Design and Analysis of Algorithms

CSE 5311 Lecture 3 Divide-and-Conquer

Junzhou Huang, Ph.D.

Department of Computer Science and Engineering

Dept. CSE, UT Arlington

Reviewing: Θ-notation

Definition:

 $\Theta(g(n)) = \{ f(n) : \text{there exist positive constants } c_1, c_2, \text{ and} \\ n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \\ \text{ for all } n \ge n_0 \}$

Basic Manipulations:

- Drop low-order terms; ignore leading constants.
- Example: $3n^3 + 90n^2 5n + 6046 = \Theta(n^3)$

Reviewing: Insertion Sort Analysis

Worst case: Input reverse sorted.

$$T(n) = \sum_{j=2}^{n} \Theta(j) = \Theta(n^2)$$

[arithmetic series]

Average case: All permutations equally likely.

$$T(n) = \sum_{j=2}^{n} \Theta(j/2) = \Theta(n^2)$$

Is insertion sort a fast sorting algorithm?

- Moderately so, for small *n*.
- Not at all, for large *n*.

Reviewing: Recurrence for Merge Sort

$$T(n) = \begin{cases} \Theta(1) \text{ if } n = 1; \\ 2T(n/2) + \Theta(n) \text{ if } n > 1. \end{cases}$$

- We shall usually omit stating the base case when T(n)
 = O(1) for sufficiently small n, but only when it has no effect on the asymptotic solution to the recurrence.
- Next Lecture will provide several ways to find a good upper bound on T(n).

Reviewing: Recursion Tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

Solving Recurrences

- Recurrence
 - The analysis of integer multiplication from last lecture required us to solve a recurrence
 - Recurrences are a major tool for analysis of algorithms
 - Divide and Conquer algorithms which are analyzable by recurrences.
- Three steps at each level of the recursion:
 - **Divide** the problem into a number of subproblems that are smaller instances of the same problem.
 - **Conquer** the subproblems by solving them recursively. If the subproblem sizes are small enough, however, just solve the subproblems in a straightforward manner.
 - Combine the solutions to the subproblems into the solution for the original problem.

Recall: Integer Multiplication

- Let X = A B and Y = C D where A,B,C and D are n/2 bit integers
- Simple Method: $XY = (2^{n/2}A+B)(2^{n/2}C+D)$
- Running Time Recurrence $T(n) < 4T(n/2) + \Theta(n)$

How do we solve it?

Substitution Method

The most general method:

- 1. Guess the form of the solution.
- 2. Verify by induction.
- 3. Solve for constants.

Example: $T(n) = 4T(n/2) + \Theta(n)$

- [Assume that $T(1) = \Theta(1)$.]
- Guess $O(n^3)$. (Prove O and Ω separately.)
- Assume that $T(k) \le ck^3$ for $k \le n$.
- Prove $T(n) \le cn^3$ by induction.

Example of substitution

$$T(n) = 4T(n/2) + \Theta(n)$$

$$\leq 4c(n/2)^{3} + \Theta(n)$$

$$= (c/2)n^{3} + \Theta(n)$$

$$= cn^{3} - ((c/2)n^{3} - \Theta(n)) \quad \leftarrow \text{desired} - \text{residual}$$

$$\leq cn^{3} \leftarrow \text{desired}$$

We can imagine $\Theta(n)=100n$. Then, whenever $(c/2)n^3 - 100n \ge 0$, for example, if $c \ge 200$ and $n \ge 1$.

residual

Dept. CSE, UT Arlington

Example

- We must also handle the initial conditions, that is, ground the induction with base cases.
- *Base:* $T(n) = \Theta(1)$ for all $n < n_0$, where n_0 is a suitable constant.
- For $1 \le n < n_0$, we have " $\Theta(1)$ " $\le cn^3$, if we pick *c* big enough.

This bound is not tight!

A Tighter Upper Bound?

We shall prove that $T(n) = O(n^2)$.

Assume that $T(k) \leq ck^2$ for k < n:

$$T(n) = 4T(n/2) + 100n$$

 $\leq cn^2 + 100n$
 $\leq cn^2$

for **no** choice of c > 0. Lose!

Dept. CSE, UT Arlington

A Tighter Upper Bound!

IDEA: Strengthen the inductive hypothesis.

• *Subtract* a low-order term.

Inductive hypothesis: $T(k) \le c_1 k^2 - c_2 k$ for k < n.

$$T(n) = 4T(n/2) + 100n$$

$$\leq 4(c_1(n/2)^2 - c_2(n/2)) + 100n$$

$$= c_1n^2 - 2c_2n + 100n$$

$$= c_1n^2 - c_2n - (c_2n - 100n)$$

$$\leq c_1n^2 - c_2n \quad \text{if } c_2 > 100.$$

Pick C_1 big enough to handle the initial conditions.

Dept. CSE, UT Arlington

Recursion-tree Method

- A recursion tree models the costs (time) of a recursive execution of an algorithm.
- The recursion tree method is good for generating guesses for the substitution method.
- The recursion-tree method can be unreliable, just like any method that uses ellipses (...).
- However, the recursion-tree method promotes intuition

Solve $T(n) = T(n/4) + T(n/2) + n^2$:

Solve $T(n) = T(n/4) + T(n/2) + n^2$:

T(*n*)

Solve $T(n) = T(n/4) + T(n/2) + n^2$:

Solve $T(n) = T(n/4) + T(n/2) + n^2$:

Dept. CSE, UT Arlington

Solve $T(n) = T(n/4) + T(n/2) + n^2$:

Dept. CSE, UT Arlington

Appendix: Geometric Series

$$1 + x + x^{2} + \dots + x^{n} = \frac{1 - x^{n+1}}{1 - x} \text{ for } x \neq 1$$
$$1 + x + x^{2} + \dots = \frac{1}{1 - x} \text{ for } |x| < 1$$

Dept. CSE, UT Arlington

The Master Method

The master method applies to recurrences of the form

T(n) = a T(n/b) + f(n) ,

where $a \ge 1$, b > 1, and f is asymptotically positive.

Idea of Master Theorem

Dept. CSE, UT Arlington

Case (I)

Compare f(n) with $n^{\log_b a}$:

- 1. $f(n) = O(n^{\log_b a \varepsilon})$ for some constant $\varepsilon > 0$.
 - f(n) grows polynomially slower than $n^{\log_b a}$ (by an n^{ε} factor). **Solution:** $T(n) = \Theta(n^{\log_b a})$.

Idea of Master Theorem

 $f(n) = n^{\log_b a - \varepsilon}$ and $a f(n/b) = a (n/b)^{\log_b a - \varepsilon} = b^{\varepsilon} n^{\log_b a - \varepsilon}$

Dept. CSE, UT Arlington

Case (II)

Compare f(n) with $n^{\log_b a}$:

- 2. $f(n) = \Theta(n^{\log_b a})$ for some constant $k \ge 0$.
 - f(n) and $n^{\log_b a}$ grow at similar rates. Solution: $T(n) = \Theta(n^{\log_b a} \lg n)$.

Idea of Master Theorem

Case (III)

Compare f(n) with $n^{\log_b a}$:

3. $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$.

• f(n) grows polynomially faster than $n^{\log_b a}$ (by an n^{ε} factor), and f(n) satisfies the *regularity condition* that $a f(n/b) \le c f$ (*n*) for some constant c < 1.

Solution: $T(n) = \Theta(f(n))$.

Idea of master theorem

 $\Theta(f(n))$

$f(n) = n^{\log_b a + \varepsilon}$ and $a f(n/b) = a (n/b)^{\log_b a + \varepsilon} = b^{-\varepsilon} n^{\log_b a + \varepsilon}$

Dept. CSE, UT Arlington

Ex.
$$T(n) = 4T(n/2) + n$$

 $a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n.$
CASE 1: $f(n) = O(n^{2-\varepsilon})$ for $\varepsilon = 1.$
 $\therefore T(n) = \Theta(n^2).$

Ex.
$$T(n) = 4T(n/2) + n^2$$

 $a = 4, b = 2 \Rightarrow n^{\log b^a} = n^2; f(n) = n^2.$
CASE 2: $f(n) = \Theta(n^2 \lg^0 n)$, that is, $k = 0.$
 $\therefore T(n) = \Theta(n^2 \lg n).$

Dept. CSE, UT Arlington

Examples

Ex.
$$T(n) = 4T(n/2) + n^3$$

 $a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n^3.$
CASE 3: $f(n) = \Omega(n^{2+\varepsilon})$ for $\varepsilon = 1$
and $4(n/2)^3 \le cn^3$ (reg. cond.) for $c = \frac{1}{2} < 1$
 $\therefore T(n) = \Theta(n^3).$

Ex.
$$T(n) = 4T(n/2) + n^2/\lg n$$

 $a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n^2/\lg n.$
Master method does not apply. In particular,
for every constant $\varepsilon > 0$, we have $n^{\varepsilon} = \omega(\lg n)$.

Dept. CSE, UT Arlington