
CSE5311 Design and Analysis of Algorithms 1Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms 1

CSE 5311

Lecture 5 Divide and Conquer:

Fast Fourier Transform
Junzhou Huang, Ph.D.

Department of Computer Science and Engineering

Design and Analysis of Algorithms

CSE5311 Design and Analysis of Algorithms 2Dept. CSE, UT Arlington

Reviewing: Master Theorem

The master method applies to recurrences of the form

T(n) = a T(n/b) + f (n) ,

where constants a  1, b > 1, and f is asymptotically positive function

1. f (n) = O(nlogba – e) for some constant e > 0, then T(n) = Q(nlogba)

2. f (n) = O(nlogba) for some constant e > 0, then T(n) = Q(nlogba lgn)

3. f (n) = O(nlogba + e) for some constant e > 0, and if a f (n/b)  c f (n)
for some constant c < 1, then T(n) = Q(f (n)) .

How to theoretically prove it?

CSE5311 Design and Analysis of Algorithms 3Dept. CSE, UT Arlington

Fast Fourier Transform

• Applications
– Optics, acoustics, quantum physics,

telecommunications, control systems
– Signal processing, speech recognition, data

compression, image processing
– Machine learning, data mining, computer

vision, big data analytics
– DVD, JPEG, MP3, MRI, CAT scan

• Charles van Loan:
– The FFT is one of the truly great

computational developments of this [20th]
century.

– It has changed the face of science and
engineering so much that it is not an
exaggeration to say that life as we know it
would be very different without the FFT.

CSE5311 Design and Analysis of Algorithms 4Dept. CSE, UT Arlington

Fast Fourier Transform

• History
– Gauss (1805, 1866). Analyzed periodic motion of asteroid Ceres.
– Runge-König (1924). Laid theoretical groundwork.
– Danielson-Lanczos (1942). Efficient algorithm.
– Cooley-Tukey (1965). Monitoring nuclear tests in Soviet Union and tracking

submarines. Rediscovered and popularized FFT.
– Importance not fully realized until advent of digital computers.

CSE5311 Design and Analysis of Algorithms 5Dept. CSE, UT Arlington

A polynomial in the variable x over an algebraic field F is representation
of a function A(x) as a formal sum

•Coefficient representation

•Point-value representation

1

0

()
n

j
j

j

A x a x






0 1 1(, ,...)na a a a 

0 0 1 1 1 1{(,),(,),...,(,)}n nx y x y x y 

Coefficient
representation

Point-value representation

Adding

Multiplication

Representation of Polynomials

()nQ

2()nQ

()nQ

()nQ

CSE5311 Design and Analysis of Algorithms 6Dept. CSE, UT Arlington

Polynomials: Coefficient Representation

• Polynomial. [coefficient representation]

• Add: O(n) arithmetic operations

• Evaluate: O(n) using Horner's method.

• Multiply (convolve): O(n2) using brute force.

CSE5311 Design and Analysis of Algorithms 7Dept. CSE, UT Arlington

Polynomials: Point-Value Representation

• Fundamental theorem of algebra. [Gauss, PhD thesis]: A
degree n polynomial with complex coefficients has n complex
roots.

• Corollary. A degree n-1 polynomial A(x) is uniquely specified
by its evaluation at n distinct values of x.

CSE5311 Design and Analysis of Algorithms 8Dept. CSE, UT Arlington

Polynomials: Point-Value Representation

• Polynomial. [Point-value representation]

• Add: O(n) arithmetic operations

• Multiple: O(n), extend A(x) and B(x) to 2n-1 points

• Evaluate: O(n2) using Lagrange's formula

CSE5311 Design and Analysis of Algorithms 9Dept. CSE, UT Arlington

Converting Between Two Polynomial Representations

• Tradeoff between fast evaluation or fast multiplication. We
want both!

• Goal. Make all ops fast by efficiently converting between two
representations.

CSE5311 Design and Analysis of Algorithms 10Dept. CSE, UT Arlington

Converting Between Two Polynomial Representations

• Coefficient to point-value: Given a polynomial a0 + a1 x + ... +
an-1 xn-1, evaluate it at n distinct points x0, ... , xn-1.

• Point-value to coefficient: Given n distinct points x0, ... , xn-1 and
values y0, ... , yn-1, find unique polynomial a0 + a1 x + ... + an-1 xn-1

that has given values at given points.

Vandermonde matrix is invertible iff xi distinct

O(n2) for matrix-vector multiply

O(n3) for Gaussian elimination

Brute Force!

CSE5311 Design and Analysis of Algorithms 11Dept. CSE, UT Arlington

Coefficient to Point-Value Representation: Intuition

• Coefficient to point-value: Given a polynomial a0 + a1 x + ... +
an-1 xn-1, evaluate it at n distinct points x0, ... , xn-1.

• Divide. Break polynomial up into even and odd powers.

• Intuition. Choose four points to be ±1, ±i.

Can evaluate polynomial of degree ≤ n at 4
points by evaluating two polynomials of degree
≤ n/2 at 2 points.

Why? Useful Trick

CSE5311 Design and Analysis of Algorithms 12Dept. CSE, UT Arlington

Useful Trick

A(x) = a0 + a1x + a2x2 + a3x3 +. . . + an-1xn-1

Aeven(x) = a0 + a2x + a4x2 + . . . + an-2x(n-2)/2

Aodd(x) = a1+ a3x + a5x2 + …+ an-1x(n-2)/2

Show: A(x) = Aeven(x2) + x Aodd(x2)

CSE5311 Design and Analysis of Algorithms 13Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms 13

Fast Multiplication

Question. Can we use the linear-time multiplication method for polynomials in point-
value form to expedite polynomial multiplication in coefficient form?

Answer. Yes, but we are to be able to convert quickly from one form to another.

0 1 n 1

0 1 n 1

a , a , , a

b , b , , b




0 1 2n 2c ,c ,...,c 

0 0
2 n 2 n

1 1
2 n 2 n

2 n 1 2 n 1
2 n 2 n

A (), B()

A (), B()

A (), B() 

 

 

 



0
2 n

1
2 n

2 n 1
2 n

C()

C()

C()









Ordinary multiplication
Time Θ(n²)

Pointwise multiplication
Time Θ(n)

Evaluation
Time Θ(n lg n)

Interpolation
Time Θ(n lg n)

CSE5311 Design and Analysis of Algorithms 14Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms 14

Complex Roots of Unity

There are exactly n complex roots of unity. They form a cyclic multiplication group:

The value is called the primitive root of unity; all of the other complex
roots are powers of it.

2

1 
i
ne



nZ 1 0 

2


ik

n
k e



is the 8th root of unity2 i/8e  

CSE5311 Design and Analysis of Algorithms 15Dept. CSE, UT Arlington

Complex Analysis

• Polar coordinates: reqi

• eqi = cos q + i sin q
• a is an nth root of unity if an = 1

• Square roots of unity: +1, -1

• Fourth roots of unity: +1, -1, i, -i
– Eighth roots of unity: +1, -1, i, -i, b + ib, b - ib, -b + ib,

-b - ib where b = sqrt(2)

CSE5311 Design and Analysis of Algorithms 16Dept. CSE, UT Arlington

e2ki/n

• e2i = 1

• ei = -1

• nth roots of unity: e2ki/n for k = 0 …n-1

• Notation: k,n = e2ki/n

• Interesting fact:
1 + k,n + 2

k,n + 3
k,n + . . . + n-1

k,n = 0 for k != 0

CSE5311 Design and Analysis of Algorithms 17Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms 17

Discrete Fourier Transform (DFT)

Coefficient to point-value: Let F(x) be the polynomial with degree-
bound n (power of 2), where

Key idea: choose xk = ωk where ω is principal nth root of unity.

Let . Then

The vector is called the Discrete Fourier Transform of vector
a. The matrix is denoted by .

2

0 0
2 1

1 1
2 4 2(1)

2 2

1 2(1) (1)
1 1

1 1 1 1

1

1 *

1

n

n

n n n
n n

y a

y a

y a

y a

  
  

  





  
 

    
    
    
    
    
    
    

    







    



1 2
1 2 0() ...n n

n nF x a x a x a 
    

()k
ky F 

0 1 1(, ,...)ny y y y 
()nF 

CSE5311 Design and Analysis of Algorithms 18Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms 18

How to find Fn
-1?

Proposition. Let  be a primitive l-th root of unity over a field L. Then

Proof. The l =1 case is immediate since =1.

Since  is a primitive l-th root, each k, k0 is a distinct l-th root of unity.

Comparing the coefficients of Zl-1 on the left and right hand sides of this
equation proves the proposition.

1

0

0



 
   

 

l

k

k

 if l > 1

1 otherwise

0 2 1

11
1

0 0

1 ()()()...()

() ... (1)






 

      

       

l l
l l l l

ll
l k l l k

l l
k k

Z Z Z Z Z

Z Z

CSE5311 Design and Analysis of Algorithms 19Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms 19

Inverse Matrix to Fn

Proposition. Let ω be an n-th root of unity. Then,

Proof.

The i=j case is obvious. If ij then will be a primitive root of unity of order
l, where l|n. Applying the previous proposition completes the proof.

So,

1
n n nF () F () nE   

th 1
n n

n-1 n-1
ik ik k(i j)

k=0 k=0

The ij element of F ()F () is

0, if i j

n, otherwise



 

 

 
      

 
 

i j

Evaluating y= Fn () a

Interpolation a= y

1 1
n n

1
F () F ()

n
   

1
n

1
F ()

n


CSE5311 Design and Analysis of Algorithms 20Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms 20

Fast Fourier Transform

Goal. Evaluate a degree n-1 polynomial A(x) = a0 + a1x + a2x2 + a3x3 +
. . . + an-1xn-1 at its nth roots of unity: ω0, ω1, …, ωn-1.

Divide. Break polynomial up into even and odd powers.

Conquer. Evaluate degree Aeven(x) and Aodd(x) at the (n/2)-th roots of
unity: ν0, ν1, …, νn/2-1.

Combine.

CSE5311 Design and Analysis of Algorithms 21Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms 21

Recursive FFT

2 i
n

n

[0]
0 2 n - 2

[1]
1 3 n - 1

[0] [0]

[1] [1]

1 n l e n g t h [a]

2 i f n = 1

3 t h e n r e t u r n a

4 e

5 1

6 a (a , a , . . . , a)

7 a (a , a , . . . , a)

8 y R e c u r s i v e - F F T (a)

9 y R e c u r s i v e - F F T (a)

1 0 f o r k 0 t o n / 2 - 1

1 1





 
 










[0] [1]
k k k

[0] [1]
k + (n / 2) k k

n

 d o y y + y

1 2 y y - y

1 3

1 4 r e t u r n y

 

 

   

CSE5311 Design and Analysis of Algorithms 22Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms 22

Time of the Recursive-FFT

To determine the running time of procedure Recursive-FFT, we note,
that exclusive of the recursive calls, each invocation takes time Θ(n),
where n is the length of the input vector.The recurrence for the
running time is therefore

T(n) = 2T(n/2) + Θ(n) = ?

Θ(n log n)

CSE5311 Design and Analysis of Algorithms 23Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms 23

More Effective Implementations
The for loop involves computing the value twice.We can change the
loop(the butterfly operation):

[1]k
n ky



 





  

[1]
k

[0]
k k

[0]
k+(n/2) k

n

for k 0 to n/2-1

 do t y

 y y +t

 y y -t

[0]
ky

[0]
ky [0] [1]k

k n ky y

[0] [1]k
k n ky y

k
n

.

There are 1 complex multiplication and 2 complex additions

CSE5311 Design and Analysis of Algorithms 24Dept. CSE, UT Arlington

N/2-
point

DFT

N/2-
point

DFT

)0(1X

)1(1X

)2(1X

)3(1X

)0(2X

)1(2X

)2(2X

)3(2X

0
NW

1
NW

2
NW

3
NW

)0()0(1 xx 

)2()1(1 xx 

)4()2(1 xx 

)6()3(1 xx 

)1()0(2 xx 

)3()1(2 xx 

)5()2(2 xx 

)7()3(2 xx 

)(1 rx

)(2 rx

)4(X1

)5(X1

)6(X1

)7(X1

)0(X

)1(X

)2(X

)3(X

N-point DFT

CSE5311 Design and Analysis of Algorithms 25Dept. CSE, UT Arlington

)0(X

)1(X

)2(X

)3(X

)4(X

)5(X

)6(X

)7(X

)0(x

)2(x

)4(x

)6(x

)1(x

)3(x

)5(x

)7(x

0
NW
1
NW

2
NW

3
NW

1

1

1

1

0
NW
2
NW

1

1

0
NW

2
NW

1

11

0
NW

1

0
NW

1

0
NW

1

0
NW

CSE5311 Design and Analysis of Algorithms 26Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms 26

Recursion Tree

1) We take the elements in pairs, compute the DFT of each pair, using one

butterfly operation, and replace the pair with its DFT

2) We take these n/2 DFT’s in pairs and compute the DFT of the four vector

elements

We take 2 (n/2)-element DFT’s and combine them using n/2 butterfly operations into
the final n-element DFT

0 2 4 6(, , ,)a a a a

0 4(,)a a

6()a

2 6(,)a a

2()a4()a0()a

1 3 5 7(, , ,)a a a a

1 5(,)a a

7()a

3 7(,)a a

3()a5()a1()a

0 1 2 3 4 5 6 7(, , , , , , ,)a a a a a a a a

CSE5311 Design and Analysis of Algorithms 27Dept. CSE, UT Arlington

Why Bit-reversed Order
1n 2n

)(012 nnnx

0n

0

1

0

1

0

1
0

1

0

1

0

1
0

1

)000(x

)100(x

)010(x

)110(x

)001(x

)101(x

)011(x

)111(x

)(0x

)(4x

)(2x

)(6x

)(1x

)(5x

)(3x

)(7x

CSE5311 Design and Analysis of Algorithms 28Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms 28

Point-Value to Coefficient Representation:
Inverse DFT

Goal. Given the values y0, ... , yn-1 of a degree n-1 polynomial at the n
points ω0, ω1, …, ωn-1, find unique polynomial a0 + a1 x + ... + an-1 xn-1

that has given values at given points.

CSE5311 Design and Analysis of Algorithms 29Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms 29

Inverse DFT

Inverse of Fourier matrix is given by following formula

To compute inverse FFT, apply same algorithm but use
ω-1 = e -2π i / n as principal nth root of unity (and divide by n).

CSE5311 Design and Analysis of Algorithms 30Dept. CSE, UT Arlington

Inverse FFT

CSE5311 Design and Analysis of Algorithms 31Dept. CSE, UT Arlington

Inverse FFT

Theorem. Inverse FFT algorithm interpolates a degree n-1 polynomial
given values at each of the nth roots of unity in O(n log n) steps.

CSE5311 Design and Analysis of Algorithms 32Dept. CSE, UT Arlington

Polynomial Multiplication

Theorem:
We can multiply two degree n-1 polynomials in O(n log n) steps.

CSE5311 Design and Analysis of Algorithms 33Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms 33

A Parallel FFT Circuit

0
2

0
2

0
2

0
2

0
4

1
4

0
4
1
4

3
8

2
8

1
8

0
8

