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Reviewing: Master Theorem

The master method applies to recurrences of  the form

T(n) = a T(n/b) + f (n) , 

where constants a  1, b > 1, and f is asymptotically positive function

1. f (n) = O(nlogba – e) for some constant e > 0, then T(n) = Q(nlogba)

2. f (n) = O(nlogba ) for some constant e > 0, then T(n) = Q(nlogba lgn)

3. f (n) = O(nlogba + e) for some constant e > 0, and if a f (n/b)  c f (n) 
for some constant c < 1, then T(n) = Q( f (n) ) .

How to theoretically prove it?
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Fast Fourier Transform

• Applications
– Optics, acoustics, quantum physics, 

telecommunications, control systems
– Signal processing, speech recognition, data 

compression, image processing
– Machine learning, data mining, computer 

vision, big data analytics
– DVD, JPEG, MP3, MRI, CAT scan

• Charles van Loan:
– The FFT is one of  the truly great 

computational developments of  this [20th] 
century. 

– It has changed the face of  science and 
engineering so much that it is not an 
exaggeration to say that life as we know it 
would be very different without the FFT. 
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Fast Fourier Transform

• History
– Gauss (1805, 1866). Analyzed periodic motion of  asteroid Ceres.
– Runge-König (1924). Laid theoretical groundwork.
– Danielson-Lanczos (1942). Efficient algorithm.
– Cooley-Tukey (1965). Monitoring nuclear tests in Soviet Union and tracking 

submarines. Rediscovered and popularized FFT.
– Importance not fully realized until advent of  digital computers.
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A polynomial in the variable x over an algebraic field F is representation 
of  a function A(x) as a formal sum

•Coefficient representation

•Point-value representation
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Polynomials: Coefficient Representation

• Polynomial. [coefficient representation]

• Add: O(n) arithmetic operations 

• Evaluate: O(n) using Horner's method.

• Multiply (convolve): O(n2) using brute force.
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Polynomials: Point-Value Representation

• Fundamental theorem of  algebra. [Gauss, PhD thesis]: A 
degree n polynomial with complex coefficients has n complex 
roots.

• Corollary. A degree n-1 polynomial A(x) is uniquely specified 
by its evaluation at n distinct values of  x.
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Polynomials: Point-Value Representation

• Polynomial. [Point-value representation]

• Add: O(n) arithmetic operations 

• Multiple: O(n),  extend A(x) and B(x) to 2n-1 points

• Evaluate: O(n2) using Lagrange's formula
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Converting Between Two Polynomial Representations

• Tradeoff  between fast evaluation or fast multiplication. We 
want both!

• Goal. Make all ops fast by efficiently converting between two 
representations.
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Converting Between Two Polynomial Representations

• Coefficient to point-value: Given a polynomial a0 + a1 x + ... + 
an-1 xn-1, evaluate it at n distinct points x0, ... , xn-1.

• Point-value to coefficient: Given n distinct points x0, ... , xn-1 and 
values y0, ... , yn-1, find unique polynomial a0 + a1 x + ... + an-1 xn-1

that has given values at given points.

Vandermonde matrix is invertible iff  xi distinct

O(n2) for matrix-vector multiply

O(n3) for Gaussian elimination

Brute Force!
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Coefficient to Point-Value Representation: Intuition

• Coefficient to point-value: Given a polynomial a0 + a1 x + ... + 
an-1 xn-1, evaluate it at n distinct points x0, ... , xn-1.

• Divide. Break polynomial up into even and odd powers.

• Intuition. Choose four points to be ±1, ±i.

Can evaluate polynomial of  degree ≤ n at 4 
points by evaluating two polynomials of  degree 
≤ n/2 at 2 points.

Why? Useful Trick
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Useful Trick

A(x) = a0 + a1x + a2x2 + a3x3 +. . . + an-1xn-1

Aeven(x) = a0 + a2x + a4x2 + . . . + an-2x(n-2)/2

Aodd(x) = a1+ a3x + a5x2 + …+ an-1x(n-2)/2

Show:  A(x) = Aeven(x2) + x Aodd(x2)



CSE5311 Design and Analysis of  Algorithms 13Dept. CSE, UT Arlington CSE5311 Design and Analysis of  Algorithms 13

Fast Multiplication

Question. Can we use the linear-time multiplication method for polynomials in point-
value form to expedite polynomial multiplication in coefficient form?

Answer. Yes, but we are to be able to convert quickly from one form to another.
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Complex Roots of Unity

There are exactly n complex roots of unity. They form a cyclic multiplication group:

The value                   is called the primitive root of unity; all of the other complex 
roots are powers of it. 
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Complex Analysis

• Polar coordinates:  reqi

• eqi = cos q + i sin q
• a is an nth root of unity if an = 1

• Square roots of unity: +1, -1

• Fourth roots of unity: +1, -1, i, -i
– Eighth roots of unity: +1, -1, i, -i, b + ib, b - ib, -b + ib, 

-b - ib where b = sqrt(2)
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e2ki/n

• e2i = 1

• ei = -1

• nth roots of unity: e2ki/n for k = 0 …n-1

• Notation: k,n = e2ki/n

• Interesting fact:
1 + k,n + 2

k,n + 3
k,n + . . . + n-1

k,n = 0         for k != 0
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Discrete Fourier Transform (DFT)

Coefficient to point-value: Let F(x) be the polynomial with degree-
bound n (power of 2), where

Key idea: choose xk = ωk where ω is principal nth root of unity.

Let                 . Then

The vector                         is called the Discrete Fourier Transform of  vector 
a. The matrix is denoted by             .               
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How to find Fn
-1?

Proposition. Let  be a primitive l-th root of unity over a field L. Then

Proof. The l =1 case is immediate since =1.

Since   is a primitive l-th root, each k, k0 is a distinct l-th root of unity.  

Comparing the coefficients of Zl-1 on the left and right hand sides of this 
equation proves the proposition.
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Inverse Matrix to Fn

Proposition. Let ω be an n-th root of unity. Then,

Proof.

The i=j case is obvious. If ij then  will be a primitive root of unity of order 
l, where l|n. Applying the previous proposition completes the proof.

So,                                   
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Fast Fourier Transform

Goal. Evaluate a degree n-1 polynomial A(x) = a0 + a1x + a2x2 + a3x3 +
. . . + an-1xn-1 at its nth roots of  unity: ω0, ω1, …, ωn-1.

Divide. Break polynomial up into even and odd powers.

Conquer. Evaluate degree Aeven(x) and Aodd(x) at the (n/2)-th roots of
unity: ν0, ν1, …, νn/2-1.

Combine.
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Recursive FFT
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Time of the Recursive-FFT

To determine the running time of procedure Recursive-FFT, we note,
that exclusive of the recursive calls, each invocation takes time Θ(n),
where n is the length of the input vector.The recurrence for the
running time is therefore

T(n) = 2T(n/2) + Θ(n) = ?

Θ(n log n)
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More Effective Implementations
The for loop involves computing the value              twice.We can change the 
loop(the butterfly operation):

[1]k
n ky



 





  

[1]
k

[0]
k k

[0]
k+(n/2) k

n

for   k 0 to n/2-1

        do t y

             y y +t

             y y -t

             

         
[0]
ky

[0]
ky [0] [1]k

k n ky y

[0] [1]k
k n ky y

k
n

.

There are 1 complex multiplication and 2 complex additions



CSE5311 Design and Analysis of  Algorithms 24Dept. CSE, UT Arlington
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Recursion Tree

1)      We take the elements in pairs, compute the DFT of each pair, using one 

butterfly operation, and replace the pair with its DFT

2)      We take these n/2 DFT’s in pairs and compute the DFT of the four vector           

elements

We take 2 (n/2)-element DFT’s and combine them using n/2 butterfly operations into 
the final n-element DFT  
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Why Bit-reversed Order
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Point-Value to Coefficient Representation: 
Inverse DFT

Goal. Given the values y0, ... , yn-1 of  a degree n-1 polynomial at the n
points ω0, ω1, …, ωn-1, find unique polynomial a0 + a1 x + ... + an-1 xn-1

that has given values at given points.
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Inverse DFT

Inverse of  Fourier matrix is given by following formula

To compute inverse FFT, apply same algorithm but use
ω-1 = e -2π i / n as principal nth root of  unity (and divide by n).
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Inverse FFT
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Inverse FFT

Theorem. Inverse FFT algorithm interpolates a degree n-1 polynomial 
given values at each of  the nth roots of  unity in O(n log n) steps.



CSE5311 Design and Analysis of  Algorithms 32Dept. CSE, UT Arlington

Polynomial Multiplication

Theorem:
We can multiply two degree n-1 polynomials in O(n log n) steps.
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A Parallel FFT Circuit
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