Design and Analysis of Algorithms

CSE 5311

Lecture 3 Divide-and-Conquer

Junzhou Huang, Ph.D.

Department of Computer Science and Engineering

Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms

Reviewing: ®-notation

Definition:

O(g(n)) = { f(n) : there exist positive constants ¢, ¢,, and
nysuch that 0 < ¢, g(n) <f(n) <c,g(n)

forall n > n, |
Basic Manipulations:

* Drop low-order terms; ignore leading constants.

» Example: 3n3+ 90n° — 5n + 6046 = © (n°)

Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms

Reviewing: Insertion Sort Analysis

Worst case: Input reverse sorted.

1(n) = nz%) :qnz) larithmetic series]
Jj=2

Average case: All permutations equally likely.
n
) =D &(j/2)=€Eln2)
Jj=2

Is insertion sort a fast sorting algorithm?
* Moderately so, for small .
* Not at all, for large 7.

Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms

Reviewing: Recurrence for Merge Sort

CO(1)ifn=1;

T —
e 2T(n/2) + ©(n)if n > 1.

* We shall usually omit stating the base case when 7{(n)
= (1) for sufficiently small 7, but only when it has
no effect on the asymptotic solution to the

recurrence.
* Next Lecture will provide several ways to find a good
upper bound on 7(n).

Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms

Reviewing: Recursion Tree

Solve T(n)=2T(n/2) + cn, where ¢ > 0 is constant.

o] ¢ J ch
cn/2 / chl2 ch
b= VRN VRN
-gn cnl4 cnl4 cnl4 cnl4 ... cn
/
/
O(1) { Hleaves = n J O(n)

Total = ®(nlg n)

Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms

Solving Recurrences

e Recurrence

— The analysis of integer multiplication from last lecture required us to solve a
recurrence

— Recurrences are a major tool for analysis of algorithms

— Divide and Conquer algorithms which are analyzable by recurrences.

* Three steps at each level of the recursion:

— Divide the problem into a number of subproblems that are smaller
instances of the same problem.

— Conquer the subproblems by solving them recursively. If the subproblem
sizes are small enough, however, just solve the subproblems in a
straightforward manner.

— Combine the solutions to the subproblems into the solution for the original
problem.

Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms

Recall: Integer Multiplication

e Jet X =[A|Bland Y =|C |D |where A,B,C and D are n/2
bit integers

* Simple Method: XY = (2n/ 2A+B) (ZH/ 2C—I—D)
* Running Time Recurrence

T(n) < 4T(n/2) + O(n)

How do we solve it?

Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms

Substitution Method

The most general method:

1. Guess the form of the solution.
2. Verily by induction.
3. Solve for constants.

Example: T(n)=47T(n/2)+ ©&(n)

* [Assume that 7(1) = O(1).]

* Guess O(n’) . (Prove O and Q) separately.)
e Assume that 7(k) < ck’ fork<n .

« Prove 7(n) < cn’ by induction.

Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms

Example of substitution

T'(n)y=4T(n/2)+ ©®&n)
< 4¢(n/2) + On)
= (c/2)n3+ O(n)

=cn3 — ((c/2)n3-0(n)) <—desired — residual
< cn3 — desired

We can imagine ®&(n)=100n. Then, whenever (c/2)n®—100n >
0, for example, if c > 200 and n > 1. /

residual

Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms

Example

* We must also handle the initial conditions, that 1s, ground the
induction with base cases.

* Base: T(n) = 0O(1) for all » < n,, where 1, 1s a suitable constant.
* For | <n <n, we have “O(1)” < cn’, if we pick ¢ big enough.

This bound is not tight!

Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms

10

A Tighter Upper Bound?

We shall prove that T(n) = O(n?).

Assume that T(k) < ck? for k < n:

T(n)= 4T (n/2)+ 100n

cn? + 100n

CI’I2

IN

IA

for no choice of ¢ > 0. Lose!

Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms 11

A Tighter Upper Bound!

IDEA: Strengthen the inductive hypothesis.
* Subtracta low-order term.

Inductive hypothesis. T(k) < c,k? — ¢,k for k < n.
T(n)=4T(n/2)+ 100n
< 4(c,(nl2)% =c,(n/2))*+ 100n
.n%—2c,n+ 100n
= c,n? - c,n—(c,n—=100n)

<¢n®=c,n i ¢, > 100.

— C

Pick €, big enough to handle the initial conditions.

Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms

12

Recursion-tree Method

* A recursion tree models the costs (time) of a recursive execution
ot an algorithm.

* The recursion tree method 1s good for generating guesses for
the substitution method.

* The recursion-tree method can be unreliable, just like any
method that uses ellipses (...).

* However, the recursion-tree method promotes intuition

Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms

13

Example of Recursion Tree

Solve T(n) = T(n/4) + T(n/2) + n?:

Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms

14

Example of Recursion Tree

Solve T(n) = T(n/4) + T(n/2) + n?:

T(n)

Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms

15

Example of Recursion Tree

Solve T(n) = T(n/4) + T(n/2) + n?:
n2
N
T(n/4) T(n/2)

Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms

16

Example of Recursion Tree

Solve T(n) = T(n/4) + T(n/2) + n?:

2

n
/ \
(n/4)? (n/2)?
VAN N
T(n/16) T(n/8) T(n/8) T(n/4)

Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms

17

Example of Recursion Tree

Solve T(n) = T(n/4) + T(n/2) + n?:

2

n
/ \
(n/4)? (n/2)?
VAN N

(n/16)? (n/8)? (n/8)? n/4)?

/
/

O(1)

Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms

18

Example of Recursion Tree

Solve T(n) = T(n/4) + T(n/2) + n?:

N2
/ \
(n/4)? (n/2)?
VRN VRN
(n/16)? (n/8)? (n/8)? (n/4)?
/
/'
O(1)

Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms

19

Example of Recursion Tree

Solve T(n) = T(n/4) + T(n/2) + n?:

N2
(n/4)? () A— o
RN RN
(n/16)? (n/8)? (n/8)? (n/4)?
/
/
O(1)
Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms

20

Example of Recursion Tree

Solve T(n) = T(n/4) + T(n/2) + n?:

ng ...
(n/4)? (n/2y? 6
RN RN 75
(n/16)? (n/8)? (n/8)? (n/4)? ... LI
/ 256
/
O(1)
Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms

21

Example of Recursion Tree

Solve T(n) = T(n/4) + T(n/2) + n?:

[— 772

(n/4)? (22 oo S0
VRN /N 2156

/16)2 8)? 8)2 e 25 -

('7/) (n/8) (n/8) (n/4) 256n
/, .
O(1) -2y, 5 (572 3
fotal = (Fie '(156) +(156) +")
- o(r?)

geometric series
Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms 22

Appendix: Geometric Series

1_ 71+
I+ x4x2 4 - x T =~ forx=1
1—x
> 1
l+x+x"+-- = for|x| <1
1—x

Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms

23

The Master Method

The master method applies to recurrences of the form
T(n)=a T(n/b) + f(n),

where @ > 1, b > 1, and [is asymptotically positive.

Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms

24

Idea of Master Theorem

Recursion tree:

4 f(n) e f(n)
/M
f(n/b) f(n/b) - f(n/b) e af(n/b)
a
h =log,n / \%“)\
F(n/b?) F(n/b2) = F(AB2) o a2 f (n/b2)
/
#leaves = ! 1)
/] nlogva T
T(1) = Qo8
M — plogpa
\ S
Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms 25

Case (I)

Compare f(n) with n'°9»2:;

1. f(n)= O(n'"e=#) for some constant £ > 0.
e f(n) grows polynomially slower than »'°¢¢ (by an »® factor).
Solution: T(n) = O(n'oeb) .

Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms

26

Idea of Master Theorem

Recursion tree:

A f(n) P —
/M
f(n/b) f(nb) - f(n/b) -
a
h = log,n pe \f~)\
f(n/b?) f(nb?) - F(nb?) e
. / éASE 1: The weight increases A
" |geometrically from the root to the leaves.
/ The leaves hold a constant fraction of
| 7(1) @e total weight. p

f(n)=nleea-¢ and a f(n/b)=a (n/b)ogre—& = p& plogpa—=

Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms

nlogba T(1)

@(nlogba)

Case (1I)

Compare f(n) with n'°9»2:;

2. f(n)=0(n"%) for some constant k > 0.
 f(n) and n'°92 grow at similar rates.
Solution: T(n) = ©(n'°9%2 Ign) .

Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms

28

Idea of Master Theorem

Recursion tree:

t F() oo f(n)
/M
f(n/b) f(n/b) - f(n/b) e af(n/b)
a
h =log,n /\%_)&
f(n/b?) f(nb?) - F(n/b?) e a? f(n/b?)
/
: (¢ L : : ™ |
/ CASE 2: (£ = 0) The weight 1s nlogba 7(1)
7(1) approximately the same on each of
v the log, levels. P
®(n'°9r2lg n)

f(n)=n'e9p@ and af(n/b)=a (n/b)'°9pa= plogpa

Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms 29

Case (1II)

Compare f (n) with n'°9e;

3. f(n)=Q(n'o2e"¢) for some constant € > 0,
e f(n) grows polynomially faster than n'°¢¢ (by an »¢ factor),

and | (n) satisties the regularity condition that a f (n/b) <c f
(n) for some constant ¢ < 1.

Solution: T(n)=0O(f(n)).

Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms

30

Idea of master theorem

Recursion tree:

4 f(n) g
/M
f(n/b) f(n/b) e f(n/b) e
a
h = log,n pe \f~)\
f(n/b?) f(nb?) - F(n/b?) e
/ (CASE 3: The weight decreases A
: |geometrically from the root to the leaves.
/ The root holds a constant fraction of the | /o9 77(1)
7(1) \total weight. p

v

f(n)=nloea*e and a f(n/b)=a (n/b)logbe & = p & plogha+z

Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms

Examples

Ex. T(n)=4T(n/2) + n
a=4,b=2 = nloti=p?; f(n) = n.
CASE 1: f(n)=O(n” %) fore = 1.
- T(n) = O(n?).

Ex. T(n)=4T(n/2) + n?
a=4,b=2 = nloti=p?; f(n) = n’

CASE 2: f(n) = ©(n’1g’n), that is, k£ = 0.

;. T(n) = O(n’lgn).

Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms

32

Examples

Ex. T(n)=4T(n/2) + n’
a=4,b=2= ni=pn? f(n)=n’.
CASE 3: f(n)=Q(n” %) fore =1
and 4(n/2)° < cn’ (reg. cond.) for ¢ = 2<1
5. T(n) = O(n?).

Ex. T(n) =4T(n/2) + n?*/lgn
a=4,b=2 = nlots=p?; f(n) = n*lgn.
Master method does not apply. In particular,
for every constant ¢ > 0, we have n* =w(lgn).

Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms 33

