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Reviewing: Q-notation

• Drop low-order terms; ignore leading constants.
• Example: 3n3 + 90n2 – 5n + 6046 = Q (n3)

Definition:

Q(g(n)) = { f (n) : there exist positive constants c1, c2, and
n0 such that 0  c1 g(n)  f (n)  c2 g(n)
for all n  n0 }

Basic Manipulations:



CSE5311 Design and Analysis of  Algorithms 3Dept. CSE, UT Arlington

Reviewing: Insertion Sort Analysis

Worst case: Input reverse sorted.
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Average case: All permutations equally likely.
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Is insertion sort a fast sorting algorithm?
• Moderately so, for small n.
• Not at all, for large n.

[arithmetic series]
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Reviewing: Recurrence for Merge Sort

T(n) =
Q(1) if n = 1;

2T(n/2) + Q(n) if n > 1.

• We shall usually omit stating the base case when T(n) 
= Q(1) for sufficiently small n, but only when it has 
no effect on the asymptotic solution to the 
recurrence.

• Next Lecture will provide several ways to find a good 
upper bound on T(n).
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Reviewing: Recursion Tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.
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Solving Recurrences

• Recurrence
– The analysis of  integer multiplication from last lecture required us to solve a 

recurrence
– Recurrences are a major tool for analysis of  algorithms 
– Divide and Conquer algorithms which are analyzable by recurrences.

• Three steps at each level of  the recursion:
– Divide the problem into a number of  subproblems that are smaller 

instances of  the same problem.
– Conquer the subproblems by solving them recursively. If  the subproblem 

sizes are small enough, however, just solve the subproblems in a 
straightforward manner.

– Combine the solutions to the subproblems into the solution for the original 
problem.



CSE5311 Design and Analysis of  Algorithms 7Dept. CSE, UT Arlington

Recall: Integer Multiplication

• Let X = A  B  and Y = C  D  where A,B,C and D are n/2 
bit integers

• Simple Method:  XY = (2n/2A+B)(2n/2C+D)

• Running Time Recurrence

T(n) < 4T(n/2) + Q(n)

How do we solve it?
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Substitution Method

1. Guess the form of  the solution.
2. Verify by induction.
3. Solve for constants.

The most general method:

Example: T(n) = 4T(n/2) + Q(n)

• [Assume that T(1) = Q(1).]
• Guess O(n3) .  (Prove O and W separately.)
• Assume that T(k)  ck3 for k < n .
• Prove T(n)  cn3 by induction.
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Example of substitution

desired – residual

We can imagine Q(n)=100n. Then, whenever  (c/2)n3 – 100n 
0, for example, if c  200 and n  1.
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Example

• We must also handle the initial conditions, that is, ground the 
induction with base cases.

• Base: T(n) = Q(1) for all n < n0, where n0 is a suitable constant.
• For 1  n < n0, we have “Q(1)”  cn3, if we pick c big enough.

This bound is not tight!
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A Tighter Upper Bound?

We shall prove that T(n) = O(n2).

Assume that T(k)  ck2 for k < n:

for no choice of c > 0.  Lose!
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A Tighter Upper Bound!

IDEA:  Strengthen the inductive hypothesis.
• Subtract a low-order term.

Inductive hypothesis: T(k)  c1k2 – c2k for k < n.

if  c2 > 100.

Pick c1 big enough to handle the initial conditions.
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Recursion-tree Method

• A recursion tree models the costs (time) of  a recursive execution 
of  an algorithm.

• The recursion tree method is good for generating guesses for 
the substitution method.

• The recursion-tree method can be unreliable, just like any 
method that uses ellipses (…).

• However, the recursion-tree method promotes intuition
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Example of Recursion Tree

Solve T(n) = T(n/4) + T(n/2) + n2:
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Example of Recursion Tree

T(n)

Solve T(n) = T(n/4) + T(n/2) + n2:
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Example of Recursion Tree

T(n/4) T(n/2)

n2

Solve T(n) = T(n/4) + T(n/2) + n2:
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Example of Recursion Tree

Solve T(n) = T(n/4) + T(n/2) + n2:

n2

(n/4)2 (n/2)2

T(n/16) T(n/8) T(n/8) T(n/4)
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Example of Recursion Tree

(n/16)2 (n/8)2 (n/8)2 (n/4)2

(n/4)2 (n/2)2

Q(1)

Solve T(n) = T(n/4) + T(n/2) + n2:

n2
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Example of Recursion Tree

Solve T(n) = T(n/4) + T(n/2) + n2:

(n/16)2 (n/8)2 (n/8)2 (n/4)2

(n/4)2 (n/2)2

Q(1)

2nn2
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Example of Recursion Tree

Solve T(n) = T(n/4) + T(n/2) + n2:

(n/16)2 (n/8)2 (n/8)2 (n/4)2

(n/4)2 (n/2)2

Q(1)

2
16
5 n
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Example of Recursion Tree

Solve T(n) = T(n/4) + T(n/2) + n2:

(n/16)2 (n/8)2 (n/8)2 (n/4)2

(n/4)2

Q(1)

2
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2
256
25 n
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(n/2)2

…
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Example of Recursion Tree

Solve T(n) = T(n/4) + T(n/2) + n2:
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geometric series
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Appendix: Geometric Series
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The Master Method

The master method applies to recurrences of  the form

T(n) = a T(n/b) + f (n) , 

where a  1, b > 1, and f is asymptotically positive.
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f (n/b)

Idea of Master Theorem

f (n/b) f (n/b)

T (1)

Recursion tree:

…

f (n)
a

f (n/b2)f (n/b2) f (n/b2)…

a
h = logbn

f (n)

a f (n/b)

a2 f (n/b2)

…

#leaves = ah

= alogbn

= nlogba

nlogbaT (1)
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Case (I)

Compare f (n) with nlogba:

1. f (n) = O(nlogba – e) for some constant e > 0.

• f (n) grows polynomially slower than nlogba (by an ne factor).

Solution: T(n) = Q(nlogba) .



CSE5311 Design and Analysis of  Algorithms 27Dept. CSE, UT Arlington

f (n/b)

Idea of Master Theorem

f (n/b) f (n/b)

T (1)

Recursion tree:

…

f (n)
a

f (n/b2)f (n/b2) f (n/b2)…

a
h = logbn

f (n)

a f (n/b)

a2 f (n/b2)

…

nlogbaT (1)

CASE 1CASE 1: The weight increases 
geometrically from the root to the leaves. 
The leaves hold a constant fraction of  
the total weight.

Q(nlogba)
f(n)= nlogba – e and a f(n/b)=a (n/b)logba – e = b e nlogba – e
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Case (II)

Compare f (n) with nlogba:

2. f (n) = Q(nlogba ) for some constant k  0.

• f (n) and nlogba grow at similar rates.

Solution: T(n) = Q(nlogba lgn) .
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f (n/b)

Idea of Master Theorem

f (n/b) f (n/b)

T (1)

Recursion tree:

…

f (n)
a

f (n/b2)f (n/b2) f (n/b2)…

a
h = logbn

f (n)

a f (n/b)

a2 f (n/b2)

…

nlogbaT (1)CASE 2CASE 2: (k = 0) The weight is 
approximately the same on each of  
the logbn levels.

Q(nlogbalg n)
f(n)=nlogba and af(n/b)=a (n/b)logba= nlogba
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Case (III)

Compare f (n) with nlogba:

3. f (n) = W(nlogba + e) for some constant e > 0.

• f (n) grows polynomially faster than nlogba (by an ne factor),

and f (n) satisfies the regularity condition that a f (n/b)  c f
(n) for some constant c < 1.

Solution: T(n) = Q( f (n) ) .
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f (n/b)

Idea of master theorem

f (n/b) f (n/b)

T (1)

Recursion tree:

…

f (n)
a

f (n/b2)f (n/b2) f (n/b2)…

a
h = logbn

f (n)

a f (n/b)

a2 f (n/b2)

…

nlogbaT (1)

CASE 3CASE 3: The weight decreases 
geometrically from the root to the leaves. 
The root holds a constant fraction of  the 
total weight.

Q( f (n))
f(n)= nlogba + e and a f(n/b)=a (n/b)logba + e = b -e nlogba + e
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Examples

Ex. T(n) = 4T(n/2) + n
a = 4, b = 2  nlogba = n2; f (n) = n.
CASE 1: f (n) = O(n2 – e) for e = 1.
 T(n) = Q(n2).

Ex. T(n) = 4T(n/2) + n2

a = 4, b = 2  nlogba = n2; f (n) = n2.
CASE 2: f (n) = Q(n2lg0n), that is, k = 0.

 T(n) = Q(n2lg n).



CSE5311 Design and Analysis of  Algorithms 33Dept. CSE, UT Arlington

Examples

Ex. T(n) = 4T(n/2) + n3

a = 4, b = 2  nlogba = n2; f (n) = n3.
CASE 3: f (n) = W(n2 + e) for e = 1

and 4(n/2)3  cn3 (reg. cond.) for c = ½<1
 T(n) = Q(n3).

Ex. T(n) = 4T(n/2) + n2/lgn
a = 4, b = 2  nlogba = n2; f (n) = n2/lgn.
Master method does not apply.  In particular, 
for every constant e > 0, we have ne  w(lgn).


