Design and Analysis of Algorithms

CSE 5311 Lecture 4 Master Theorem

Junzhou Huang, Ph.D.

Department of Computer Science and Engineering

Dept. CSE, UT Arlington

Reviewing: Solving Recurrences

- Recurrence
 - The analysis of integer multiplication from last lecture required us to solve a recurrence
 - Recurrences are a major tool for analysis of algorithms
 - Divide and Conquer algorithms which are analyzable by recurrences.
- Three steps at each level of the recursion:
 - Divide the problem into a number of subproblems that are smaller instances of the same problem.
 - **Conquer** the subproblems by solving them recursively. If the subproblem sizes are small enough, however, just solve the subproblems in a straightforward manner.
 - Combine the solutions to the subproblems into the solution for the original problem.

Recall: Integer Multiplication

- Let X = A B and Y = C D where A,B,C and D are n/2 bit integers
- Simple Method: $XY = (2^{n/2}A+B)(2^{n/2}C+D)$
- Running Time Recurrence $T(n) < 4T(n/2) + \Theta(n)$

How do we solve it?

Reviewing: Substitution Method

The most general method:

- 1. Guess the form of the solution.
- 2. Verify by induction.
- 3. Solve for constants.

Example: $T(n) = 4T(n/2) + \Theta(n)$

- [Assume that $T(1) = \Theta(1)$.]
- Guess $O(n^3)$. (Prove O and Ω separately.)
- Assume that $T(k) \le ck^3$ for $k \le n$.
- Prove $T(n) \le cn^3$ by induction.

The Master Method

The master method applies to recurrences of the form

T(n) = a T(n/b) + f(n) ,

where $a \ge 1$, b > 1, and f is asymptotically positive.

1. $f(n) = O(n^{\log_b a - \varepsilon})$ for some constant $\varepsilon > 0$. Then, $T(n) = \Theta(n^{\log_b a})$

- 2. $f(n) = \Theta(n^{\log_b a})$ for $k \ge 0$. Then, $T(n) = \Theta(n^{\log_b a} \lg n)$.
- 3. $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$ and f(n) satisfies the *regularity condition* that $a f(n/b) \le c f(n)$ for some constant c < 1. Then, $T(n) = \Theta(f(n))$

Dept. CSE, UT Arlington

Application of Master Theorem

- T(n) = 9T(n/3) + n;
 - a=9, b=3, f(n)=n
 - $n^{\log_b a} = n^{\log_3 9} = \Theta(n^2)$
 - $f(n)=O(n^{\log_3 9} \cdot \varepsilon)$ for $\varepsilon=1$
 - By case 1, $T(n) = \Theta(n^2)$.
- T(n) = T(2n/3) + 1
 - a=1, b=3/2, f(n)=1
 - $n^{\log_{b} a} = n^{\log_{3/2} 1} = \Theta(n^{0}) = \Theta(1)$

- By case 2,
$$T(n) = \Theta(\lg n)$$
.

Application of Master Theorem

- $T(n) = 3T(n/4) + n \lg n;$
 - $a=3, b=4, f(n)=n \lg n$
 - $n^{\log_b a} = n^{\log_4 3} = \Theta (n^{0.793})$
 - $-f(n)=\Omega(n^{\log_4 3+\varepsilon})$ for $\varepsilon \approx 0.2$
 - Moreover, for large *n*, the "regularity" holds for c=3/4. $\gg af(n/b) = 3(n/4) \lg(n/4) \le (3/4) n \lg n = cf(n)$
 - By case 3, $T(n) = \Theta(f(n)) = \Theta(n \lg n)$.

Exception to Master Theorem

• $T(n) = 2T(n/2) + n \lg n;$

$$- a=2, b=2, f(n) = n \lg n$$

- $n^{\log_b a} = n^{\log_2 2} = \Theta(n)$
- f(n) is asymptotically larger than $n^{\log_b a}$, but not polynomially larger because
- $f(n)/n^{\log_b a} = \lg n$, which is asymptotically less than n^{ε} for any $\varepsilon > 0$.
- Therefore, this is a gap between 2 and 3.

Where Are the Gaps

Note: 1. for case 3, the regularity also must hold. 2. if f(n) is $\lg n$ smaller, then fall in gap in 1 and 2 3. if f(n) is $\lg n$ larger, then fall in gap in 3 and 2 4. if $f(n)=\Theta(n^{\log_b a}\lg^k n)$, then $T(n)=\Theta(n^{\log_b a}\lg^{k+1}n)$ (as exercise)

9

Dept. CSE, UT Arlington

Master Theorem

The master method applies to recurrences of the form

T(n) = a T(n/b) + f(n) ,

where constants $a \ge 1$, b > 1, and f is asymptotically positive function

1. $f(n) = O(n^{\log_b a} - \varepsilon)$ for some constant $\varepsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$ 2. $f(n) = O(n^{\log_b a})$ for some constant $\varepsilon > 0$, then $T(n) = \Theta(n^{\log_b a} \lg n)$ 3. $f(n) = O(n^{\log_b a} + \varepsilon)$ for some constant $\varepsilon > 0$, and if $a f(n/b) \le c f(n)$ for some constant c < 1, then $T(n) = \Theta(f(n))$.

How to theoretically prove it?

Dept. CSE, UT Arlington

Proof for Exact Powers

- Suppose $n=b^k$ for $k\ge 1$.
- Lemma 4.2

- for
$$T(n) = \Theta(1)$$
 if $n=1$
- $aT(n/b) + f(n)$ if $n=b^k$ for $k \ge 1$

- where $a \ge 1$, b > 1, f(n) be a nonnegative function defined on exact powers of b, then

$$- T(n) = \Theta(n^{\log_b a}) + \sum_{j=0}^{\log_b^{n-1}} a^j f(n/b^j)$$

- Proof:
 - By iterating the recurrence
 - By recursion tree (<u>See figure 4.3</u>)

Dept. CSE, UT Arlington

Recursion Tree for T(n)=aT(n/b)+f(n)

Figure 4.3 The recursion tree generated by T(n) = aT(n/b) + f(n). The tree is a complete *a*-ary tree with $n^{\log_b a}$ leaves and height $\log_b n$. The cost of each level is shown at the right, and their sum is given in equation (4.6).

Dept. CSE, UT Arlington

Proof for Exact Powers (cont.)

- Lemma 4.3:
 - Let constants $a \ge 1$, $b \ge 1$, f(n) be a nonnegative function defined on exact power of b, then

- $g(n) = \sum_{j=0}^{\log_b^{n-1}} a^j f(n/b^j)$ can be bounded asymptotically for exact

power of *b* as follows:

- 1. If $f(n) = O(n^{\log_b a_{-\varepsilon}})$ for some $\varepsilon > 0$, then $g(n) = O(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $g(n) = \Theta(n^{\log_b a} \log n)$.
- 3. If $f(n) = \Omega(n^{\log_b a_{+\varepsilon}})$ for some $\varepsilon > 0$ and if $af(n/b) \le cf(n)$ for some c < 1 and all sufficiently large $n \ge b$, then $g(n) = \Theta(f(n))$.

Proof of Lemma 4.3

• For case 1: $f(n)=O(n^{\log_b a_{-\varepsilon}})$ implies $f(n/b^j)=O((n/b^j)^{\log_b a_{-\varepsilon}})$, so

•
$$g(n) = \sum_{j=0}^{\log_b^{n-1}} a^j f(n/b^j) = O(\sum_{j=0}^{\log_b^{n-1}} a^j (n/b^j)^{\log_b^{a-\varepsilon}})$$

• $= O(n^{\log_b^{a-\varepsilon}} \sum_{j=0}^{2} a^j / (b^{\log_b^{a-\varepsilon}})^j) = O(n^{\log_b^{a-\varepsilon}} \sum_{j=0}^{\log_b^{n-1}} a^j / (a^j (b^{-\varepsilon})^j))$
• $= O(n^{\log_b^{a-\varepsilon}} \sum_{j=0}^{2} (b^{\varepsilon})^j) = O(n^{\log_b^{a-\varepsilon}} (((b^{\varepsilon})^{\log_b^{n-1}})/(b^{\varepsilon}-1)))$

•
$$= O(n^{\log_b a_{-\varepsilon}}(((b^{\log_b n})^{\varepsilon} - 1)/(b^{\varepsilon} - 1)))$$

•
$$= O(n^{\log_b a} n^{-\varepsilon} (n^{\varepsilon} - 1)/(b^{\varepsilon} - 1))$$

• $= O(n^{\log_b a})$

Dept. CSE, UT Arlington

Proof of Lemma 4.3(cont.)

• For case 2: $f(n) = \Theta(n^{\log_b a})$ implies $f(n/b^j) = \Theta((n/b^j)^{\log_b a})$, so

•
$$g(n) = \sum_{j=0}^{\log_b^{n-1}} a^j f(n/b^j) = \Theta(\sum_{j=0}^{\log_b^{n-1}} a^j (n/b^j)^{\log_b^a})$$

• $= \Theta(n^{\log_b^a} \sum_{j=0}^{\log_b^{n-1}} a^j / (b^{\log_b^a})^j) = \Theta(n^{\log_b^a} \sum_{j=0}^{\log_b^{n-1}} 1)$

•
$$= \Theta(n^{\log_b a} \log_b a) = \Theta(n^{\log_b a} \log_b a)$$

Dept. CSE, UT Arlington

Proof of Lemma 4.3(cont.)

- For case 3:
 - Since g(n) contains f(n), $g(n) = \Omega(f(n))$
 - Since $a f(n/b) \leq c f(n)$, so $f(n/b) \leq (c/a) f(n)$,
 - *Iterating j times,* $f(n/b^j) \le (c/a)^j f(n)$, thus $a^j f(n/b^j) \le c^j f(n)$

$$-g(n) = \sum_{j=0}^{\log_b^{n-1}} a^j f(n/b^j) \le \sum_{j=0}^{\log_b^{n-1}} c^j f(n) \le f(n) \sum_{j=0}^{\infty} c^j = f(n) (1/(1-c))$$
$$= O(f(n))$$

- Thus, $g(n) = \Theta(f(n))$

Proof for Exact Powers (cont.)

• Lemma 4.4:

- for
$$T(n) = \Theta(1)$$
 if $n=1$
 $aT(n/b) + f(n)$ if $n=b^k$ for $k \ge 1$

- where $a \ge 1$, $b \ge 1$, f(n) be a nonnegative function,
- 1. If $f(n) = O(n^{\log_b a_{-\varepsilon}})$ for some $\varepsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$.
- 3. If $f(n)=\Omega(n^{\log_b a_{+\varepsilon}})$ for some $\varepsilon > 0$, and if $af(n/b) \le cf(n)$ for some c < 1 and all sufficiently large *n*, then $T(n)=\Theta(f(n))$.

Proof of Lemma 4.4 (cont.)

- Combine Lemma 4.2 and 4.3,
 - For case 1:
 - $\succ T(n) = \Theta(n^{\log_b a}) + O(n^{\log_b a}) = \Theta(n^{\log_b a}).$
 - For case 2:
 - $\succ T(n) = \Theta(n^{\log_b a}) + \Theta(n^{\log_b a} \lg n) = \Theta(n^{\log_b a} \lg n).$
 - For case 3:

 $\succ T(n) = \Theta(n^{\log_b a}) + \Theta(f(n)) = \Theta(f(n)) \text{ because } f(n) = \Omega(n^{\log_b a + \varepsilon}).$

Floors and Ceilings $(n \neq b^k \text{ for } k \ge 1)$

- $T(n) = a T(\lfloor n/b \rfloor) + f(n) \text{ and } T(n) = a T(\lceil n/b \rceil) + f(n)$
- Want to prove both equal to T(n) = a T(n/b) + f(n)
- Two results:
 - Master theorem applied to all integers *n*.
 - Floors and ceilings do not change the result.

 \succ (Note: we proved this by domain transformation too).

- Since $\lfloor n/b \rfloor \leq n/b$, and $\lceil n/b \rceil \geq n/b$, upper bound for floors and lower bound for ceiling is held.
- So prove upper bound for ceilings (similar for lower bound for floors).

Upper bound of proof for $T(n) = aT(\lceil n/b \rceil) + f(n)$

- consider sequence $n, \lceil n/b \rceil, \lceil \lceil n/b \rceil, \lceil \lceil n/b \rceil, \lceil \lceil n/b \rceil, b \rceil, b \rceil$...
- Let us define n_j as follows:
- $n_j = n$ if j = 0• $= \lceil n_{j-1}/b \rceil$ if j > 0
- The sequence will be $n_0, n_1, \ldots, n_{\lfloor \log_b n \rfloor}$

Let $j = \lfloor \log_b n \rfloor$, then

 $n_0 <= n$ $n_1 <= n/b + 1$ $n_2 <= n/b^2 + n/b + 1$

 $\begin{array}{l} \cdots & {}^{j-1} \\ n_j <= n/b^j + \sum_{i=0}^{j-1} 1/b^i \\ < n/b^j + b/(b-1) \end{array}$

Dept. CSE, UT Arlington

$$n_{\lfloor \log_{b} n \rfloor} < n / b^{\lfloor \log_{b} n \rfloor} + b/(b-1)$$

$$\leq n / b^{\log_{b} n-1} + b/(b-1)$$

$$= n/(n/b) + b/(b-1) = b + b/(b-1) = O(1)$$

Recursion Tree

Recursion Tree of $T(n) = a T(\lceil n/b \rceil) + f(n)$

Figure 4.4 The recursion tree generated by $T(n) = aT(\lceil n/b \rceil) + f(n)$. The recursive argument n_j is given by equation (4.12).

Dept. CSE, UT Arlington

The Proof of Upper Bound for Ceiling

$$- T(n) = \Theta(n^{\log_b a}) + \sum_{j=0}^{\lfloor \log_b n \rfloor - 1} a^j f(n_j)$$

- Thus similar to Lemma 4.3 and 4.4, the upper bound is proven.

$$g(n) = \sum_{j=0}^{\lfloor \log_b^n \rfloor^{-1}} a^j f(n_j)$$

Dept. CSE, UT Arlington

The Simple Format of Master Theorem

Exercise (1)

Give asymptotic upper and lower bound for $T(n)=2T(n/4) + n^{0.5}$

Using the master theorem, a=2, b=4,

 $n^{\log_b a} = n^{0.5}$ and f (n) = $n^{0.5}$. = $\Theta(n^{0.5})$

Case 2 applies,

Therefore, T (n) = Θ ($n^{0.5}$ lg n).

Exercise (2)

Give asymptotic upper and lower bound for $T(n)=7T(n/2)+n^2$

Using the master theorem, a=7, b=2,

 $n^{\log_b a} = n^{\log_2 7}$

f (n) = $n^2 = O(n^{\log_2 7 - \varepsilon})$ for some constant $\varepsilon > 0$ due to $2 < \lg 7 < 3$,

Case 1 applies,

Therefore, T (n) = Θ ($n^{\log_2 7}$).

Dept. CSE, UT Arlington

Exercise (3)

Give asymptotic upper and lower bound for $T(n)=7T(n/3) + n^2$

Using the master theorem, a=7, b=3, $n^{\log_b a} = n^{\log_3 7}$

 $f(n) = n^2 = \Omega(n^{\log_3 7 + \varepsilon})$ for some constant $\varepsilon > 0$

Check if $a f(n/b) \le c f(n)$ for constant $c \le 1$,

 $a(n/b)^2 = (7/9) n^2$

We can set c = 7/9 < 1, Case 3 applies,

Therefore, T (n) = Θ (n^2).

Dept. CSE, UT Arlington

Exercise (4)

Give asymptotic upper and lower bound for $T(n)=16T(n/4) + n^2$

Using the master theorem, a=16, b=4, $n^{\log_b a} = n^{\log_4 l b} = n^2$

 $f(n) = n^2 = \Theta(n^2)$

Case 2 applies,

Therefore, T (n) = Θ ($n^2 \lg n$).

Exercise (5)

Give asymptotic upper and lower bound for $T(n)=T(n^{0.5})+1$

The easy way to do this is with a change of variables.

Let $m = \lg n$ and $S(m) = T(2^m)$

$$T(2^m) = T(2^{m/2}) + 1$$
, So $S(m) = S(m/2) + 1$,

Using the master theorem, a=1, b=2. $n^{\log_b a} = 1$ and f (n) = 1.

Case 2 applies and $S(m) = \Theta(\lg m)$.

Therefore, T (n) = Θ (lg lg n).