Design and Analysis of Algorithms

CSE 5311
Lecture 23 Maximum Flow

Junzhou Huang, Ph.D.
Department of Computer Science and Engineering

FLOW NETWORKS \& FLOWS

- A flow network: a directed graph $G=(V, E)$
- Two distinguished vertices : a source s and a sink t
- Each edge has a nonegative capacity $\mathrm{c}(u, v) \geq 0$
(if $(u, v) \notin \mathrm{E}$ then $\mathrm{c}(u, v)=0$)
- for convenience : $\forall v \in \mathrm{~V}-\{s, t\}, s Z v$ Z t,
i.e., every vertex v lies on some path from s to t.

FLOW NETWORKS \& FLOWS

- A positive flow p on G : a fn $p: V \times V \rightarrow \mathrm{R}_{\geq 0}$ satisfying
- capacity constraint: $0 \leq \mathrm{p}(u, \nu) \leq \mathrm{c}(u, \nu), \forall u, \nu \in \mathrm{~V}$
- i.e., flow from one vertex to another cannot exceed the capacity
- note $: \mathrm{p}(u, v)>0 \Rightarrow(u, v) \in \mathrm{E}$ with $\mathrm{c}(u, v)>0$
- flow conservation: Kirschoffs current law

$$
\sum_{v \in V} p(u, v)-\sum_{v \in V} p(v, u)=0 \quad \forall u \in \mathrm{~V}-\{\mathrm{s}, \mathrm{t}\}
$$

- total positive flow leaving a vertex $=$ total positive flow entering the vertex

FLOW NETWORKS \& FLOWS

- value of a positive flow:

$$
|p|=\sum_{v \in V} p(s, v)-\sum_{v \in V} p(v, s)=\sum_{v \in V} p(v, t)-\sum_{v \in V} p(t, v)
$$

- a sample flow network G and a positive flow p on $G: p / c$ for every edge

note: flow \leq capacity at every edge
note: flow conservation holds at every vertex (except s and t)

FLOW NETWORKS \& FLOWS

$$
\begin{aligned}
& |p|=\left(p\left(s, v_{1}\right)+p\left(s, v_{2}\right)\right)-p\left(v_{2}, s\right)=(1+2)-0=3 \\
& |p|=p\left(v_{3}, t\right)+p\left(v_{4}, t\right)=2+1=3
\end{aligned}
$$

FLOW NETWORKS \& FLOWS

- cancellation : can say positive flow either goes from u to v or from v to u, but not both
- if not true, can transform by cancellation to be true

$$
\begin{aligned}
& \text { - e.g., u } \frac{5 / 6}{\underset{2 / 4}{\leftrightarrows}} \text { v } \Rightarrow 3 \text { units of net positive flow from } u \text { to } v \\
& -\Rightarrow \text { (u) } \frac{3 / 6}{\underset{0 / 4}{\leftrightarrows}} \text { v }
\end{aligned}
$$

can be obtained by canceling 2 units of flow in each direction

- capacity constraint still satisfied : flows only decrease
- flow conservation still satisfied : flow-in \& flow-out both reduced by the same amount

NET FLOW VERSUS POSITIVE FLOW DEFINITIONS

- positive flow is more intuitive
- net flow brings mathematical simplification: half as many summations to write
- A net flow fon G: a fn $f: V x V \rightarrow R$ satisfying
- capacity constraint: $\forall u, v \in \mathrm{~V} \quad \mathrm{f}(u, v) \leq \mathrm{c}(u, v)$
- skew symmetry: $\forall u, v \in \mathrm{~V} \quad \mathrm{f}(u, v)=-\mathrm{f}(\nu, u)$
- thus, $\mathrm{f}(u, u)=-\mathrm{f}(u, u) \Rightarrow \mathrm{f}(u, u)=0 \Rightarrow$ net flow from a vertex to itself is 0
- flow conservation: $\forall u \in \mathrm{~V}-\{\mathrm{s}, \mathrm{t}\}, \quad \sum_{v \in V} f(u, v)=0$
- total net flow into a vertex is 0
- Nonzero net flow from u to $v \Rightarrow(u, v) \in \mathrm{E}$, or $(v, u) \in \mathrm{E}$, or both.
- value of a net flow : $|\mathrm{f}|=\sum_{v \in V} f(s, v)=$ net flow out of the source

NET FLOW VERSUS POSITIVE FLOW DEFINITIONS

- equivalence of net flow and positive flow definitions:
- define net flow in terms of positive flow:
$-\mathrm{f}(u, v)=\mathrm{p}(u, v)-\mathrm{p}(v, u)$
- Given definition of p, this def. of f satisfies (1) capacity constraint, (2) skew symmetry, and (3) flow constraint.
(1) $p(u, v) \leq c(u, v) \& p(v, u) \geq 0 \Rightarrow f(u, v)=p(u, v)-p(v, u) \leq c(u, v)$
(2) $f(u, v)=p(u, v)-p(v, u)=-(p(v, u)-p(u, v))=-f(v, u)$
(3) $0=\sum_{v \in V} p(u, v)-\sum_{v \in V} p(v, u)=\sum_{v \in V}(p(u, v)-p(v, u))=\sum_{v \in V} f(u, v)$

NET FLOW VERSUS POSITIVE FLOW DEFINITIONS

- define positive flow in terms of net flow:

$$
\mathrm{p}(\mathrm{u}, \mathrm{v})= \begin{cases}\mathrm{f}(u, v), & \text { if } \mathrm{f}(u, v)>0 \\ 0, & \text { if } \mathrm{f}(u, v) \leq 0\end{cases}
$$

- Given definition of f , this def. of p satisfies (1) capacity constraint, (2) flow constraint.

FLOW NETWORKS \& MAXIMUM FLOW PROBLEM

- maximum flow problem : given a flow network G with source s and sink t
- find a flow of maximum value from s to t
- flow network with multiple sources and sinks :
- a flow network G with m sources $\left\{s_{1}, s_{2}, \ldots, s_{m}\right\}=S_{\mathrm{m}}$ and $\mathrm{n} \operatorname{sinks}\left\{t_{1}\right.$, $\left.t_{2}, \ldots, t_{n}\right\}=T_{\mathrm{n}}$
- Max flow problem : find a flow of max value from m sources to n sinks
- Can reduce to an ordinary max-flow problem with a single source \& a single sink

FLOW NETWORKS \& MAXIMUM FLOW PROBLEM

- add a supersource s and a supersink t such that
- Add a directed edge $\left(s, s_{\mathrm{i}}\right)$ with capacity $\mathrm{c}\left(s, s_{\mathrm{i}}\right)=\infty$

$$
\text { for } i=1,2, \ldots, m
$$

- Add a directed edge $\left(t_{i}, t\right)$ with capacity $\mathrm{c}\left(t_{,} t_{\mathrm{i}}\right)=\infty$

$$
\begin{aligned}
& \quad \text { for } i=1,2, \ldots, n \\
& \text { - i.e., } \hat{\mathrm{V}}=\mathrm{V} \cup\{\mathrm{~s}, \mathrm{t}\} ; \hat{\mathrm{E}}=\mathrm{E} \cup\left\{\left(s, s_{\mathrm{i}}\right) \text { with } \mathrm{c}\left(s, s_{\mathrm{i}}\right)=\infty: \forall s_{s_{\mathrm{i}}}\right\} \cup\left\{\left(t, t_{\mathrm{i}}\right)\right. \\
& \text { with } \left.\mathrm{c}\left(t_{\mathrm{t}}^{\mathrm{i}}\right)=\infty: \forall t_{\mathrm{i}}\right\}
\end{aligned}
$$

FLOW NETWORKS \& MAXIMUM FLOW PROBLEM

Example: A flow network with multiple sources and sinks

IMPLICIT SUMMATION NOTATION

$$
f(X, Y)=-f(Y, X)
$$

CUTS OF FLOW NETWORKS \& UPPER BOUND ON MAX FLOW

- def: A cut (S, T) of a flow network is a partition of V into
S and $T=V-S$ such that $s \in S$ and $t \in T$
- Similar to the cut definition given for MST
- Differences: G is a directed graph here \& we insist that $s \in S$ and $t \in$ T
- def: $f(S, T)$ is the net flow across the cut (S, T) of G for a flow f on G
- Add all edges $S \rightarrow T$ and negative of all edges $T \rightarrow S$ due to skew symmetry
- def: $c(S, T)$ is the capacity across the cut (S, T) of G
- not like flow because no skew symmetry; just add edges $S \rightarrow T$ (no neg. values)

CUTS OF FLOW NETWORKS \& UPPER BOUND ON MAX FLOW

$$
\begin{aligned}
& \text { Example: } \\
& \left(S_{1}, T_{1}\right)=(\{s, a, b\},\{c, d, t\}) \\
& \text { - } f\left(S_{1}, T_{1}\right)=f(a, c)+f(b, c)+f(b, d) \\
& =12+(-4)+11=19 \\
& \text { - } c\left(S_{1}, T_{1}\right)=c(a, c)+c(b, d) \\
& =12+14=26 \\
& \left(S_{2}, T_{2}\right)=(\{s, a\},\{b, c, d, t\}) \\
& \text { - } f\left(S_{2}, T_{2}\right)=f(s, b)+f(a, b)+f(a, c) \\
& =8+(-1)+12=19 \\
& \text { - } c\left(S_{2}, T_{2}\right)=c(s, b)+c(a, b)+c(a, c) \\
& =13+10+12=35
\end{aligned}
$$

RESIDUAL NETWORKS

- intuitively: the residual network G_{f} of a flow network G with a flow f
- Consists of edges that can admit more flow
- def: given a flow network $G=(V, E)$ with a flow f
- residual capacity of $(u, v): c_{f}(u, v)=c(u, v)-f(u, v) \quad \forall u, v \in V$
- $c_{f}(u, v)$: additional flow we can push from u to v without exceeding $c(u, v)$
- residual network of G induced by f is the graph $G_{f}=\left(V, E_{f}\right)$ with
- Strictly positive residual capacities: $\mathrm{E}_{f}=\left\{(u, v) \in V x V: c_{f}(u, v)>0\right\}$

RESIDUAL NETWORKS

- recall: if both $(u, v) \in E$ and $(v, u) \in E$ then
- Transform such that either $f(u, v)=0$ or $f(v, u)=0$ by cancellation
- examples:
(1) both $(u, v) \in E$ and $(v, u) \in E$

RESIDUAL NETWORKS

(2) $(u, v) \in E$ but $(v, u) \notin E$ and $f(u, v) \geq 0:(v, u)$ becomes an edge of E_{f}

- $\quad \mid E_{f} / \leq 2 / E /$, since $(u, v) \in \boldsymbol{E}_{f}$ only if at least one of (u, v) and (v, u) is in E
- note: $c_{f}(u, v)+c_{f}(v, u)=c(u, v)+c(v, u)$

AUGMENTING PATHS

- For a flow f on G
- augmenting path p is a simple path from s to t in G_{f}
- $c_{f}(p)$: residual capacity of a path $p=\min _{(u, v) \in p}\left\{c_{f}(u, v)\right\}$
- i.e., $c_{f}(p)=\max$. amount of the flow we can ship along edges of p on G_{f}

AUGMENTING PATHS

- L6: let f be a flow on G, and let p be an augmenting path in G_{f}. Let f_{p} be a flow on G_{f} with value

$$
\left|f_{p}\right|=c_{f}(p)>0 \text { defined as }
$$

$$
f_{p}(u, v)=\left\{\begin{array}{l}
c_{f}(p) \text { if }(u, v) \in p \text { in } G_{f} \\
0 \quad \text { otherwise }
\end{array}\right.
$$

then, $f^{\prime}=f+f_{p}$ is a flow on G with value

$$
\left|f^{\prime}\right|=|f|+\left|f_{p}\right|>|f|
$$

AUGMENTING PATHS

- example: a single path p on G
- can easily say that it is not all of G since flow is not conserved on p

- define flow f_{p} on G_{f} with $c_{f}(p)=\min \{2,4,5,2,2,2\}=2$
f_{p} on G_{f} :

AUGMENTING PATHS

- example (cont.): a single path p on G

- flow on p in G that results from augmenting along path p :
$f+f_{p}$ on p of G:

EXAMPLE

(a)

(b)
(a) The flow network G and flow f.
(b) The residual network G_{f} with augmenting path p shaded; its residual capacity is $\mathrm{c}_{\mathrm{f}}(\mathrm{p})=\mathrm{c}_{\mathrm{f}}\left(\mathrm{v}_{2}, \mathrm{v}_{3}\right)$. Edges with residual capacity equal to 0 , such as $\left(v_{1}, v_{3}\right)$ are not shown

EXAMPLE

(b)

(c)
(c) The flow in G that results from augmenting along path p by its residual capacity 4 . Edges carrying no flow, such as $\left(\mathrm{v}_{3}, \mathrm{v}_{2}\right)$ are labeled only by their capacity, another convention we follow throughout.

EXAMPLE

(d) The residual network induced by the flow in (c).

EXAMPLE

A cut (S, T) in the flow network, where $\mathrm{S}=\left\{\mathrm{s}, \mathrm{v}_{1}, \mathrm{v}_{2}\right\}$ and $\mathrm{T}=\left\{\mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{t}\right\}$. The vertices in S are black, and the vertices in T are white.
The net flow across (S, T) is $f(S, T)=19$, and the capacity is $c(S, T)=26$.

MAX-FLOW MIN-CUT THEOREM

- Thm (max-flow min-cut): the following are equivalent for a flow f on G
- (1) f is a maximum flow
- (2) G_{f} contains no augmenting paths
- (3) $|f|=c(S, T)$ for some cut (S, T) of G

FORD-FULKERSON METHOD

- iterative algorithm: start with initial flow $f=[0]$ with $|f|=0$
- at each iteration, increase $|f|$ by finding an augmenting path
- repeat this process until no augmenting path can be found
- by max-flow min-cut theorem: upon termination this process yields a max flow

FORD-FULKERSON-METHOD (G, s, t)

initialize flow f to 0
while an augmenting path p do
augment flow f along path p
return f

FORD-FULKERSON ALGORITHM

- basic Ford-Fulkerson Algorithm: data structures
- note $(u, v) \quad E_{f}$ only if $(u, v) \quad E$ or $(v, u) \quad E$
- maintain an adj-list representation of directed graph $G^{\prime}=\left(V^{\prime}\right.$, E^{\prime}), where

$$
\Rightarrow E^{\prime}=\{(u, v):(u, v) \quad E \text { or }(v, u) \quad E\}, \text { i.e., }
$$

- for each $v \quad \operatorname{Adj}[u]$ in G^{\prime} maintain the record

$$
\begin{array}{|l|l|l|}
\hline v & f(u, v) & c(u, v) \\
c_{f}(u, v) \\
\hline
\end{array}
$$

- note: G^{\prime} used to represent both G and G_{f}, i.e., for any edge (u, v)

$$
E^{\prime}
$$

$$
>_{c}[u, v]>0 \Rightarrow(\mathrm{u}, \mathrm{v}) \quad E \text { and } c_{f}[u, v]>0 \Rightarrow(\mathrm{u}, \mathrm{v}) \quad E_{f}
$$

FORD-FULKERSON ALGORITHM

FORD-FULKERSON (G^{\prime}, s, t)
for each edge (u, v) $\quad E^{\prime}$ do
$f[u, v] \leftarrow 0$
$c_{f}[u, v] \leftarrow 0$
$G_{f} \leftarrow \operatorname{COMPUTE-GF}\left(G^{\prime}, f\right)$
while an $s 2 \leftarrow t$ path p in G_{f} do
$c_{f}(p) \leftarrow \min \left\{c_{f}[u, v]:(u, v) \quad p\right\}$
for each edge $(u, v) \quad p$ do
$f[u, v] \leftarrow f[u, v]+c_{f}(p)$ $\operatorname{CANCEL}\left(G^{\prime}, u, v\right)$ $G_{f} \leftarrow \operatorname{COMPUTE-GF}\left(G^{\prime}, f\right)$

COMPUTE-GF (${ }^{\prime}$ ', f)
for each edge $(u, v) \quad E^{\prime}$ do if $c[u, v]-f[u, v]>0$ then

$$
c_{f}[u, v] \leftarrow \mathrm{c}[\mathrm{u}, \mathrm{v}]-\mathrm{f}[\mathrm{u}, \mathrm{v}]
$$

else

$$
c_{f}[u, v] \leftarrow 0
$$

return G^{\prime}

CANCEL (G^{\prime}, u, v)
$\min \leftarrow\{f[u, v], f[v, u]\}$
$f[u, v] \leftarrow f[u, v]-\min$
$f[v, u] \leftarrow f[v, u]-\min$

FORD-FULKERSON ALGORITHM

- augmenting path in G_{f} is chosen arbitrarily
- performance if capacities are integers: $\mathrm{O}\left(E\left|f^{*}\right|\right)$
- while-loop: time to find $s z^{2} t$ path in $G_{f}=\mathrm{O}\left(E^{\prime}\right)=\mathrm{O}(E)$
- \# of while-loop iterations: $\leq\left|f^{*}\right|$, where $f^{*}=$ max flow
- so, running time is good if capacities are integers and $\left|f^{*}\right|$ is small

FORD-FULKERSON ALGORITHM

(a)

(b)

(c)

The left side of each part shows the residual network Gf from line 3 with a shaded augmenting path p. The right side of each part shows the new flow f that results from augmenting f by fp .

FORD-FULKERSON ALGORITHM

(d)

(e)

(f)

(f) The residual network at the last while loop test. It has no augmenting paths, and the flow f shown in (e) is therefore a maximum flow. The value of the maximum flow found is 23.

FORD-FULKERSON ALGORITHM

- might never terminate for non-integer capacities
- efficient algorithms:
- augment along max-capacity path in $G_{\dot{f}}$ not mentioned in textbook
- augment along breadth-first path in G_{f} Edmonds-Karp algorithm $\Rightarrow \mathrm{O}\left(V E^{2}\right)$

EDMONDS-KARP ALGORITHM

- def: $\delta_{f}(s, v)=$ shortest path distance from s to v in G_{f}
- unit edge weights in $G_{f} \Rightarrow \delta_{f}(s, v)=$ breadth-first distance from s to v in G_{f}
- L7: $\forall v \quad V-\{s, t\} ; \delta(s, v)$ in $G_{f}^{\prime} s$ increases monotonically with each augmentation
- proof: suppose
- (i) a flow f on G induces G_{f}
- (ii) f_{p} along an augmenting path in G_{f} produces $\rho^{\prime}=f+f_{p}$ on G
- (iii) f ' on G induces G_{f}
- notation: $\delta(s, v)=\delta_{f}(s, v)$ and $\delta^{\prime}(s, v)=\delta_{f}(s, v)$

Maximum Bipartite Matching Problem

- many combinatorial optimization problems can be reduced to a max-flow problem
- maximum bipartite matching problem is a typical example

Maximum Bipartite Matching Problem

- given an undirected graph $G=(V, E)$
- def: a matching is a subset of edges $M \subseteq E$ such that
$\forall v \quad V$, at most one edge of M is incident to v
- def: a vertex $v \quad V$ is matched by a matching M if some edge M is incident to v, otherwise v is unmatched
- def: a maximum matching M^{*} is a matching M of maximum cardinality, i.e., $\left|M^{*}\right| \geq|M|$ for any matching M
- def: $G=(V, E)$ is a bipartite graph if $V=L \cup R$ where $L \cap R=\varnothing$ such that $E=\{(u, v): u \quad L$ and $v \quad R\}$

Maximum Bipartite Matching Problem

- applications: job task assignment problem
- Assigning a set L of tasks to a set R of machines
- $(u, v) \quad E \Rightarrow \operatorname{task} u \quad L$ can be performed on a machine $v \quad R$
- a max matching provides work for as many machines as possible

Maximum Bipartite Matching Problem

- example: two matchings $M_{1} \& M_{2}$ on a sample graph with $\left|M_{1}\right|=2 \&\left|M_{2}\right|=3$

Finding a Maximum Bipartite Matching

- idea: construct a flow network in which flows correspond to matchings
- define the corresponding flow network $G^{\prime}=\left(V^{\prime}, E\right)$ for the bipartite graph as

$$
\begin{aligned}
& -V^{\prime}=V \cup\{s\} \cup\{t\} \quad s, t \quad V \\
& -E^{\prime}=\{(s, u): \forall u \quad L\} \cup\{(u, \nu): u \quad L, v \quad R,(u, v) \quad E\} \\
& \cup\{(v, t): \forall v \quad R\}
\end{aligned}
$$

- assign unit capacity to each edge of E^{\prime}

Finding a Maximum Bipartite Matching

Finding a Maximum Bipartite Matching

Finding a Maximum Bipartite Matching

- def: a flow f on a flow network is integer-valued if $f(u, \nu)$ is integer $\forall u, v \quad V$
- L8: (a) IF M is a matching in G, THEN \exists an integer-valued f on G^{\prime} with $|f|=|M|$
(b) IF f is an integer-valued f on G^{\prime}, THEN \exists a matching M in G with $|M|=|f|$

Finding a Maximum Bipartite Matching

- proof L8 (a): let M be a matching in G
- define the corresponding flow f on G^{\prime} as
$>\forall u, v \quad M ; f(s, u)=f(u, v)=f(v, t)=1 \& f(u, v)=0$ for all other edges
- first show that f is a flow on G^{\prime} :
- 1 unit of flow passes thru the path $s \rightarrow u \rightarrow v \rightarrow t$ for each u, v M
$>$ these paths are disjoint $s Z \rightarrow$ paths, i.e., no common intermediate vertices
- f is a flow on G^{\prime} satisfying capacity constraint, skew symmetry \& flow conservation
\Rightarrow because f can be obtained by flow augmentation along these $s z_{r} t$ disjoint paths

Finding a Maximum Bipartite Matching

- second show that $|f|=|M|$:
- net flow accross the cut $(\{s\} \cup L, R \cup\{t\})=|f|$ by $L 3$

$$
\begin{aligned}
-|f| & =f(s \cup L, R \cup t)=f(s, R \cup t)+f(L, R \cup t) \\
& =f(s, R \cup t)+f(L, R)+f(L, t) \\
& =0+f(L, R)+0 ; f(s, R \cup t)=f(L, t) \text { since } \exists \text { no such edges } \\
& =f(L, R)=|M| \quad \text { since } f(u, v)=1 \forall u \quad L, v \quad R \&(u, v)
\end{aligned}
$$

M

Finding a Maximum Bipartite Matching

- proof L8 (b): let f be a integer-valued flow in G^{\prime}
- define $M=\{(u, v): u \quad L, v \quad R$, and $f(u, v)>0\}$
- first show that M is a matching in G : i.e., all edges in M are vertex disjoint
- let $p_{e}(u) / p(u)=$ positive net flow entering $/$ leaving vertex $u, \forall u$ V
- each $u \quad L$ has exactly one incoming edge (s, u) with $c(s, u)=1 \Rightarrow p_{e}(u)$ $\leq 1 \forall u \quad L$

Finding a Maximum Bipartite Matching

- since f is integer-valued; $\forall u \quad L, p_{e}(u)=1 \Leftrightarrow p(u)=1$ due to flow conservation

$$
\Rightarrow \forall u \quad L, p_{\ell}(u)=1 \Leftrightarrow \exists \text { exactly one vertex } v \quad \mathrm{R} \text { э } f(u, v)=1
$$

to make $p_{n}(u)=1$

- thus, at most one edge leaving each vertex $u \quad L$ carries positive flow $=1$
- a symmetric argument holds for each vertex $v \quad R$
- therefore, M is a matching

Finding a Maximum Bipartite Matching

- second show that $|M|=|f|$:

$$
\begin{array}{rlrl}
-|M| & =f(L, R) & \text { by above def for M since } f(u, v) \text { is either } 0 \text { or } 1 \\
& =f\left(L, V^{\prime}-s-L-t\right) & f\left(L, V^{\prime}\right)=f\left(L, V^{\prime}\right)= \\
& =f\left(L, V^{\prime}\right)-f(L, s)-f(L, L)-f(L, t) & 0 \text { due to flow cons. } \\
& =0-f(L, t)=0 \text { since no } \\
& =-f(L, s)=f(s, L)=|f| \text { due to skew symmetry \& then def. }
\end{array}
$$

Finding a Maximum Bipartite Matching

- example: a matching M with $|M|=3 \&$ a f on the corresponding G^{\prime} with $|f|=3$

Thank you!

