;)of shortest path distances
Le., d; = 0(v;,)

* trivial solution : run a SSSP algorithm 7 times, one for
each vertex as the source.

Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms

All Pairs Shortest Paths (APSP)

P all edge weights are nonnegative : use Dijkstra’s algorithm
— PQ = linear array : O (V> + VE) = O (V)
— PQ = binary heap : O (VZIgV + EVIgV) = O (V’IgV)
for dense graphs
> better only for sparse graphs

— PQ = fibonacci heap : O (VgV + EV) = O (V)
for dense graphs
> better only for sparse graphs
P negative edge weights : use Bellman-Ford algorithm
— O (V°E) = O (V") on dense graphs

Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms

Adjacency Matrix Representation of Graphs

P72 x 7 matrix W = (w;) of edge weights :

~
w(vi,vj) if(vi,vj) € E

P assume w. = 0 forall v. € V, because
— no neg-weight cycle

=> shortest path to itself has no edge,

te.,o6 (v,,v,)=0

Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms

Dynamic Programming

(1) Characterize the structure of an optimal solution.
(2) Recursively define the value of an optimal solution.

(3) Compute the value of an optimal solution in a
bottom-up manner.

(4) Construct an optimal solution from information
constructed in (3).

Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms

Shortest Paths and Matrix Multiplication

Assumption : negative edge weights may be present, but no negative weight cycles.

(1) Structure of a Shortest Path :

Consider a shortest path pijm from v; to v, such that | pijm | <

P ic., path pijm has at most 7z edges.

* no negative-weight cycle = all shortest paths are simple
= m 1sfinite =>mw Sn—1

i=j=[p;|=0 & ;) =0

1#] = decompose path pijm into pikm_1 & v — v;, where | pikm_1 | <m-1
> pikm_l should be a shortest path from v, to v, by optimal substructure

property.

» Therefore, 8 (v, ,Vj> =0 (V;,v) T Wy

Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms

Shortest Paths and Matrix Multiplication

(2) A Recursive Solution to All Pairs Shortest Paths Problem :

m

1]
19 2o

at most “7/” edges.

minimum weight of any path from v; to v, that contains

* = 0:There exist a shortest path from v; to v, with no
edges <> 1=.

(0 if i=

> d =<

00 if 1F]
. . . 1 . -1
= 1 dy =min { 7, ming ey i Ty b
= min, o, {d, ™" + W } forallv, e V,

since W = O for all Vi € V.

Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms

Shortest Paths and Matrix Multiplication

* to consider all possible shortest paths with = 77 edges from v, to v,

P consider shortest path with < 77 -7 edges, from v, to v, where

v, €R, and (v, ,Vj> e E Vk,S

O
O

W §‘
e qnote:d(v.,v.)=d=d"=d""" sincew<n-1=|1]-
1Y ij ij ij

Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms

Shortest Paths and Matrix Multiplication

(3) Computing the shortest-path weights bottom-up :

* gtven W = D!, compute a series of matrices D D, .., D",
where D™ = (dijm) form=1,2,..., n1
» final matrix D™ contains actual shortest path weights,
ie,d™ =0 (v,v)

e SLOW-APSP(W)
D!'— W
for m<«— 2 to n-1 do
D™ «— EXTEND(D™' | W)

return D™!

Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms

Shortest Paths vs. Matrix Multiplication

EXTEND (D, W)
» D=(d;)isannx nmatrix
fori<« 1 ton do
forj < 1 ton do
d; oo
fork<— 1 ton do
d;; < min{d

1 °

dj + o}
return D

Dept. CSE, UT Arlington

MATRIX-MULT (A, B)
» C=(c;)i1sannxnresult
matrix
fori <1/ ton do
forj < 1 ton do
c; < 0
fork— 1ton do
Cij <= Cjj T @y X by
return C

CSE5311 Design and Analysis of Algorithms

Shortest Paths and Matrix Multiplication

* relation to matrix multiplication C = AXB : ¢;= >4, a3 X by,
» D" A & W B & D" C
“min” > “t,, & “t,, > “X,, & 66w9’ <> CCO?’

« Thus, we compute the sequence of matrix products

D!'=D%% W= W ; note D’ = identity matrix, 0 if i=j
D2 — Dl X W = W2 i.e., dijo —
DB%DZXW: W3 oo 1f l?é]

Dn-1: Dn-2 x W = Wn-l

e running time : O(n*)=O(V")
» cach matrix product : @(n’)
» number of matrix products : n-1

Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms

11

Shortest Paths and Matrix Multiplication

* Example

Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms

12

Shortest Paths and Matrix Multiplication

1 2 3 4 5
1103 |8 |0|-4
210 |0]oo| 1|7
3104 |0]|
412 oo |-5]0]|o
S|oow|w|o| 60

D'=D'w

Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms

13

Shortest Paths and Matrix Multiplication

1 2 3 4 5
1103 |8(2]|-4
21310417
310410511
412 |-1-5101|-2
518 || 1]6]|0

D’=D'w

Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms

14

Shortest Paths and Matrix Multiplication

12 3 4 5
1103 (-3]2 -4
21310141 /]-1
30714107511
412 1-11-5]0]-2
5185|1610

D’=D'W

Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms

15

Shortest Paths and Matrix Multiplication

1 2 3 4 5
17101 -3]2]|-4
2131041]-1
31714]10]35 |3
412 -1]-5]10 (-2
50181511610

D'=D'w

Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms

16

SSSP and Matrix-Vector Multiplication

 relation of APSP to one step of matrix multiplication

dijn{4 _ K N

«— N

D"— C D1« A W« B

Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms

17

SSSP and Matrix-Vector Multiplication

. 51/4 at row 7; and column ¢;0f product matrix

=0 (v=y, ﬁ]) for;=1,2 3, ...,

* row 7; of the product matrix = solution to single-source
shortest path problem for s = »..

P . of C = matrix B multiplied by 7, of A
= D/”=D/""xW

Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms

18

SSSP and Matrix-Vector Multiplication

K

0 if 1=}
letDO d’, where dO— <

L o0 otherwise

* we compute a sequence of n-1 “matrix-vector” products

d'=d’x W
d*=d!'x W
d°=d*x W

d™'=d™x W

Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms

SSSP and Matrix-Vector Multiplication

 this sequence of matrix-vector products
» same as Bellman-Ford algorithm.

» vector d." = d values of Bellman-Ford
algorithm after m-th relaxation pass.

> 4" —d™'x W
= m-th relaxation pass over all edges.

Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms

20

SSSP and Matrix-Vector Multiplication

BELLMAN-FORD (G, v,) EXTEND (d;, W)
» perform RELAX (u, V) » d, is an n-vector
for forj<« 1 tondo
» cvery edge (u,v) € E dj =0

fork«— 1 tondo

forj« I tondo d; — min {d . d, + oy}

tor k< [ton do
RELAX (v, V;)

RELAX (u, V)
(1V:]:I]'ir1 { dV’ d'Ll—I_(DUV}

Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms 21

Improving Running Time via Repeated Squaring

* 1dea: goal is not to compute all D™ matrices
» we are interested only in matrix D™

e recall : no negative-weight cycles = D™ = D™ for all # > #-1

* we can compute D™ with only Dg(n—lﬂ matrix products as

D!' = w
D? = W2=WxW
D* = W* = W2 x W2
D? = W =W* x W*
]
.
HMg-1T L Mg 5 Mg(n-1)l-1 > NgDl-1

= W = x W

* 'This technique 1s called repeated squaring.

Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms

Improving Running Time via Repeated Squaring

« FASTER-APSP (W)
D! W
m <« |
while m < n-1 do
D*™« EXTEND (D™, D™)
m <«— 2m
return D™

e final iteration computes D™ for some -1 < 2m < 24-2 = D*™ = D!
p

« running time : (n’lgn) = O(VgV)

» cach matrix product : @(n’)
P # of matrix products : ﬁg(n-1)_‘

P simple code, no complex data structures, small hidden
constants in ®-notation.

Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms

23

Idea Behind Repeated Squaring

* decompose pijzm as py. & py , where

2m
m °
P VTV

m

Py ViV

Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms

24

Floyd-Warshall Algorithm

* Assumption : negative-weight edges, but no negative-weight cycles

(1) The Structure of a Shortest Path :

e Definition : intermediate vertex of apath D =< v, . v,. Va.V, >
15 V25 V3 » Yk

P any vertex of p other than v, or v, .

. Pijm : a shortest path from v; to v, with all intermediate vertices

fromvm: {Vl)VZ > e)Vm}
: - m m-1
relationship between pij and pij -
P depends on whether v is an intermediate vertex of Pi

- case 1: v_ 1s not an intermediate vertex of off

= all intermediate vertices of pijm arein V_

m m-1
= Py = Pjj

Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms 25

Floyd-Warshall Algorithm

-case 2: v, 1s an intermediate vertex of P;

- decompose path as v, n_» v, A 7V,

2> P1:vin Ve & Privy AL

- by opt. structure property both p; & p, are shortest paths.

- v._ 1s not an intermediate vertex of Py &Py

=P =P’ & Py = Pmj

m

m-1

Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms

26

Floyd-Warshall Algorithm

(2) A Recurstve Solution to APSP Problem :

* d;" = w(p;) : weight of a shortest path from v;to v,

with all intermediate vertices from

V. ={vi,V,, e,V }.

i n _ . _
* note: d;” =0 (v;,v;)since V, =V
P i.c., all vertices are considered for being intermediate vertices

of p;".

Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms

27

Floyd-Warshall Algorithm

* compute d;" in terms of dijk with smaller £ <

* m=0: V,= empty set
= path from v; to v, with no intermediate vertex.
Le., v; to v; paths with at most one edge

0 —

* m=>1:d" = min {d™",d, ™" +d,;""}

Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms 28

Floyd-Warshall Algorithm

(3) Computing Shortest Path Weights Bottom Up :

FLOYD-WARSHALL(W)
» D' D! ..., D"are #x # matrices
for m«— 1 to n do
forz«— 71 tondo
for j«— 7 to ndo
d;™ = min {d;"",d;, ™"+ d "}

return D"

Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms

29

Floyd-Warshall Algorithm

Dept. CSE, UT Arlington

FLOYD-WARSHALL (W)
» D is an z X n matrix
D—W
form <« I tondo
fori<«— [tondo
forj« Itondo
it d; >d;, +d,,; then
dj; < d;, T dy,

return D

CSE5311 Design and Analysis of Algorithms 30

Floyd-Warshall Algorithm

* maintaining » D matrices can be avoided by dropping all superscripts.

— m-th iteration of outermost for-loop

begins with D = D™
ends with D = D™

— computation of d;™ depends on d._"™"and dmjm‘1 :

no problem if d;, & d,; are already updated to d,," & d, ;"
sinced, "=d,_"" & dpi" = dmjm‘1.

* running time : ®(n’) = 0O(v)

simple code, no complex data structures, small hidden constants

Dept. CSE, UT Arlington

CSE5311 Design and Analysis of Algorithms

31

Transitive Closure of a Directed Graph

e G =(V,E): transitive closure of G = (V, E), where

> E = {(v, v,): there exists a path from v, to v, in G }

e trivial solution : assign W such that Lif (vi,v,) e E

(00 otherwise
» run Floyd-Warshall algorithm on W
P> d," <n = there exists a path from v; to v,
1.e., Vi,Vj> € KB
P d,” = %0 = no path from v; to v,
L.e., (v, Vj> =)
» running time : O(n’) =O(V)

Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms 32

Transitive Closure of a Directed Graph

e Better @(V') algorithm : saves time and space.
e

1 iti=jor(v,v,)ek

12 7

P W = adjacency matrix : ;= 4

0 otherwise

P run Floyd-Warshall algorithm by replacing “min” — W g g\

(.
1 if Ja path from v, to v, with all intermediate vettices from V,,

* define ;" = |

| 0 otherwise

> .

] = 1= (v

1

v) el & t"=0 = (v,v,) €E

* recursive definition for ;™ = tijm‘1 Vit ™A tmjm'1) with tijO = o

Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms 33

Transitive Closure of a Directed Graph

T-CLOSURE (G)
» T =(t;)1sann x n boolean matrix
fori« I tondo
forj« Itondo
it i=j or(v;,v;)eE then
t 1
else
t; <0
for m «— [ton do
fori«— Itondo
forj<«— Itondo
G —t; vV (N)

1

Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms

34

Johnson’s Algorithm for Sparse Graphs

(1) Preserving shortest paths by edge reweighting :

e Ll:givenG=(V,E)withow:E—>R
» leth:V — R be any weighting function on the vertex set
P definew(w,h):E—Rasw(u,v)=w(u,v)+h @ -h®)
» let po. = < vy, Vy, ...,V > beapath from v, to v,

(3) o po) = ©(poe) + h (v) - h (v)

(b) o(pgi) = 0(vg, Vi) In (G, w) & o(Ppgy) = (v, Vi) in (G, @)

(© (G, ®) has a neg-wgt cycle <@ (G,) has a neg-wgt cycle

Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms 35

Johnson’s Algorithm for Sparse Graphs

(2) Producing nonnegative edge weights by reweighting :

* given (G,w) withG=(V,E)andw:E—R
construct a new graph (G, w) with G = (V, E') and
v =E —R
» V =V U {s} for some new vertex s ¢ V
»E=E U {(s,v);ve V)
> »(1,y) = o(u,y) Yu,v) e Eand 0 (s,v) =0, VveV

* vertex s has no incoming edges = s ¢ R foranyvinV
P no shortest paths from u # s to v in G contains vertex s

» (G, w) has no neg-wet cycle < (G,) has no neg-wet cycle

Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms

36

Johnson’s Algorithm for Sparse Graphs

* suppose that G and G have no neg-wgt cycle

e 12: ifwedefineh) =8 (,v) ¥ veVinG and & according
to 1.

P we will have 0(u,v) = o(u,y) + h) —hF) >0 VveV
proof : for every edge (u,v) € E

§(s,v) <8 (s,u) + uy,v)in G due to triangle inequality
hv)=h@W + wl,v)=0= o, v)+ hu-hyv)= o, v)

Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms

37

Johnson’s Algorithm for Sparse Graphs

Computing All-Pairs Shortest Paths
* adjacency list representation of G.
* returns 7 x 7 matrix D = (d;) where

i = Oy

or reports the existence of a neg-wgt cycle.

Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms

38

Johnson’s Algorithm for Sparse Graphs

¢ JOHNSON(G,w)
» D=(d;) is an nxn matrix
» construct (G = (V,E),0) st. V=VU{s}; E=EU{(Gv):V veV}
> ouy) =owy),V W) eE & o(Ev)=0YYveV
if BELLMAN-FORD(G, w, s) = FALSE then
return “negative-weight cycle”
else
for each vertex v e V- {s} =V do
h[v] «— d'[v] » d'[v] = 8 (s,v) computed by BELLMAN-FORD(G, , s)
for cach edge (u,v) € E do
w(u,v) <= o) + h[u] —h[v] P edge reweighting
for each vertex u € V do
run DIJKSTRA(G, o, u) to compute d[v] = 8 (u,v) forall vin V € (G,w)
for each vertex v € V do
d,, = d[v] = (h[u] —h[v])

return D

Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms

39

Johnson’s Algorithm for Sparse Graphs

+ running time: O (VZgV + EV)
P cdge reweighting
BELLMAN-FORD(G, w,s) : O (EV)
computing o values : O (E)
» | V| runs of DIJKSTRA: | V | x O (VlgV + EV)
= O (VgV + EV);
PQ = tibonacci heap

Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms 40

