Design and Analysis of Algorithms

CSE 5311

Lecture 3 Divide-and-Conquer

Junzhou Huang, Ph.D.

Department of Computer Science and Engineering

Reviewing: Θ-notation

Definition:

$\Theta(g(n))=\left\{f(n)\right.$: there exist positive constants c_{1}, c_{2}, and n_{0} such that $0 \leq c_{1} g(n) \leq f(n) \leq c_{2} g(n)$ for all $\left.n \geq n_{0}\right\}$
Basic Manipulations:

- Drop low-order terms; ignore leading constants.
- Example: $3 n^{3}+90 n^{2}-5 n+6046=\Theta\left(n^{3}\right)$

Reviewing: Insertion Sort Analysis

Worst case: Input reverse sorted.

$$
T(n)=\sum_{j=2}^{n} \Theta(j)=\Theta\left(n^{2}\right) \quad \text { [arithmetic series] }
$$

Average case: All permutations equally likely.

$$
T(n)=\sum_{j=2}^{n} \Theta(j / 2)=\Theta\left(n^{2}\right)
$$

Is insertion sort a fast sorting algorithm?

- Moderately so, for small n.
- Not at all, for large n.

Reviewing: Recurrence for Merge Sort

$$
T(n)=\left\{\begin{array}{l}
\Theta(1) \text { if } n=1 \\
2 T(n / 2)+\Theta(n) \text { if } n>1
\end{array}\right.
$$

- We shall usually omit stating the base case when $T(n)$ $=\Theta(1)$ for sufficiently small n, but only when it has no effect on the asymptotic solution to the recurrence.
- Next Lecture will provide several ways to find a good upper bound on $T(n)$.

Reviewing: Recursion Tree

Solve $T(n)=2 T(n / 2)+c n$, where $c>0$ is constant.

Solving Recurrences

- Recurrence
- The analysis of integer multiplication from last lecture required us to solve a recurrence
- Recurrences are a major tool for analysis of algorithms
- Divide and Conquer algorithms which are analyzable by recurrences.
- Three steps at each level of the recursion:
- Divide the problem into a number of subproblems that are smaller instances of the same problem.
- Conquer the subproblems by solving them recursively. If the subproblem sizes are small enough, however, just solve the subproblems in a straightforward manner.
- Combine the solutions to the subproblems into the solution for the original problem.

Recall: Integer Multiplication

- Let $\mathrm{X}=\mathrm{A} \mid \mathrm{B}$ and $\mathrm{Y}=\mathrm{C} D$ where $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D are $\mathrm{n} / 2$ bit integers
- Simple Method: XY $=\left(2^{\mathrm{n} / 2} \mathrm{~A}+\mathrm{B}\right)\left(2^{\mathrm{n} / 2} \mathrm{C}+\mathrm{D}\right)$
- Running Time Recurrence

$$
\mathrm{T}(\mathrm{n})<4 \mathrm{~T}(\mathrm{n} / 2)+\Theta(\mathrm{n})
$$

How do we solve it?

Substitution Method

The most general method:

1. Guess the form of the solution.
2. Verify by induction.
3. Solve for constants.

Example: $T(n)=4 T(n / 2)+\Theta(n)$

- [Assume that $T(1)=\Theta(1)$.]
- Guess $O\left(n^{3}\right)$. (Prove O and Ω separately.)
- Assume that $T(k) \leq c k^{3}$ for $k<n$.
- Prove $T(n) \leq c n^{3}$ by induction.

Example of substitution

$$
\begin{aligned}
T(n) & =4 T(n / 2)+\Theta(n) \\
& \leq 4 c(n / 2)^{3}+\Theta(n) \\
& =(c / 2) n^{3}+\Theta(n) \\
& =c n^{3}-\left((c / 2) n^{3}-\Theta(n)\right) \quad \leftarrow \text { desired }- \text { residual } \\
& \leq c n^{3} \longleftarrow \text { desired }
\end{aligned}
$$

We can imagine $\Theta(n)=100 n$. Then, whenever $(c / 2) n^{3}-100 n \geq$ 0 , for example, if $c \geq 200$ and $n \geq 1$.

residual

Example

- We must also handle the initial conditions, that is, ground the induction with base cases.
- Base: $T(n)=\Theta(1)$ for all $n<n_{0}$, where n_{0} is a suitable constant.
- For $1 \leq n<n_{0}$, we have " $\Theta(1) " \leq c n^{3}$, if we pick c big enough.

This bound is not tight!

A Tighter Upper Bound?

We shall prove that $T(n)=O\left(n^{2}\right)$.
Assume that $T(k) \leq c k^{2}$ for $k<n$:

$$
\begin{aligned}
T(n) & =4 T(n / 2)+100 n \\
& \leq c n^{2}+100 n \\
& \leq c n^{2}
\end{aligned}
$$

for no choice of $c>0$. Lose!

A Tighter Upper Bound!

IDEA: Strengthen the inductive hypothesis.

- Subtract a low-order term.

Inductive hypothesis: $T(k) \leq c_{1} k^{2}-c_{2} k$ for $k<n$.

$$
\begin{aligned}
T(n) & =4 T(n / 2)+100 n \\
& \leq 4\left(c_{1}(n / 2)^{2}-c_{2}(n / 2)\right)^{2} 100 n \\
& =c_{1} n^{2}-2 c_{2} n+100 n \\
& =c_{1} n^{2}-c_{2} n-\left(c_{2} n-100 n\right) \\
& \leq c_{1} n^{2}-c_{2} n \quad \text { if } c_{2}>100 .
\end{aligned}
$$

Pick C_{1} big enough to handle the initial conditions.

Recursion-tree Method

- A recursion tree models the costs (time) of a recursive execution of an algorithm.
- The recursion tree method is good for generating guesses for the substitution method.
- The recursion-tree method can be unreliable, just like any method that uses ellipses (...).
- However, the recursion-tree method promotes intuition

Example of Recursion Tree

$$
\text { Solve } T(n)=T(n / 4)+T(n / 2)+n^{2} \text { : }
$$

Example of Recursion Tree

$$
\text { Solve } T(n)=T(n / 4)+T(n / 2)+n^{2} \text { : }
$$

$T(n)$

Example of Recursion Tree

$$
\text { Solve } T(n)=T(n / 4)+T(n / 2)+n^{2} \text { : }
$$

Example of Recursion Tree

$$
\text { Solve } T(n)=T(n / 4)+T(n / 2)+n^{2} \text { : }
$$

Example of Recursion Tree

$$
\text { Solve } T(n)=T(n / 4)+T(n / 2)+n^{2} \text { : }
$$

Example of Recursion Tree

$$
\text { Solve } T(n)=T(n / 4)+T(n / 2)+n^{2} \text { : }
$$

Example of Recursion Tree

$$
\text { Solve } T(n)=T(n / 4)+T(n / 2)+n^{2} \text { : }
$$

Example of Recursion Tree

$$
\text { Solve } T(n)=T(n / 4)+T(n / 2)+n^{2} \text { : }
$$

Example of Recursion Tree

Solve $T(n)=T(n / 4)+T(n / 2)+n^{2}$:

Appendix: Geometric Series

$$
\begin{aligned}
1+x+x^{2}+\cdots+x^{n} & =\frac{1-x^{n+1}}{1-x} \text { for } x \neq 1 \\
1+x+x^{2}+\cdots & =\frac{1}{1-x} \text { for }|x|<1
\end{aligned}
$$

The Master Method

The master method applies to recurrences of the form

$$
T(n)=a T(n / b)+f(n),
$$

where $a \geq 1, b>1$, and f is asymptotically positive.

Idea of Master Theorem

Recursion tree:

Case (I)

Compare $f(n)$ with $n^{\log _{b} a}$:

1. $f(n)=O\left(n^{\log _{b} a-\varepsilon}\right)$ for some constant $\varepsilon>0$.

- $f(n)$ grows polynomially slower than $n^{\log _{b} a}$ (by an n^{ε} factor).

Solution: $T(n)=\Theta\left(n^{\log b a}\right)$.

Idea of Master Theorem

Recursion tree:

$\Theta\left(n^{\log _{b} a}\right)$

$$
f(n)=n^{\log _{b} a-\varepsilon} \quad \text { and } \quad \text { a } f(n / b)=a(n / b)^{\log _{b} a-\varepsilon}=b^{\varepsilon} n^{\log _{b} a-\varepsilon}
$$

Case (II)

Compare $f(n)$ with $n^{\log _{b} a}$:
2. $f(n)=\Theta\left(n^{\log _{b} a}\right)$ for some constant $k \geq 0$.

- $f(n)$ and $n^{\log _{b} a}$ grow at similar rates.

Solution: $T(n)=\Theta\left(n^{\log _{b} a} \lg n\right)$.

Idea of Master Theorem

Recursion tree:

$f(n)=n^{\log _{b} a}$ and $a f(n / b)=a(n / b)^{\log _{b} a}=n^{\log _{b} a}$

Case (III)

Compare $f(n)$ with $n^{\log _{b} a}$:
3. $f(n)=\Omega\left(n^{\log _{b} a+\varepsilon}\right)$ for some constant $\varepsilon>0$.

- $f(n)$ grows polynomially faster than $n^{\log _{b} a}$ (by an n^{ε} factor), and $f(n)$ satisfies the regularity condition that $a f(n / b) \leq c f$ (n) for some constant $c<1$.
Solution: $T(n)=\Theta(f(n))$.

Idea of master theorem

Recursion tree:

Examples

$$
\begin{aligned}
& \text { Ex. } T(n)=4 T(n / 2)+n \\
& a=4, b=2 \Rightarrow n^{\log _{b} a}=n^{2} ; f(n)=n \\
& \text { CASE 1: } f(n)=O\left(n^{2-\varepsilon}\right) \text { for } \varepsilon=1 \\
& \therefore T(n)=\Theta\left(n^{2}\right)
\end{aligned}
$$

Ex. $T(n)=4 T(n / 2)+n^{2}$
$a=4, b=2 \Rightarrow n^{\log _{b} a}=n^{2} ; f(n)=n^{2}$.
CASE 2: $f(n)=\Theta\left(n^{2} \lg ^{0} n\right)$, that is, $k=0$.
$\therefore T(n)=\Theta\left(n^{2} \lg n\right)$.

Examples

$$
\boldsymbol{E x} . T(n)=4 T(n / 2)+n^{3}
$$

$$
a=4, b=2 \Rightarrow n^{\log _{b} a}=n^{2} ; f(n)=n^{3}
$$

$$
\text { CASE 3: } f(n)=\Omega\left(n^{2+\varepsilon}\right) \text { for } \varepsilon=1
$$

$$
\text { and } 4(n / 2)^{3} \leq c n^{3} \text { (reg. cond.) for } c=1 / 2<1
$$

$$
\therefore T(n)=\Theta\left(n^{3}\right)
$$

Ex. $T(n)=4 T(n / 2)+n^{2} / \lg n$

$$
a=4, b=2 \Rightarrow n^{\log _{b} a}=n^{2} ; f(n)=n^{2} / \lg n
$$

Master method does not apply. In particular, for every constant $\varepsilon>0$, we have $n^{\varepsilon}=\omega(\lg n)$.

