Design and Analysis of Algorithms

CSE 5311

Lecture 4 Master Theorem

Junzhou Huang, Ph.D.
Department of Computer Science and Engineering

Reviewing: Solving Recurrences

- Recurrence
- The analysis of integer multiplication from last lecture required us to solve a recurrence
- Recurrences are a major tool for analysis of algorithms
- Divide and Conquer algorithms which are analyzable by recurrences.
- Three steps at each level of the recursion:
- Divide the problem into a number of subproblems that are smaller instances of the same problem.
- Conquer the subproblems by solving them recursively. If the subproblem sizes are small enough, however, just solve the subproblems in a straightforward manner.
- Combine the solutions to the subproblems into the solution for the original problem.

Recall: Integer Multiplication

- Let $\mathrm{X}=\mathrm{A} \mid \mathrm{B}$ and $\mathrm{Y}=\mathrm{C} D$ where $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D are $\mathrm{n} / 2$ bit integers
- Simple Method: XY $=\left(2^{\mathrm{n} / 2} \mathrm{~A}+\mathrm{B}\right)\left(2^{\mathrm{n} / 2} \mathrm{C}+\mathrm{D}\right)$
- Running Time Recurrence

$$
\mathrm{T}(\mathrm{n})<4 \mathrm{~T}(\mathrm{n} / 2)+\Theta(\mathrm{n})
$$

How do we solve it?

Reviewing: Substitution Method

The most general method:

1. Guess the form of the solution.
2. Verify by induction.
3. Solve for constants.

Example: $T(n)=4 T(n / 2)+\Theta(n)$

- [Assume that $T(1)=\Theta(1)$.]
- Guess $O\left(n^{3}\right)$. (Prove O and Ω separately.)
- Assume that $T(k) \leq c k^{3}$ for $k<n$.
- Prove $T(n) \leq c n^{3}$ by induction.

The Master Method

The master method applies to recurrences of the form

$$
T(n)=a T(n / b)+f(n),
$$

where $a \geq 1, b>1$, and f is asymptotically positive.

1. $f(n)=O\left(n^{\log _{b} a-\varepsilon}\right)$ for some constant $\varepsilon>0$. Then, $T(n)=\Theta\left(n^{\log _{b} a}\right)$
2. $f(n)=\Theta\left(n^{\log _{b} a}\right)$ for $k \geq 0$. Then, $\mathrm{T}(n)=\Theta\left(n^{\log _{b} a} \lg n\right)$.
3. $f(n)=\Omega\left(n^{\log _{b} a+\varepsilon}\right)$ for some constant $\varepsilon>0$ and $f(n)$ satisfies the regularity condition that $a f(n / b) \leq c f(n)$ for some constant $c<1$. Then, $T(n)=\Theta(f(n))$

Application of Master Theorem

- $\quad T(n)=9 T(n / 3)+n ;$
- $\quad a=9, b=3, f(n)=n$
$-\quad n^{\log _{b} a}=n^{\log _{3} 9}=\Theta\left(n^{2}\right)$
- $\quad f(n)=O\left(n^{\log _{3} 9-\varepsilon}\right)$ for $\varepsilon=1$
- By case $1, T(n)=\Theta\left(n^{2}\right)$.
- $\quad T(n)=T(2 n / 3)+1$
- $\quad a=1, b=3 / 2, f(n)=1$
$-n^{\log _{b} a}=n^{\log _{3 / 2} 1}=\Theta\left(n^{0}\right)=\Theta(1)$
- By case $2, T(n)=\Theta(\lg n)$.

Application of Master Theorem

- $T(n)=3 T(n / 4)+n \lg n ;$
$-a=3, b=4, f(n)=n \lg n$
$-n^{\log _{b} a}=n^{\log _{4} 3}=\Theta\left(n^{0.793}\right)$
$-f(n)=\Omega\left(n^{\log _{4}{ }^{3+}}\right)$ for $\varepsilon \approx 0.2$
- Moreover, for large n, the "regularity" holds for $\mathrm{c}=3 / 4$.
$>a f(n / b)=3(n / 4) \lg (n / 4) \leq(3 / 4) n \lg n=c f(n)$
- By case $3, T(n)=\Theta(f(n))=\Theta(n \lg n)$.

Exception to Master Theorem

- $T(n)=2 T(n / 2)+n \lg n ;$
$-a=2, b=2, f(n)=n \lg n$
$-n^{\log _{b}{ }^{a}}=n^{\log _{2}{ }^{2}}=\Theta(n)$
- $f(n)$ is asymptotically larger than $n^{\log _{b}{ }^{a}}$, but not polynomially larger because
$-f(n) / n^{\log _{b} a}=\lg n$, which is asymptotically less than n^{ε} for any $\varepsilon>0$.
- Therefore, this is a gap between 2 and 3 .

Where Are the Gaps

Note: 1. for case 3, the regularity also must hold.
2. if $f(n)$ is $\lg n$ smaller, then fall in gap in 1 and 2
3. if $f(n)$ is $\lg n$ larger, then fall in gap in 3 and 2
4. if $\boldsymbol{f}(\boldsymbol{n})=\Theta\left(\boldsymbol{n}^{\log b^{a}} \mathbf{I} \mathbf{g}^{k} \boldsymbol{n}\right)$, then $\boldsymbol{T}(\boldsymbol{n})=\Theta\left(\boldsymbol{n}^{\log } b^{a} \mid \mathbf{g}^{k+1} \boldsymbol{n}\right)$ (as exercise)

Master Theorem

The master method applies to recurrences of the form

$$
T(n)=a T(n / b)+f(n),
$$

where constants $a \geq 1, b>1$, and f is asymptotically positive function

1. $f(n)=O\left(n^{\log _{b} a-\varepsilon}\right)$ for some constant $\varepsilon>0$, then $T(n)=\Theta\left(n^{\log _{b} a}\right)$
2. $f(n)=O\left(n^{\log _{b} a}\right)$ for some constant $\varepsilon>0$, then $T(n)=\Theta\left(n^{\log _{b} a} \lg n\right)$
3. $f(n)=O\left(n^{\log _{b} a+\varepsilon}\right)$ for some constant $\varepsilon>0$, and if $a f(n / b) \leq c f(n)$ for some constant $c<1$, then $T(n)=\Theta(f(n))$.

How to theoretically prove it?

Proof for Exact Powers

- Suppose $n=b^{k}$ for $k \geq 1$.
- Lemma 4.2

- where $a \geq 1, b>1$, $f(n)$ be a nonnegative function defined on exact powers of b, then
$-T(n)=\Theta\left(n^{\log _{b^{a}} a}\right)+\sum_{j=0}^{\log _{b^{n-1}}} a^{f} f\left(n / b^{j}\right)$
- Proof:
- By iterating the recurrence
- By recursion tree (See figure 4.3)

Recursion Tree for $T(n)=a T(n / b)+f(n)$

Figure 4.3 The recursion tree generated by $T(n)=a T(n / b)+f(n)$. The tree is a complete a-ary tree with $n^{\log _{b} a}$ leaves and height $\log _{b} n$. The cost of each level is shown at the right, and their sum is given in equation (4.6).

Proof for Exact Powers (cont.)

- Lemma 4.3:
- Let constants $a \geq 1, b>1, f(n)$ be a nonnegative function defined on exact power of b, then
$-\quad g(n)=\sum_{j=0}^{\log _{b^{n-1}}} a^{j} f\left(n / b^{j}\right)$ can be bounded asymptotically for exact power of b as follows:

1. If $f(n)=O\left(n^{\log _{b}{ }^{a_{-\varepsilon}}}\right)$ for some $\varepsilon>0$, then $g(n)=O\left(n^{\log _{b}{ }^{a}}\right)$.
2. If $f(n)=\Theta\left(n^{\log _{b}{ }^{a}}\right)$, then $g(n)=\Theta\left(n^{\log _{b} a} \lg n\right)$.
3. If $f(n)=\Omega\left(n^{\log _{b} a_{+\varepsilon}}\right)$ for some $\varepsilon>0$ and if $a f(n / b) \leq c f(n)$ for some $c<1$ and all sufficiently large $n \geq b$, then $g(n)=\Theta(f(n))$.

Proof of Lemma 4.3

- For case 1: $f(n)=O\left(n^{\log _{b} a_{-\varepsilon}}\right)$ implies $f\left(n / b^{j}\right)=O\left(\left(n / b^{j}\right)^{\log _{b} a_{-\varepsilon}}\right)$, so
- $g(n)=\sum_{j=0}^{\log _{b^{n-1}}} a^{j} f\left(n / b^{j}\right)=O\left(\sum_{j=0}^{\log _{b^{n-1}}} a^{j}\left(n / b^{j}\right)^{\log _{b} a_{-\varepsilon}}\right)$

- $\quad=O\left(n^{\log _{b} a_{-\varepsilon}}\left(\left(\left(b^{\log _{b^{n}}}\right)^{\varepsilon}-1\right) /\left(b^{\varepsilon}-1\right)\right)\right)$
- $\quad=O\left(n^{\left.\log _{b}{ }^{a} n^{-\varepsilon}\left(n^{\varepsilon}-1\right) /\left(b^{\varepsilon}-1\right)\right), ~\left(b^{\varepsilon}\right)}\right.$
- $\quad=O\left(n^{\log _{b} a}\right)$

Proof of Lemma 4.3(cont.)

- For case 2: $f(n)=\Theta\left(n^{\log _{b}{ }^{a}}\right)$ implies $f\left(n / b^{j}\right)=\Theta\left(\left(n / b^{j}\right)^{\log _{b}{ }^{a}}\right)$, so
- $g(n)=\sum_{j=0}^{\log _{b^{n-1}}} a^{i} f\left(n / b^{j}\right)=\Theta\left(\sum_{j=0}^{\log _{b^{n-1}}} a^{i}\left(n / b^{j}\right)^{\log _{b} a}\right)$

$$
\begin{aligned}
& =\Theta\left(n^{\log _{b}}{ }_{j=0}^{\log _{j} \sum^{n^{-1}}} a^{j}\left(\left(b^{\left.\log _{b}\right)^{j}}\right)^{j}\right)=\Theta\left(n^{\log _{b} a}{ }_{j=0}^{\log _{b} \sum_{j-1}^{n}} 1\right)\right. \\
& =\Theta\left(n^{\log _{b} a} \log _{b}{ }^{n}\right)=\Theta\left(n^{\left.\log b^{a} \lg n\right)}\right.
\end{aligned}
$$

Proof of Lemma 4.3(cont.)

- For case 3:
- Since $g(n)$ contains $f(n), g(n)=\Omega(f(n))$
- Since $a f(n / b) \leq c f(n)$, so $f(n / b) \leq(c / a) f(n)$,
- Iterating j times, $f\left(n / b^{j}\right) \leq(c / a)^{j} f(n)$, thus $a^{j} f\left(n / b^{j}\right) \leq c^{j} f(n)$

$$
\begin{aligned}
-g(n) & =\sum_{j=0}^{\log _{b^{n-1}}} a^{j} f\left(n / b^{j}\right) \leq \sum_{j=0}^{\log _{b^{n-1}}} c^{j} f(n) \leq f(n) \sum_{j=0}^{\infty} c^{j}=f(n)(1 /(1-c)) \\
& =\mathrm{O}(f(n))
\end{aligned}
$$

- Thus, $g(n)=\Theta(f(n))$

Proof for Exact Powers (cont.)

- Lemma 4.4:
$-\quad$ for $T(n)=\left\{\begin{array}{l}\Theta(1) \text { if } n=1 \\ a T(n / b)+f(n) \text { if } n=b^{k} \text { for } k \geq 1\end{array}\right.$
- where $a \geq 1, b>1, f(n)$ be a nonnegative function,

1. If $f(n)=O\left(n^{\left.\log _{b}{ }^{a_{-\varepsilon}}\right)}\right.$ for some $\varepsilon>0$, then $T(n)=\Theta\left(n^{\log _{b} a}\right)$.
2. If $f(n)=\Theta\left(n^{\log _{b} a}\right)$, then $T(n)=\Theta\left(n^{\log _{b} a} \lg n\right)$.
3. If $f(n)=\Omega\left(n^{\log _{b}{ }^{a+\varepsilon}}\right)$ for some $\varepsilon>0$, and if $a f(n / b) \leq c f(n)$ for some $c<1$ and all sufficiently large n, then $T(n)=\Theta(f(n))$.

Proof of Lemma 4.4 (cont.)

- Combine Lemma 4.2 and 4.3,
- For case 1:
$>T(n)=\Theta\left(n^{\log _{b}{ }^{a}}\right)+O\left(n^{\log _{b} a}\right)=\Theta\left(n^{\log _{b}{ }^{a}}\right)$.
- For case 2:
$>\quad T(n)=\Theta\left(n^{\log _{b} a}\right)+\Theta\left(n^{\log _{b} a} \lg n\right)=\Theta\left(n^{\log _{b}{ }^{a}} \lg n\right)$.
- For case 3:
$>T(n)=\Theta\left(n^{\log _{b}{ }^{a}}\right)+\Theta(f(n))=\Theta(f(n))$ because $f(n)=\Omega\left(n^{\log _{b}{ }^{a+\varepsilon}}\right)$.

Floors and Ceilings ($n \neq \boldsymbol{b}^{\boldsymbol{k}}$ for $\boldsymbol{k} \geq \mathbf{1}$)

- $T(n)=a T(\lfloor n / b\rfloor)+f(n)$ and $T(n)=a T(\lceil n / b\rceil)+f(n)$
- Want to prove both equal to $T(n)=a T(n / b)+f(n)$
- Two results:
- Master theorem applied to all integers n.
- Floors and ceilings do not change the result.
$>$ (Note: we proved this by domain transformation too).
- Since $\lfloor n / b\rfloor \leq n / b$, and $\lceil n / b\rceil \geq n / b$, upper bound for floors and lower bound for ceiling is held.
- So prove upper bound for ceilings (similar for lower bound for floors).

Upper bound of proof for $T(n)=a T(\lceil n / b\rceil)+f(n)$

- consider sequence $n,\lceil n / b\rceil,\lceil\lceil n / b\rceil / b\rceil,\lceil\lceil\lceil n / b\rceil / b\rceil / b\rceil, \ldots$
- Let us define n_{j} as follows:
- $n_{j}=n \quad$ if $j=0$
- $\quad=\left\lceil n_{j-1} / b\right\rceil$ if $j>0$
- The sequence will be $n_{0}, n_{1}, \ldots, n_{\left.\log _{b^{n}}\right\rfloor}$

Let $\mathrm{j}=\left\lfloor\log _{\mathrm{b}} \mathrm{n}\right\rfloor$, then

$$
\begin{aligned}
& n_{0}<=n \\
& n_{1}<=n / b+1 \\
& n_{2}<=n / b^{2}+n / b+1 \\
& \cdots \\
& n_{j}<=n / b^{j}+\sum_{i=0}^{j-1} 1 / b^{i} \\
& \quad<n / h^{j}+h /\left(h_{-}\right)
\end{aligned}
$$

$$
n_{\left\lfloor\log _{b} n\right\rfloor}<n / b^{\left\lfloor\log _{b}\right\rfloor}+b /(b-1)
$$

$$
\leq n / b^{\log _{\mathrm{b}} \mathrm{n}-1}+b /(b-1)
$$

$$
=n /(n / b)+b /(b-1)=b+b /(b-1)=O(1)
$$

Recursion Tree

Recursion Tree of $T(n)=a T(\lceil n / b\rceil)+f(n)$

Figure 4.4 The recursion tree generated by $T(n)=a T(\lceil n / b\rceil)+f(n)$. The recursive argument n_{j} is given by equation (4.12).

The Proof of Upper Bound for Ceiling

$$
-T(n)=\Theta\left(n^{\log _{b} q}\right)+\sum_{j=0}^{\left.\log _{b^{n}}\right\rfloor-1} a^{j} f\left(n_{j}\right)
$$

- Thus similar to Lemma 4.3 and 4.4, the upper bound is proven.

$$
g(n)=\sum_{j=0}^{\left\lfloor\log _{b^{n}}\right\rfloor-1} a^{j} f\left(n_{j}\right)
$$

The Simple Format of Master Theorem

- $T(n)=a T(n / b)+c n^{k}$, with a, b, c, k are positive constants, and $a \geq 1$ and $b \geq 2$,
- $T(n)= \begin{cases}O\left(n^{\log _{b a}}\right), & \text { if } a>b^{k} . \\ O\left(n^{k} \log n\right), & \text { if } a=b^{k} . \\ O\left(n^{k}\right), & \text { if } a<b^{k} .\end{cases}$

Exercise (1)

Give asymptotic upper and lower bound for $T(n)=2 T(n / 4)+n^{0.5}$

Using the master theorem, $a=2, b=4$,
$n^{\log _{b} a}=\boldsymbol{n}^{0 \cdot 5}$ and $\mathrm{f}(\mathrm{n})=\boldsymbol{n}^{0 \cdot 5} .=\Theta\left(\boldsymbol{n}^{0 \cdot 5}\right)$
Case 2 applies,

Therefore, $T(n)=\Theta\left(\boldsymbol{n}^{0^{5}} \lg \mathrm{n}\right)$.

Exercise (2)

Give asymptotic upper and lower bound for $T(n)=7 T(n / 2)+n^{2}$

Using the master theorem, $\mathrm{a}=7, \mathrm{~b}=2$,
$n^{\log _{b} a}=n^{\log _{2} 7}$
$\mathrm{f}(\mathrm{n})=n^{2}=O\left(n^{\log _{2} 7-\varepsilon}\right)$ for some constant $\varepsilon>0$ due to
$2<\lg 7<3$,

Case 1 applies,
Therefore, $\mathrm{T}(\mathrm{n})=\Theta\left(n^{\log _{2} 7}\right)$.

Exercise (3)

Give asymptotic upper and lower bound for $T(n)=7 T(n / 3)+n^{2}$

Using the master theorem, $\mathrm{a}=7, \mathrm{~b}=3, n^{\log _{b} a}=n^{\log _{3} 7}$
$\mathrm{f}(\mathrm{n})=n^{2}=\Omega\left(n^{\log _{3} 7+\varepsilon}\right)$ for some constant $\varepsilon>0$

Check if $a f(n / b)<=c f(n)$ for constant $c<1$,
$\mathrm{a}(\mathrm{n} / \mathrm{b})^{2}=(7 / 9) n^{2}$

We can set $c=7 / 9<1$, Case 3 applies,

Therefore, $\mathrm{T}(\mathrm{n})=\Theta\left(n^{2}\right)$.

Exercise (4)

Give asymptotic upper and lower bound for $T(n)=16 T(n / 4)+n^{2}$

$\mathrm{f}(\mathrm{n})=n^{2}=\Theta\left(n^{2}\right)$

Case 2 applies,
Therefore, $\mathrm{T}(\mathrm{n})=\Theta\left(n^{2} \lg \mathrm{n}\right)$.

Exercise (5)

Give asymptotic upper and lower bound for $T(n)=T\left(n^{0.5}\right)+1$

The easy way to do this is with a change of variables.
Let $m=\lg n$ and $S(m)=T\left(2^{m}\right)$
$T\left(2^{m}\right)=T\left(2^{m / 2}\right)+1, S o S(m)=S(m / 2)+1$,
Using the master theorem, $\mathrm{a}=1, \mathrm{~b}=2 . n^{\log _{b}{ }^{a}=1}$ and $\mathrm{f}(\mathrm{n})=1$.
Case 2 applies and $S(m)=\Theta(\lg m)$.
Therefore, $T(n)=\Theta(\lg \lg n)$.

