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FLOW NETWORKS & FLOWS

• A flow network: a directed graph G = ( V , E )

– Two distinguished vertices : a source s and a sink t

– Each edge has a nonegative capacity c(u,v)  0    

(if (u,v)  E then c(u,v) = 0)

– for convenience :  v  V – { s,t }, s v t,

i.e., every vertex v lies on some path from s to t.
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• A positive flow p on G: a fn p:VxV  R0 satisfying

– capacity constraint: 0  p(u,v)  c(u,v),  u,v V

• i.e., flow from one vertex to another cannot exceed the capacity
• note : p(u,v) > 0  (u,v)  E with c(u,v) > 0

– flow conservation: Kirschoff’s current law

• total positive flow leaving a vertex = total positive flow entering the vertex

0),(),( 
 VvVv

uvpvup  u  V- { s,t }

FLOW NETWORKS & FLOWS
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• value of a positive flow:

• a sample flow network G and a positive flow p on G: p/c for 
every edge

 
 


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note: flow  capacity at every edge

note: flow conservation holds

at every vertex (except s and t)

1/1

FLOW NETWORKS & FLOWS
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FLOW NETWORKS & FLOWS
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• cancellation : can say positive flow either goes from u to v or from v
to u, but not both
– if not true, can transform by cancellation to be true

– e.g.,                                  3 units of net positive flow from u to v

– 

can be obtained by canceling 2 units of flow in each direction

• capacity constraint still satisfied : flows only decrease
• flow conservation still satisfied : flow-in & flow-out both reduced 

by the same amount

vu
5/6

2/4

vu
3/6

0/4

FLOW NETWORKS & FLOWS



CSE5311 Design and Analysis of  Algorithms 7Dept. CSE, UT Arlington

NET FLOW VERSUS POSITIVE FLOW 
DEFINITIONS

• positive flow is more intuitive

• net flow brings mathematical simplification: half as many summations 
to write

• A net flow f on G: a fn f:VxV  R satisfying

– capacity constraint:  u,v V    f(u,v)  c(u,v)

– skew symmetry:  u,v V         f(u,v)= - f(v,u)

• thus, f(u,u)= - f(u,u)  f(u,u)=0  net flow from a vertex to itself is 0

– flow conservation:  u V- {s,t}, 

• total net flow into a vertex is 0 

• Nonzero net flow from u to v  (u,v)  E, or (v,u)  E, or both.

• value of a net flow : |f|= net flow out of the source





Vv

vuf 0),(


Vv

vsf ),(
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• equivalence of net flow and positive flow definitions:

• define net flow in terms of positive flow: 

– f(u,v)= p(u,v) - p(v,u)

• Given definition of p, this def. of f satisfies (1) capacity constraint, (2)

skew symmetry, and (3) flow constraint.

),(),(),(),(0),(&),(),()1( vucuvpvupvufuvpvucvup 

  ),(),(),(),(),(),()2( uvfvupuvpuvpvupvuf 

  



VvVvVvVv

vufuvpvupuvpvup ),(),(),(),(),(0)3(

NET FLOW VERSUS POSITIVE FLOW 
DEFINITIONS
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• define positive flow in terms of  net flow:

f(u,v), if  f(u,v) > 0

0,       if  f(u,v)  0

• Given definition of  f, this def. of  p satisfies (1) capacity 

constraint, (2) flow constraint.

p(u,v)=

NET FLOW VERSUS POSITIVE FLOW 
DEFINITIONS
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FLOW NETWORKS & MAXIMUM FLOW 
PROBLEM

• maximum flow problem : given a flow network G with 

source s and sink t

– find a flow of maximum value from s to t

• flow network with multiple sources and sinks :

– a flow network G with m sources {s1, s2,..., sm}= Sm and n sinks {t1, 

t2,..., tn}= Tn

– Max flow problem : find a flow of max value from m sources to n

sinks

– Can reduce to an ordinary max-flow problem with a single source & a 

single sink
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• add a supersource s and a supersink t such that

– Add a directed edge (s,si) with capacity c(s,si)=

for i=1,2,...,m

– Add a directed edge (ti, t) with capacity c(t,ti)=

for i=1,2,...,n

– i.e., V = V  {s,t}; E = E  {(s,si) with c(s,si)=:si}  {(t,ti) 

with c(t,ti)=:ti}

FLOW NETWORKS & MAXIMUM FLOW 
PROBLEM
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Example: A flow network with multiple sources and sinks
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FLOW NETWORKS & MAXIMUM FLOW 
PROBLEM
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IMPLICIT SUMMATION NOTATION

X X Y

f(x,y)

f(X,X) = 0

f(y,x)

X

Y

Z

f(x,z)

f(y,z)

XY

f(X,Y) = – f(Y,X)

f(XY,Z) = f(X,Z) + f(Y,Z)
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CUTS OF FLOW NETWORKS & UPPER 
BOUND ON MAX FLOW

• def: A cut (S, T) of a flow network is a partition of V into 

S and T = V-S such that s  S and t  T

– Similar to the cut definition given for MST

– Differences: G is a directed graph here & we insist that s  S and t 
T

• def: f(S, T) is the net flow across the cut (S, T) of G for a flow f on G

– Add all edges S T and negative of all edges T  S due to skew 

symmetry

• def: c(S, T) is the capacity across the cut (S, T) of G

– not like flow because no skew symmetry; just add edges S T (no 
neg. values)
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(S1, T1) = ({s, a, b}, {c, d, t})

• f(S1, T1) = f(a, c) + f(b, c) + f(b, d)

=   12    +   (-4)   +    11 = 19

• c(S1, T1) = c(a, c) + c(b, d)

=     12    +    14    = 26

(S2, T2) = ({s, a}, {b, c, d, t})

• f(S2, T2) = f(s, b) + f(a, b) + f(a, c)

=     8    +    (-1)   +    12  = 19

• c(S2, T2) = c(s, b) + c(a, b) + c(a, c) 

=     13   +     10    +    12 = 35

a c
15/2011/16

11/14

12/12

b d

s t

4/4

4/9

8/13

T1

Example:

0/101/4
7/7

S1 T1

S2 T2

CUTS OF FLOW NETWORKS & UPPER 
BOUND ON MAX FLOW
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RESIDUAL NETWORKS

• intuitively: the residual network Gf of a flow network G with a flow f

– Consists of edges that can admit more flow

• def: given a flow network G = (V, E) with a flow f

– residual capacity of (u, v): cf (u, v) = c(u, v) – f(u, v)

• cf (u, v): additional flow we can push from u to v without exceeding 
c(u, v)

– residual network of G induced by f is the graph Gf = (V, Ef) with

• Strictly positive residual capacities: Ef = {(u, v)VxV: cf (u, v) > 0}

Vvu  ,
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• recall: if both (u, v)  E and (v, u)  E then

– Transform such that either f(u, v) = 0 or f(v, u) = 0 by cancellation

• examples:

(1) both (u, v)  E and (v, u)  E

cf (u, v) = c (u, v) – f (u, v) = 5 – 3 = 2 > 0

cf (v, u) = c (v, u) – f (v, u) = 1 – (–3) = 4 > 0

u v
3/5

0/1
u v

2

4

RESIDUAL NETWORKS
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(2) (u, v) E but (v, u)  E and f(u, v) ≥ 0: (v, u) becomes an edge of Ef

• |Ef| ≤ 2|E|, since (u,v)Ef only if at least one of (u,v) and (v,u) 
is in E

• note: cf (u, v) + cf (v, u) = c(u, v) + c(v, u) 

u v
5/5

u v
5 cf (u, v) = 5 – 5 = 0 ≤ 0×

cf (v, u) = 0 – (– 5)  = 5 > 0 √

u v
3/5

u v
2

3

cf (u, v) = 5 – 3 = 2 > 0 √

cf (v, u) = 0 – (– 3) = 3 > 0 √

RESIDUAL NETWORKS
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AUGMENTING PATHS

• For a flow f on G

– augmenting path p is a simple path from s to t in Gf

• cf (p): residual capacity of a path p =

– i.e., cf (p) = max. amount of the flow we can ship along edges of 

p on Gf

)},({min
),(

vuc f
pvu 
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AUGMENTING PATHS

• L6: let f be a flow on G, and let p be an augmenting path in Gf . Let fp be 

a flow on Gf with value 

| fp | = cf (p) > 0 defined as

cf (p) if (u,v)  p in Gf

fp (u,v) =

0 otherwise

then, f’ = f+fp is a flow on G with value 

| f’ | = | f | + | fp | > | f |
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AUGMENTING PATHS

• example: a single path p on G
– can easily say that it is not all of G since flow is not conserved on p

– define flow fp on Gf with cf (p) = min{2, 4, 5, 2, 2, 2} = 2

s t
3/5 2/6 5/5 2/3 2/4

p on G with f:

s t
2

3

4

2

5
2

1

2

2
p on Gf :

s t
2/2 2/4

2/5
2/2 2/2

fp on Gf :
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AUGMENTING PATHS

• example (cont.): a single path p on G

– flow on p in G that results from augmenting along path p:

s t
3/5 2/6 5/5 2/3 2/4

p on G with f:

s t
5/5 4/6 3/5 0/3 4/4

f + fp on p of 
G: +2 +2 -2-2 +2

s t
2/2 2/4

2/5
2/2 2/2

fp on Gf :
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EXAMPLE

(a) The flow network G and flow f. 
(b) The residual network Gf with augmenting path p shaded; its residual 

capacity is cf (p)=cf(v2, v3). Edges with residual capacity equal to 0, such 
as (v1, v3) are not shown
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EXAMPLE

(c) The flow in G that results from augmenting along path p by its residual 
capacity 4. Edges carrying no flow, such as (v3, v2) are labeled only by their 
capacity, another convention we follow throughout. 
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EXAMPLE

(d) The residual network induced by the flow in (c).
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EXAMPLE

A cut (S, T) in the flow network, where S={s, v1, v2 } and T ={v3, v4 , t }. 
The vertices in S are black, and the vertices in T are white. 
The net flow across (S, T) is f  (S,T)=19, and the capacity is c(S, T)= 26.
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MAX-FLOW MIN-CUT THEOREM

• Thm (max-flow min-cut): the following are equivalent for a flow f on G

– (1) f is a maximum flow

– (2) Gf contains no augmenting paths

– (3) | f | = c(S, T) for some cut (S, T) of G
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FORD-FULKERSON METHOD

• iterative algorithm: start with initial flow f =[0] with |f| = 0

– at each iteration, increase | f | by finding an augmenting path

– repeat this process until no augmenting path can be found

– by max-flow min-cut theorem: upon termination this process yields a 
max flow

FORD-FULKERSON-METHOD(G, s, t)
initialize flow f  to 0

while  an augmenting path p do

augment flow f along path p

return f
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• basic Ford-Fulkerson Algorithm: data structures
– note (u,v)  Ef only if (u,v)  E or (v,u)  E

– maintain an adj-list representation of directed graph G' = (V', 
E'), where

E' = {(u,v): (u,v)  E or (v,u)  E}, i.e.,

– for each v  Adj[u] in G' maintain the record

– note: G' used to represent both G and Gf , i.e., for any edge (u,v) 
 E'

c[u,v] > 0  (u,v)  E and cf [u,v] > 0  (u,v)  Ef

v f(u,v) c(u,v) cf (u,v)

FORD-FULKERSON ALGORITHM
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FORD-FULKERSON (G', s, t)

for each edge (u,v)  E' do

f [u,v] ← 0

cf [u,v] ← 0

Gf ← COMPUTE-GF(G', f)

while  an s t path p in Gf do
cf (p) ← min {cf [u,v]: (u,v)  p}

for each edge (u,v)  p do

f [u,v] ← f [u,v] + cf (p) 

CANCEL(G', u, v)

Gf ← COMPUTE-GF(G', f)

COMPUTE-GF (G', f)

for each edge (u,v)  E' do

if c[u,v] – f [u,v] > 0 then

cf [u,v] ← c[u,v] – f[u,v]

else

cf [u,v] ← 0

return G'

CANCEL (G', u, v)

min ← {f [u,v], f [v,u]}

f [u,v] ← f [u,v] – min 

f [v,u] ← f [v,u] – min

FORD-FULKERSON ALGORITHM
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• augmenting path in Gf  is chosen arbitrarily

• performance if capacities are integers: O(E |f*|)
– while-loop: time to find s    t path in Gf  = O(E') = O(E)

– # of while-loop iterations: ≤ |f*|, where f* = max flow

• so, running time is good if capacities are integers and |f*| is 
small

FORD-FULKERSON ALGORITHM
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FORD-FULKERSON ALGORITHM

The left side of  each part shows the residual network Gf  from line 3 with a shaded 
augmenting path p.  The right side of  each part shows the new flow f  that results from 
augmenting f  by fp. 
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FORD-FULKERSON ALGORITHM

(f) The residual network at the last while loop test. It has no augmenting paths, and the flow 
f  shown in (e) is therefore a maximum flow. The value of  the maximum flow found is 23.
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• might never terminate for non-integer capacities

• efficient algorithms: 

– augment along max-capacity path in Gf: not mentioned in textbook

– augment along breadth-first path in Gf: Edmonds-Karp algorithm 

 O(VE2)

FORD-FULKERSON ALGORITHM
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EDMONDS-KARP ALGORITHM

• def: δf (s,v) = shortest path distance from s to v in Gf 

– unit edge weights in Gf  δf (s,v) = breadth-first distance from s to v
in Gf 

• L7:  v V – {s,t}; δ (s,v) in Gf’s increases monotonically 
with each augmentation

• proof: suppose 
– (i) a flow f on G induces Gf 

– (ii) fp along an augmenting path in Gf  produces f’ = f + fp on G

– (iii) f’ on G induces Gf’

• notation: δ(s,v) = δf (s,v) and δ’(s,v) = δf’ (s,v) 



CSE5311 Design and Analysis of  Algorithms 36Dept. CSE, UT Arlington

• many combinatorial optimization problems can be reduced 
to a max-flow problem

• maximum bipartite matching problem is a typical example

Maximum Bipartite Matching Problem
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• given an undirected graph G = (V, E)
• def: a matching is a subset of edges M  E such that

 v  V, at most one edge of M is incident to v

• def: a vertex v  V is matched by a matching M if some edge M is 
incident to v, otherwise v is unmatched

• def: a maximum matching M* is a matching M of maximum cardinality, 
i.e., |M*| ≥ |M| for any matching M

• def: G=(V,E) is a bipartite graph if V=LR where L∩R= such that 
E={(u,v): u  L and v  R}

Maximum Bipartite Matching Problem
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• applications: job task assignment problem

– Assigning a set L of tasks to a set R of machines

– (u,v)  E  task u  L can be performed on a machine   v  R

– a max matching provides work for as many machines as possible

Maximum Bipartite Matching Problem
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Maximum Bipartite Matching Problem

• example: two matchings M1 & M2 on a sample graph with 
|M1| = 2 & |M2| = 3

u1

u3

u4

u5

u2

v1

v3

v4

v2

L R

M1 = {(u1,v1), (u3,v3)}

u1

u3

u4

u5

u2

v1

v3

v4

v2

L R

M2 = {(u2,v1), (u3,v2) , (u5,v3)}
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• idea: construct a flow network in which flows correspond to 
matchings

• define the corresponding flow network G'=(V', E') for the 
bipartite graph as
– V' = V  {s}  {t} s, t V

– E' = {(s,u):  u L}{(u,v): u  L, v  R, (u,v)  E} 

{(v,t):  v  R}

– assign unit capacity to each edge of E'

Finding a Maximum Bipartite Matching
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u1

u3

u4

u5

u2

v1

v3

v4

v2

s t

1

1

1

1

1

1

1

1

1

u1

u3

u4

u5

u2

v1

v3

v4

v2

1

1

1

1

1
1

1 1

Finding a Maximum Bipartite Matching
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1

Finding a Maximum Bipartite Matching
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• def: a flow f on a flow network is integer-valued if f(u,v) is 
integer u,v  V

• L8: (a) IF M is a matching in G, THEN  an integer-valued f 
on G' with | f | = |M|

(b) IF f is an integer-valued f on G', THEN  a 
matching M in G with | M | = | f |

Finding a Maximum Bipartite Matching
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• proof L8 (a): let M be a matching in G
– define the corresponding flow f on G' as 
u,vM; f(s,u)=f(u,v)=f(v,t) = 1 & f(u,v) = 0 for all other edges

• first show that f is a flow on G':
– 1 unit of flow passes thru the path s → u → v → t for each u,v 

M
these paths are disjoint s    t paths, i.e., no common intermediate 

vertices

– f is a flow on G' satisfying capacity constraint, skew symmetry & 
flow conservation
because f can be obtained by flow augmentation along these      

s    t disjoint paths

Finding a Maximum Bipartite Matching
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• second show that | f | = |M|:
– net flow accross the cut ({s}  L, R {t}) = | f | by L3

– | f | = f (s  L, R  t) = f (s, R  t) + f (L, R  t)
= f (s, R  t) + f (L, R) + f (L, t)
= 0 + f (L, R) + 0;  f (s, R  t) = f (L, t) since  no such edges
= f (L, R) = |M| since f(u,v) = 1 u L, v  R & (u,v) 

M

Finding a Maximum Bipartite Matching
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• proof L8 (b): let f be a integer-valued flow in G'

– define M={(u,v): u  L, v  R, and f (u,v) > 0} 

• first show that M is a matching in G: i.e., all edges in M are 
vertex disjoint
– let pe(u) / pl(u) = positive net flow entering / leaving vertex u, u 

V

– each u  L has exactly one incoming edge (s,u) with c(s,u)=1  pe(u) 
≤ 1 uL

Finding a Maximum Bipartite Matching
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– since f is integer-valued; u  L, pe(u) = 1 pl(u) = 1 due to flow 
conservation

u  L, pe(u)=1  exactly one vertex vR  f(u,v) = 1 
to make pl(u) = 1 

– thus, at most one edge leaving each vertex u  L carries positive 
flow = 1

– a symmetric argument holds for each vertex v  R
– therefore, M is a matching

Finding a Maximum Bipartite Matching
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• second show that |M| = | f |:
– |M| = f (L, R)    by above def for M since f (u,v) is either 0 or 1

= f (L, V' – s – L – t) 

= f (L,V') – f (L,s) – f  (L,L) – f (L,t)

= 0 – f (L,s) – 0 – 0  

= – f (L,s) = f (s,L) = | f |  due to skew symmetry & then def.

f  (L,V') = f  (L,V') = 
0 due to flow cons.
f  (L,t) = 0 since no 
edges from L to t

Finding a Maximum Bipartite Matching
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Finding a Maximum Bipartite Matching

• example: a matching M with |M| = 3 & a f on the 
corresponding G' with | f | = 3

u1

u3

u4

u5

u2

v1

v3

v4

v2

u1

u3

u4

u5

u2

v1

v3

v4

v2

s t

1

1

1

1

1

1

1

1

1
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Thank you!


