
CSE5311 Design and Analysis of Algorithms 1Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms 1

CSE 5311
Lecture 3 Divide-and-Conquer

Junzhou Huang, Ph.D.

Department of Computer Science and Engineering

Design and Analysis of Algorithms

CSE5311 Design and Analysis of Algorithms 2Dept. CSE, UT Arlington

Reviewing: Q-notation

• Drop low-order terms; ignore leading constants.
• Example: 3n3 + 90n2 – 5n + 6046 = Q (n3)

Definition:

Q(g(n)) = { f (n) : there exist positive constants c1, c2, and
n0 such that 0  c1 g(n)  f (n)  c2 g(n)
for all n  n0 }

Basic Manipulations:

CSE5311 Design and Analysis of Algorithms 3Dept. CSE, UT Arlington

Reviewing: Insertion Sort Analysis

Worst case: Input reverse sorted.

 


QQ
n

j

njnT
2

2)()(

Average case: All permutations equally likely.

 


QQ
n

j

njnT
2

2)2/()(

Is insertion sort a fast sorting algorithm?
• Moderately so, for small n.
• Not at all, for large n.

[arithmetic series]

CSE5311 Design and Analysis of Algorithms 4Dept. CSE, UT Arlington

Reviewing: Recurrence for Merge Sort

T(n) =
Q(1) if n = 1;

2T(n/2) + Q(n) if n > 1.

• We shall usually omit stating the base case when T(n)
= Q(1) for sufficiently small n, but only when it has
no effect on the asymptotic solution to the
recurrence.

• Next Lecture will provide several ways to find a good
upper bound on T(n).

CSE5311 Design and Analysis of Algorithms 5Dept. CSE, UT Arlington

Reviewing: Recursion Tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

Q(1)

h = lg n

cn

cn

cn

#leaves = n Q(n)

Total  Q(n lg n)

…

CSE5311 Design and Analysis of Algorithms 6Dept. CSE, UT Arlington

Solving Recurrences

• Recurrence
– The analysis of integer multiplication from last lecture required us to solve a

recurrence
– Recurrences are a major tool for analysis of algorithms
– Divide and Conquer algorithms which are analyzable by recurrences.

• Three steps at each level of the recursion:
– Divide the problem into a number of subproblems that are smaller

instances of the same problem.
– Conquer the subproblems by solving them recursively. If the subproblem

sizes are small enough, however, just solve the subproblems in a
straightforward manner.

– Combine the solutions to the subproblems into the solution for the original
problem.

CSE5311 Design and Analysis of Algorithms 7Dept. CSE, UT Arlington

Recall: Integer Multiplication

• Let X = A B and Y = C D where A,B,C and D are n/2
bit integers

• Simple Method: XY = (2n/2A+B)(2n/2C+D)

• Running Time Recurrence

T(n) < 4T(n/2) + Q(n)

How do we solve it?

CSE5311 Design and Analysis of Algorithms 8Dept. CSE, UT Arlington

Substitution Method

1. Guess the form of the solution.
2. Verify by induction.
3. Solve for constants.

The most general method:

Example: T(n) = 4T(n/2) + Q(n)

• [Assume that T(1) = Q(1).]
• Guess O(n3) . (Prove O and W separately.)
• Assume that T(k)  ck3 for k < n .
• Prove T(n)  cn3 by induction.

CSE5311 Design and Analysis of Algorithms 9Dept. CSE, UT Arlington

Example of substitution

desired – residual

We can imagine Q(n)=100n. Then, whenever (c/2)n3 – 100n 
0, for example, if c  200 and n  1.

desired

residual

3

33

3

3

))2/((

)2/(

)2/(4

)2/(4)(

cn

Q(n)nccn

Q(n)nc

Q(n)nc

Q(n)nTnT


--

+

+

+

CSE5311 Design and Analysis of Algorithms 10Dept. CSE, UT Arlington

Example

• We must also handle the initial conditions, that is, ground the
induction with base cases.

• Base: T(n) = Q(1) for all n < n0, where n0 is a suitable constant.
• For 1  n < n0, we have “Q(1)”  cn3, if we pick c big enough.

This bound is not tight!

CSE5311 Design and Analysis of Algorithms 11Dept. CSE, UT Arlington

A Tighter Upper Bound?

We shall prove that T(n) = O(n2).

Assume that T(k)  ck2 for k < n:

for no choice of c > 0. Lose!

)2/(4)(
2 100ncn

100nnTnT

+

+

2cn

CSE5311 Design and Analysis of Algorithms 12Dept. CSE, UT Arlington

A Tighter Upper Bound!

IDEA: Strengthen the inductive hypothesis.
• Subtract a low-order term.

Inductive hypothesis: T(k)  c1k2 – c2k for k < n.

if c2 > 100.

Pick c1 big enough to handle the initial conditions.

)(

2

))2/()2/((4

)2/(4)(

2
2

1

2
2

1

2
2

1

2
2

1

ncnc

100nncncnc

100nncnc

100nncnc

100nnTnT

-

---

+-

+-

+

2

CSE5311 Design and Analysis of Algorithms 13Dept. CSE, UT Arlington

Recursion-tree Method

• A recursion tree models the costs (time) of a recursive execution
of an algorithm.

• The recursion tree method is good for generating guesses for
the substitution method.

• The recursion-tree method can be unreliable, just like any
method that uses ellipses (…).

• However, the recursion-tree method promotes intuition

CSE5311 Design and Analysis of Algorithms 14Dept. CSE, UT Arlington

Example of Recursion Tree

Solve T(n) = T(n/4) + T(n/2) + n2:

CSE5311 Design and Analysis of Algorithms 15Dept. CSE, UT Arlington

Example of Recursion Tree

T(n)

Solve T(n) = T(n/4) + T(n/2) + n2:

CSE5311 Design and Analysis of Algorithms 16Dept. CSE, UT Arlington

Example of Recursion Tree

T(n/4) T(n/2)

n2

Solve T(n) = T(n/4) + T(n/2) + n2:

CSE5311 Design and Analysis of Algorithms 17Dept. CSE, UT Arlington

Example of Recursion Tree

Solve T(n) = T(n/4) + T(n/2) + n2:

n2

(n/4)2 (n/2)2

T(n/16) T(n/8) T(n/8) T(n/4)

CSE5311 Design and Analysis of Algorithms 18Dept. CSE, UT Arlington

Example of Recursion Tree

(n/16)2 (n/8)2 (n/8)2 (n/4)2

(n/4)2 (n/2)2

Q(1)

Solve T(n) = T(n/4) + T(n/2) + n2:

n2

CSE5311 Design and Analysis of Algorithms 19Dept. CSE, UT Arlington

Example of Recursion Tree

Solve T(n) = T(n/4) + T(n/2) + n2:

(n/16)2 (n/8)2 (n/8)2 (n/4)2

(n/4)2 (n/2)2

Q(1)

2nn2

CSE5311 Design and Analysis of Algorithms 20Dept. CSE, UT Arlington

Example of Recursion Tree

Solve T(n) = T(n/4) + T(n/2) + n2:

(n/16)2 (n/8)2 (n/8)2 (n/4)2

(n/4)2 (n/2)2

Q(1)

2
16
5 n

2nn2

CSE5311 Design and Analysis of Algorithms 21Dept. CSE, UT Arlington

Example of Recursion Tree

Solve T(n) = T(n/4) + T(n/2) + n2:

(n/16)2 (n/8)2 (n/8)2 (n/4)2

(n/4)2

Q(1)

2
16
5 n

2n

2
256
25 n

n2

(n/2)2

…

CSE5311 Design and Analysis of Algorithms 22Dept. CSE, UT Arlington

Example of Recursion Tree

Solve T(n) = T(n/4) + T(n/2) + n2:

(n/16)2 (n/8)2 (n/8)2 (n/4)2

(n/4)2

Q(1)

2
16
5 n

2n

2
256
25 n

     1
3

16
52

16
5

16
52 ++++n

…

Total =

= Q(n2)

n2

(n/2)2

geometric series

CSE5311 Design and Analysis of Algorithms 23Dept. CSE, UT Arlington

Appendix: Geometric Series

1

1
1 2

x
xx

-
+++  for |x| < 1

1

1
1

1
2

x
x

xxx
n

n

-
-

++++
+

 for x  1

CSE5311 Design and Analysis of Algorithms 24Dept. CSE, UT Arlington

The Master Method

The master method applies to recurrences of the form

T(n) = a T(n/b) + f (n) ,

where a  1, b > 1, and f is asymptotically positive.

CSE5311 Design and Analysis of Algorithms 25Dept. CSE, UT Arlington

f (n/b)

Idea of Master Theorem

f (n/b) f (n/b)

T (1)

Recursion tree:

…

f (n)
a

f (n/b2)f (n/b2) f (n/b2)…

a
h = logbn

f (n)

a f (n/b)

a2 f (n/b2)

…

#leaves = ah

= alogbn

= nlogba

nlogbaT (1)

CSE5311 Design and Analysis of Algorithms 26Dept. CSE, UT Arlington

Case (I)

Compare f (n) with nlogba:

1. f (n) = O(nlogba – e) for some constant e > 0.

• f (n) grows polynomially slower than nlogba (by an ne factor).

Solution: T(n) = Q(nlogba) .

CSE5311 Design and Analysis of Algorithms 27Dept. CSE, UT Arlington

f (n/b)

Idea of Master Theorem

f (n/b) f (n/b)

T (1)

Recursion tree:

…

f (n)
a

f (n/b2)f (n/b2) f (n/b2)…

a
h = logbn

f (n)

a f (n/b)

a2 f (n/b2)

…

nlogbaT (1)

CASE 1CASE 1: The weight increases
geometrically from the root to the leaves.
The leaves hold a constant fraction of
the total weight.

Q(nlogba)
f(n)= nlogba – e and a f(n/b)=a (n/b)logba – e = b e nlogba – e

CSE5311 Design and Analysis of Algorithms 28Dept. CSE, UT Arlington

Case (II)

Compare f (n) with nlogba:

2. f (n) = Q(nlogba) for some constant k  0.

• f (n) and nlogba grow at similar rates.

Solution: T(n) = Q(nlogba lgn) .

CSE5311 Design and Analysis of Algorithms 29Dept. CSE, UT Arlington

f (n/b)

Idea of Master Theorem

f (n/b) f (n/b)

T (1)

Recursion tree:

…

f (n)
a

f (n/b2)f (n/b2) f (n/b2)…

a
h = logbn

f (n)

a f (n/b)

a2 f (n/b2)

…

nlogbaT (1)CASE 2CASE 2: (k = 0) The weight is
approximately the same on each of
the logbn levels.

Q(nlogbalg n)
f(n)=nlogba and af(n/b)=a (n/b)logba= nlogba

CSE5311 Design and Analysis of Algorithms 30Dept. CSE, UT Arlington

Case (III)

Compare f (n) with nlogba:

3. f (n) = W(nlogba + e) for some constant e > 0.

• f (n) grows polynomially faster than nlogba (by an ne factor),

and f (n) satisfies the regularity condition that a f (n/b)  c f
(n) for some constant c < 1.

Solution: T(n) = Q(f (n)) .

CSE5311 Design and Analysis of Algorithms 31Dept. CSE, UT Arlington

f (n/b)

Idea of master theorem

f (n/b) f (n/b)

T (1)

Recursion tree:

…

f (n)
a

f (n/b2)f (n/b2) f (n/b2)…

a
h = logbn

f (n)

a f (n/b)

a2 f (n/b2)

…

nlogbaT (1)

CASE 3CASE 3: The weight decreases
geometrically from the root to the leaves.
The root holds a constant fraction of the
total weight.

Q(f (n))
f(n)= nlogba + e and a f(n/b)=a (n/b)logba + e = b -e nlogba + e

CSE5311 Design and Analysis of Algorithms 32Dept. CSE, UT Arlington

Examples

Ex. T(n) = 4T(n/2) + n
a = 4, b = 2  nlogba = n2; f (n) = n.
CASE 1: f (n) = O(n2 – e) for e = 1.
 T(n) = Q(n2).

Ex. T(n) = 4T(n/2) + n2

a = 4, b = 2  nlogba = n2; f (n) = n2.
CASE 2: f (n) = Q(n2lg0n), that is, k = 0.

 T(n) = Q(n2lg n).

CSE5311 Design and Analysis of Algorithms 33Dept. CSE, UT Arlington

Examples

Ex. T(n) = 4T(n/2) + n3

a = 4, b = 2  nlogba = n2; f (n) = n3.
CASE 3: f (n) = W(n2 + e) for e = 1

and 4(n/2)3  cn3 (reg. cond.) for c = ½<1
 T(n) = Q(n3).

Ex. T(n) = 4T(n/2) + n2/lgn
a = 4, b = 2  nlogba = n2; f (n) = n2/lgn.
Master method does not apply. In particular,
for every constant e > 0, we have ne  w(lgn).

