
CSE5311 Design and Analysis of  Algorithms 1Dept. CSE, UT Arlington CSE5311 Design and Analysis of  Algorithms 1

CSE 5311  
Lecture 23  Maximum Flow 

Junzhou Huang, Ph.D.

Department of Computer Science and Engineering

Design and Analysis of Algorithms



CSE5311 Design and Analysis of  Algorithms 2Dept. CSE, UT Arlington

FLOW NETWORKS & FLOWS

• A flow network: a directed graph G = ( V , E )

– Two distinguished vertices : a source s and a sink t

– Each edge has a nonegative capacity c(u,v)  0    

(if (u,v)  E then c(u,v) = 0)

– for convenience :  v  V – { s,t }, s v t,

i.e., every vertex v lies on some path from s to t.



CSE5311 Design and Analysis of  Algorithms 3Dept. CSE, UT Arlington

• A positive flow p on G: a fn p:VxV  R0 satisfying

– capacity constraint: 0  p(u,v)  c(u,v),  u,v V

• i.e., flow from one vertex to another cannot exceed the capacity
• note : p(u,v) > 0  (u,v)  E with c(u,v) > 0

– flow conservation: Kirschoff’s current law

• total positive flow leaving a vertex = total positive flow entering the vertex

0),(),( 
 VvVv

uvpvup  u  V- { s,t }

FLOW NETWORKS & FLOWS



CSE5311 Design and Analysis of  Algorithms 4Dept. CSE, UT Arlington

• value of a positive flow:

• a sample flow network G and a positive flow p on G: p/c for 
every edge

 
 


Vv VvVvVv

vtptvpsvpvspp ),(),(),(),(

s

v1 v3

v2 v4

t

2/2

2/2
1/3 2/3

0/1 1/2

1/2

2/3
1/3

2/3

note: flow  capacity at every edge

note: flow conservation holds

at every vertex (except s and t)

1/1

FLOW NETWORKS & FLOWS



CSE5311 Design and Analysis of  Algorithms 5Dept. CSE, UT Arlington

 
312),(),(

30)21(),(),(),(

43

221





tvptvpp

svpvspvspp

s

v1 v3

v2 v4

t

2/2

2/2
1/3 2/3

0/1 1/2

1/2

2/3
1/3

2/3

1/1

FLOW NETWORKS & FLOWS



CSE5311 Design and Analysis of  Algorithms 6Dept. CSE, UT Arlington

• cancellation : can say positive flow either goes from u to v or from v
to u, but not both
– if not true, can transform by cancellation to be true

– e.g.,                                  3 units of net positive flow from u to v

– 

can be obtained by canceling 2 units of flow in each direction

• capacity constraint still satisfied : flows only decrease
• flow conservation still satisfied : flow-in & flow-out both reduced 

by the same amount

vu
5/6

2/4

vu
3/6

0/4

FLOW NETWORKS & FLOWS



CSE5311 Design and Analysis of  Algorithms 7Dept. CSE, UT Arlington

NET FLOW VERSUS POSITIVE FLOW 
DEFINITIONS

• positive flow is more intuitive

• net flow brings mathematical simplification: half as many summations 
to write

• A net flow f on G: a fn f:VxV  R satisfying

– capacity constraint:  u,v V    f(u,v)  c(u,v)

– skew symmetry:  u,v V         f(u,v)= - f(v,u)

• thus, f(u,u)= - f(u,u)  f(u,u)=0  net flow from a vertex to itself is 0

– flow conservation:  u V- {s,t}, 

• total net flow into a vertex is 0 

• Nonzero net flow from u to v  (u,v)  E, or (v,u)  E, or both.

• value of a net flow : |f|= net flow out of the source





Vv

vuf 0),(


Vv

vsf ),(



CSE5311 Design and Analysis of  Algorithms 8Dept. CSE, UT Arlington

• equivalence of net flow and positive flow definitions:

• define net flow in terms of positive flow: 

– f(u,v)= p(u,v) - p(v,u)

• Given definition of p, this def. of f satisfies (1) capacity constraint, (2)

skew symmetry, and (3) flow constraint.

),(),(),(),(0),(&),(),()1( vucuvpvupvufuvpvucvup 

  ),(),(),(),(),(),()2( uvfvupuvpuvpvupvuf 

  



VvVvVvVv

vufuvpvupuvpvup ),(),(),(),(),(0)3(

NET FLOW VERSUS POSITIVE FLOW 
DEFINITIONS



CSE5311 Design and Analysis of  Algorithms 9Dept. CSE, UT Arlington

• define positive flow in terms of  net flow:

f(u,v), if  f(u,v) > 0

0,       if  f(u,v)  0

• Given definition of  f, this def. of  p satisfies (1) capacity 

constraint, (2) flow constraint.

p(u,v)=

NET FLOW VERSUS POSITIVE FLOW 
DEFINITIONS



CSE5311 Design and Analysis of  Algorithms 10Dept. CSE, UT Arlington

FLOW NETWORKS & MAXIMUM FLOW 
PROBLEM

• maximum flow problem : given a flow network G with 

source s and sink t

– find a flow of maximum value from s to t

• flow network with multiple sources and sinks :

– a flow network G with m sources {s1, s2,..., sm}= Sm and n sinks {t1, 

t2,..., tn}= Tn

– Max flow problem : find a flow of max value from m sources to n

sinks

– Can reduce to an ordinary max-flow problem with a single source & a 

single sink



CSE5311 Design and Analysis of  Algorithms 11Dept. CSE, UT Arlington

• add a supersource s and a supersink t such that

– Add a directed edge (s,si) with capacity c(s,si)=

for i=1,2,...,m

– Add a directed edge (ti, t) with capacity c(t,ti)=

for i=1,2,...,n

– i.e., V = V  {s,t}; E = E  {(s,si) with c(s,si)=:si}  {(t,ti) 

with c(t,ti)=:ti}

FLOW NETWORKS & MAXIMUM FLOW 
PROBLEM



CSE5311 Design and Analysis of  Algorithms 12Dept. CSE, UT Arlington

s1
10

s2

s3

s4

v1

v1

v1

t1

t1

Example: A flow network with multiple sources and sinks

6

4
7
5

3

14

6

4

7

s1
10

s1

s1

s1

v1

v1

v1

t1

t1

6

4
7
5

3

14

6

4

7

t
s











FLOW NETWORKS & MAXIMUM FLOW 
PROBLEM



CSE5311 Design and Analysis of  Algorithms 13Dept. CSE, UT Arlington

IMPLICIT SUMMATION NOTATION

X X Y

f(x,y)

f(X,X) = 0

f(y,x)

X

Y

Z

f(x,z)

f(y,z)

XY

f(X,Y) = – f(Y,X)

f(XY,Z) = f(X,Z) + f(Y,Z)



CSE5311 Design and Analysis of  Algorithms 14Dept. CSE, UT Arlington

CUTS OF FLOW NETWORKS & UPPER 
BOUND ON MAX FLOW

• def: A cut (S, T) of a flow network is a partition of V into 

S and T = V-S such that s  S and t  T

– Similar to the cut definition given for MST

– Differences: G is a directed graph here & we insist that s  S and t 
T

• def: f(S, T) is the net flow across the cut (S, T) of G for a flow f on G

– Add all edges S T and negative of all edges T  S due to skew 

symmetry

• def: c(S, T) is the capacity across the cut (S, T) of G

– not like flow because no skew symmetry; just add edges S T (no 
neg. values)



CSE5311 Design and Analysis of  Algorithms 15Dept. CSE, UT Arlington

(S1, T1) = ({s, a, b}, {c, d, t})

• f(S1, T1) = f(a, c) + f(b, c) + f(b, d)

=   12    +   (-4)   +    11 = 19

• c(S1, T1) = c(a, c) + c(b, d)

=     12    +    14    = 26

(S2, T2) = ({s, a}, {b, c, d, t})

• f(S2, T2) = f(s, b) + f(a, b) + f(a, c)

=     8    +    (-1)   +    12  = 19

• c(S2, T2) = c(s, b) + c(a, b) + c(a, c) 

=     13   +     10    +    12 = 35

a c
15/2011/16

11/14

12/12

b d

s t

4/4

4/9

8/13

T1

Example:

0/101/4
7/7

S1 T1

S2 T2

CUTS OF FLOW NETWORKS & UPPER 
BOUND ON MAX FLOW



CSE5311 Design and Analysis of  Algorithms 16Dept. CSE, UT Arlington

RESIDUAL NETWORKS

• intuitively: the residual network Gf of a flow network G with a flow f

– Consists of edges that can admit more flow

• def: given a flow network G = (V, E) with a flow f

– residual capacity of (u, v): cf (u, v) = c(u, v) – f(u, v)

• cf (u, v): additional flow we can push from u to v without exceeding 
c(u, v)

– residual network of G induced by f is the graph Gf = (V, Ef) with

• Strictly positive residual capacities: Ef = {(u, v)VxV: cf (u, v) > 0}

Vvu  ,



CSE5311 Design and Analysis of  Algorithms 17Dept. CSE, UT Arlington

• recall: if both (u, v)  E and (v, u)  E then

– Transform such that either f(u, v) = 0 or f(v, u) = 0 by cancellation

• examples:

(1) both (u, v)  E and (v, u)  E

cf (u, v) = c (u, v) – f (u, v) = 5 – 3 = 2 > 0

cf (v, u) = c (v, u) – f (v, u) = 1 – (–3) = 4 > 0

u v
3/5

0/1
u v

2

4

RESIDUAL NETWORKS



CSE5311 Design and Analysis of  Algorithms 18Dept. CSE, UT Arlington

(2) (u, v) E but (v, u)  E and f(u, v) ≥ 0: (v, u) becomes an edge of Ef

• |Ef| ≤ 2|E|, since (u,v)Ef only if at least one of (u,v) and (v,u) 
is in E

• note: cf (u, v) + cf (v, u) = c(u, v) + c(v, u) 

u v
5/5

u v
5 cf (u, v) = 5 – 5 = 0 ≤ 0×

cf (v, u) = 0 – (– 5)  = 5 > 0 √

u v
3/5

u v
2

3

cf (u, v) = 5 – 3 = 2 > 0 √

cf (v, u) = 0 – (– 3) = 3 > 0 √

RESIDUAL NETWORKS



CSE5311 Design and Analysis of  Algorithms 19Dept. CSE, UT Arlington

AUGMENTING PATHS

• For a flow f on G

– augmenting path p is a simple path from s to t in Gf

• cf (p): residual capacity of a path p =

– i.e., cf (p) = max. amount of the flow we can ship along edges of 

p on Gf

)},({min
),(

vuc f
pvu 



CSE5311 Design and Analysis of  Algorithms 20Dept. CSE, UT Arlington

AUGMENTING PATHS

• L6: let f be a flow on G, and let p be an augmenting path in Gf . Let fp be 

a flow on Gf with value 

| fp | = cf (p) > 0 defined as

cf (p) if (u,v)  p in Gf

fp (u,v) =

0 otherwise

then, f’ = f+fp is a flow on G with value 

| f’ | = | f | + | fp | > | f |



CSE5311 Design and Analysis of  Algorithms 21Dept. CSE, UT Arlington

AUGMENTING PATHS

• example: a single path p on G
– can easily say that it is not all of G since flow is not conserved on p

– define flow fp on Gf with cf (p) = min{2, 4, 5, 2, 2, 2} = 2

s t
3/5 2/6 5/5 2/3 2/4

p on G with f:

s t
2

3

4

2

5
2

1

2

2
p on Gf :

s t
2/2 2/4

2/5
2/2 2/2

fp on Gf :



CSE5311 Design and Analysis of  Algorithms 22Dept. CSE, UT Arlington

AUGMENTING PATHS

• example (cont.): a single path p on G

– flow on p in G that results from augmenting along path p:

s t
3/5 2/6 5/5 2/3 2/4

p on G with f:

s t
5/5 4/6 3/5 0/3 4/4

f + fp on p of 
G: +2 +2 -2-2 +2

s t
2/2 2/4

2/5
2/2 2/2

fp on Gf :



CSE5311 Design and Analysis of  Algorithms 23Dept. CSE, UT Arlington

EXAMPLE

(a) The flow network G and flow f. 
(b) The residual network Gf with augmenting path p shaded; its residual 

capacity is cf (p)=cf(v2, v3). Edges with residual capacity equal to 0, such 
as (v1, v3) are not shown



CSE5311 Design and Analysis of  Algorithms 24Dept. CSE, UT Arlington

EXAMPLE

(c) The flow in G that results from augmenting along path p by its residual 
capacity 4. Edges carrying no flow, such as (v3, v2) are labeled only by their 
capacity, another convention we follow throughout. 



CSE5311 Design and Analysis of  Algorithms 25Dept. CSE, UT Arlington

EXAMPLE

(d) The residual network induced by the flow in (c).



CSE5311 Design and Analysis of  Algorithms 26Dept. CSE, UT Arlington

EXAMPLE

A cut (S, T) in the flow network, where S={s, v1, v2 } and T ={v3, v4 , t }. 
The vertices in S are black, and the vertices in T are white. 
The net flow across (S, T) is f  (S,T)=19, and the capacity is c(S, T)= 26.



CSE5311 Design and Analysis of  Algorithms 27Dept. CSE, UT Arlington

MAX-FLOW MIN-CUT THEOREM

• Thm (max-flow min-cut): the following are equivalent for a flow f on G

– (1) f is a maximum flow

– (2) Gf contains no augmenting paths

– (3) | f | = c(S, T) for some cut (S, T) of G



CSE5311 Design and Analysis of  Algorithms 28Dept. CSE, UT Arlington

FORD-FULKERSON METHOD

• iterative algorithm: start with initial flow f =[0] with |f| = 0

– at each iteration, increase | f | by finding an augmenting path

– repeat this process until no augmenting path can be found

– by max-flow min-cut theorem: upon termination this process yields a 
max flow

FORD-FULKERSON-METHOD(G, s, t)
initialize flow f  to 0

while  an augmenting path p do

augment flow f along path p

return f



CSE5311 Design and Analysis of  Algorithms 29Dept. CSE, UT Arlington

• basic Ford-Fulkerson Algorithm: data structures
– note (u,v)  Ef only if (u,v)  E or (v,u)  E

– maintain an adj-list representation of directed graph G' = (V', 
E'), where

E' = {(u,v): (u,v)  E or (v,u)  E}, i.e.,

– for each v  Adj[u] in G' maintain the record

– note: G' used to represent both G and Gf , i.e., for any edge (u,v) 
 E'

c[u,v] > 0  (u,v)  E and cf [u,v] > 0  (u,v)  Ef

v f(u,v) c(u,v) cf (u,v)

FORD-FULKERSON ALGORITHM



CSE5311 Design and Analysis of  Algorithms 30Dept. CSE, UT Arlington

FORD-FULKERSON (G', s, t)

for each edge (u,v)  E' do

f [u,v] ← 0

cf [u,v] ← 0

Gf ← COMPUTE-GF(G', f)

while  an s t path p in Gf do
cf (p) ← min {cf [u,v]: (u,v)  p}

for each edge (u,v)  p do

f [u,v] ← f [u,v] + cf (p) 

CANCEL(G', u, v)

Gf ← COMPUTE-GF(G', f)

COMPUTE-GF (G', f)

for each edge (u,v)  E' do

if c[u,v] – f [u,v] > 0 then

cf [u,v] ← c[u,v] – f[u,v]

else

cf [u,v] ← 0

return G'

CANCEL (G', u, v)

min ← {f [u,v], f [v,u]}

f [u,v] ← f [u,v] – min 

f [v,u] ← f [v,u] – min

FORD-FULKERSON ALGORITHM



CSE5311 Design and Analysis of  Algorithms 31Dept. CSE, UT Arlington

• augmenting path in Gf  is chosen arbitrarily

• performance if capacities are integers: O(E |f*|)
– while-loop: time to find s    t path in Gf  = O(E') = O(E)

– # of while-loop iterations: ≤ |f*|, where f* = max flow

• so, running time is good if capacities are integers and |f*| is 
small

FORD-FULKERSON ALGORITHM



CSE5311 Design and Analysis of  Algorithms 32Dept. CSE, UT Arlington

FORD-FULKERSON ALGORITHM

The left side of  each part shows the residual network Gf  from line 3 with a shaded 
augmenting path p.  The right side of  each part shows the new flow f  that results from 
augmenting f  by fp. 



CSE5311 Design and Analysis of  Algorithms 33Dept. CSE, UT Arlington

FORD-FULKERSON ALGORITHM

(f) The residual network at the last while loop test. It has no augmenting paths, and the flow 
f  shown in (e) is therefore a maximum flow. The value of  the maximum flow found is 23.



CSE5311 Design and Analysis of  Algorithms 34Dept. CSE, UT Arlington

• might never terminate for non-integer capacities

• efficient algorithms: 

– augment along max-capacity path in Gf: not mentioned in textbook

– augment along breadth-first path in Gf: Edmonds-Karp algorithm 

 O(VE2)

FORD-FULKERSON ALGORITHM



CSE5311 Design and Analysis of  Algorithms 35Dept. CSE, UT Arlington

EDMONDS-KARP ALGORITHM

• def: δf (s,v) = shortest path distance from s to v in Gf 

– unit edge weights in Gf  δf (s,v) = breadth-first distance from s to v
in Gf 

• L7:  v V – {s,t}; δ (s,v) in Gf’s increases monotonically 
with each augmentation

• proof: suppose 
– (i) a flow f on G induces Gf 

– (ii) fp along an augmenting path in Gf  produces f’ = f + fp on G

– (iii) f’ on G induces Gf’

• notation: δ(s,v) = δf (s,v) and δ’(s,v) = δf’ (s,v) 



CSE5311 Design and Analysis of  Algorithms 36Dept. CSE, UT Arlington

• many combinatorial optimization problems can be reduced 
to a max-flow problem

• maximum bipartite matching problem is a typical example

Maximum Bipartite Matching Problem



CSE5311 Design and Analysis of  Algorithms 37Dept. CSE, UT Arlington

• given an undirected graph G = (V, E)
• def: a matching is a subset of edges M  E such that

 v  V, at most one edge of M is incident to v

• def: a vertex v  V is matched by a matching M if some edge M is 
incident to v, otherwise v is unmatched

• def: a maximum matching M* is a matching M of maximum cardinality, 
i.e., |M*| ≥ |M| for any matching M

• def: G=(V,E) is a bipartite graph if V=LR where L∩R= such that 
E={(u,v): u  L and v  R}

Maximum Bipartite Matching Problem



CSE5311 Design and Analysis of  Algorithms 38Dept. CSE, UT Arlington

• applications: job task assignment problem

– Assigning a set L of tasks to a set R of machines

– (u,v)  E  task u  L can be performed on a machine   v  R

– a max matching provides work for as many machines as possible

Maximum Bipartite Matching Problem



CSE5311 Design and Analysis of  Algorithms 39Dept. CSE, UT Arlington

Maximum Bipartite Matching Problem

• example: two matchings M1 & M2 on a sample graph with 
|M1| = 2 & |M2| = 3

u1

u3

u4

u5

u2

v1

v3

v4

v2

L R

M1 = {(u1,v1), (u3,v3)}

u1

u3

u4

u5

u2

v1

v3

v4

v2

L R

M2 = {(u2,v1), (u3,v2) , (u5,v3)}



CSE5311 Design and Analysis of  Algorithms 40Dept. CSE, UT Arlington

• idea: construct a flow network in which flows correspond to 
matchings

• define the corresponding flow network G'=(V', E') for the 
bipartite graph as
– V' = V  {s}  {t} s, t V

– E' = {(s,u):  u L}{(u,v): u  L, v  R, (u,v)  E} 

{(v,t):  v  R}

– assign unit capacity to each edge of E'

Finding a Maximum Bipartite Matching



CSE5311 Design and Analysis of  Algorithms 41Dept. CSE, UT Arlington

u1

u3

u4

u5

u2

v1

v3

v4

v2

s t

1

1

1

1

1

1

1

1

1

u1

u3

u4

u5

u2

v1

v3

v4

v2

1

1

1

1

1
1

1 1

Finding a Maximum Bipartite Matching



CSE5311 Design and Analysis of  Algorithms 42Dept. CSE, UT Arlington

1

Finding a Maximum Bipartite Matching



CSE5311 Design and Analysis of  Algorithms 43Dept. CSE, UT Arlington

• def: a flow f on a flow network is integer-valued if f(u,v) is 
integer u,v  V

• L8: (a) IF M is a matching in G, THEN  an integer-valued f 
on G' with | f | = |M|

(b) IF f is an integer-valued f on G', THEN  a 
matching M in G with | M | = | f |

Finding a Maximum Bipartite Matching



CSE5311 Design and Analysis of  Algorithms 44Dept. CSE, UT Arlington

• proof L8 (a): let M be a matching in G
– define the corresponding flow f on G' as 
u,vM; f(s,u)=f(u,v)=f(v,t) = 1 & f(u,v) = 0 for all other edges

• first show that f is a flow on G':
– 1 unit of flow passes thru the path s → u → v → t for each u,v 

M
these paths are disjoint s    t paths, i.e., no common intermediate 

vertices

– f is a flow on G' satisfying capacity constraint, skew symmetry & 
flow conservation
because f can be obtained by flow augmentation along these      

s    t disjoint paths

Finding a Maximum Bipartite Matching



CSE5311 Design and Analysis of  Algorithms 45Dept. CSE, UT Arlington

• second show that | f | = |M|:
– net flow accross the cut ({s}  L, R {t}) = | f | by L3

– | f | = f (s  L, R  t) = f (s, R  t) + f (L, R  t)
= f (s, R  t) + f (L, R) + f (L, t)
= 0 + f (L, R) + 0;  f (s, R  t) = f (L, t) since  no such edges
= f (L, R) = |M| since f(u,v) = 1 u L, v  R & (u,v) 

M

Finding a Maximum Bipartite Matching



CSE5311 Design and Analysis of  Algorithms 46Dept. CSE, UT Arlington

• proof L8 (b): let f be a integer-valued flow in G'

– define M={(u,v): u  L, v  R, and f (u,v) > 0} 

• first show that M is a matching in G: i.e., all edges in M are 
vertex disjoint
– let pe(u) / pl(u) = positive net flow entering / leaving vertex u, u 

V

– each u  L has exactly one incoming edge (s,u) with c(s,u)=1  pe(u) 
≤ 1 uL

Finding a Maximum Bipartite Matching



CSE5311 Design and Analysis of  Algorithms 47Dept. CSE, UT Arlington

– since f is integer-valued; u  L, pe(u) = 1 pl(u) = 1 due to flow 
conservation

u  L, pe(u)=1  exactly one vertex vR  f(u,v) = 1 
to make pl(u) = 1 

– thus, at most one edge leaving each vertex u  L carries positive 
flow = 1

– a symmetric argument holds for each vertex v  R
– therefore, M is a matching

Finding a Maximum Bipartite Matching



CSE5311 Design and Analysis of  Algorithms 48Dept. CSE, UT Arlington

• second show that |M| = | f |:
– |M| = f (L, R)    by above def for M since f (u,v) is either 0 or 1

= f (L, V' – s – L – t) 

= f (L,V') – f (L,s) – f  (L,L) – f (L,t)

= 0 – f (L,s) – 0 – 0  

= – f (L,s) = f (s,L) = | f |  due to skew symmetry & then def.

f  (L,V') = f  (L,V') = 
0 due to flow cons.
f  (L,t) = 0 since no 
edges from L to t

Finding a Maximum Bipartite Matching



CSE5311 Design and Analysis of  Algorithms 49Dept. CSE, UT Arlington

Finding a Maximum Bipartite Matching

• example: a matching M with |M| = 3 & a f on the 
corresponding G' with | f | = 3

u1

u3

u4

u5

u2

v1

v3

v4

v2

u1

u3

u4

u5

u2

v1

v3

v4

v2

s t

1

1

1

1

1

1

1

1

1



CSE5311 Design and Analysis of  Algorithms 50Dept. CSE, UT Arlington

Thank you!


