
CSE5311 Design and Analysis of Algorithms 1Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms 1

CSE 5311
Lecture 6 Heap Sort

Junzhou Huang, Ph.D.

Department of Computer Science and Engineering

Design and Analysis of Algorithms

CSE5311 Design and Analysis of Algorithms 2Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms 2

Heap Data Structure

• Definition
– (binary) heap data structure is an array object that we can view as a nearly

complete binary tree

• A node of the tree corresponds to an element of the array
A[1…n]
– n: heap size

– A[1]: root

– [i/2]: parent of node i

– 2i: left child of node i

– 2i+1: right child of node i

CSE5311 Design and Analysis of Algorithms 3Dept. CSE, UT Arlington

Binary Tree

• Contains no node, or

• eg.

• A node without subtree is called a leaf.

• In a full binary tree, each node has 2 or NO children.

• A complete binary tree has all leaves with the same depth and all
internal nodes have 2 children.

root

Left
subtree

right
subtree

CSE5311 Design and Analysis of Algorithms 4Dept. CSE, UT Arlington

Heaps

• A heap is a “complete” binary tree, usually represented
as an array:

16

14 10

8 7 9 3

2 4 1

16 14 10 8 7 9 3 2 4 1A =

CSE5311 Design and Analysis of Algorithms 5Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms 5

Heap Data Structure

• Height of node = # of edges on a longest simple path from
the node down to a leaf

• Height of heap = height of root

CSE5311 Design and Analysis of Algorithms 6Dept. CSE, UT Arlington

Heaps

• To represent a heap as an array:
Parent(i) { return i/2; }
Left(i) { return 2*i; }

right(i) { return 2*i + 1; }

CSE5311 Design and Analysis of Algorithms 7Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms 7

Properties of Heap

• Height of heap:

• Max-heap:
– for all node i except the root

– Root store the largest value

• Min-heap:
– for all node i except the root

– Root store the smallest value

CSE5311 Design and Analysis of Algorithms 8Dept. CSE, UT Arlington

The Heap Property

• Heaps also satisfy the heap property:

A[Parent(i)]  A[i] for all nodes i > 1
– In other words, the value of a node is at most the value of its

parent

– The largest value is thus stored at the root (A[1])

• Because the heap is a binary tree, the height of
any node is at most (lg n)

Max-heap!

CSE5311 Design and Analysis of Algorithms 9Dept. CSE, UT Arlington

Heapify()

• Heapify(): maintain the heap property
– Given: a node i in the heap with children l and r

– Given: two subtrees rooted at l and r, assumed to be heaps

– Action: let the value of the parent node “float down” so subtree at
i satisfies the heap property

If A[i] < A[l] or A[i] < A[r], swap A[i] with the largest of A[l]
and A[r]

Recurse on that subtree

– Running time: O(h), h = height of heap = O(lg n)

CSE5311 Design and Analysis of Algorithms 10Dept. CSE, UT Arlington

Pseudocode Heapify(A,i)

CSE5311 Design and Analysis of Algorithms 11Dept. CSE, UT Arlington

Heapify(A,i)

• Running Time:
– The running time of HEAPIFY on a subtree of size n rooted at

a given node i is the Θ(1) time to fix up the relationships
among the elements A[i], A[LEFT(i)], and A[RIGHT(i)]

– Plus the time to run HEAPIFY on a subtree rooted at one of
the children of node i (assuming that the recursive call occurs).

• Formula:
– The children’s subtrees each have size at most 2n/3

– The worst case occurs when the bottom level of the tree is
exactly half full

Time: O(lg n), T(n)≤T(2n/3)+Θ(1)

CSE5311 Design and Analysis of Algorithms 12Dept. CSE, UT Arlington

16

4 10

14 7 9 3

2 8 1

1

2 3

4 5 6 7

8 9 10

16

14 10

4 7 9 3

2 8 1

1

2 3

4 5 6 7

8 9 10

16

14 10

8 7 9 3

2 4 1

1

2 3

4 5 6 7

8 9 10

Heapify(A,2): Heapify(A,4):

Heapify(A,9):

CSE5311 Design and Analysis of Algorithms 13Dept. CSE, UT Arlington

BuildHeap()

• We can build a heap in a bottom-up manner by running
Heapify() on successive subarrays
– Fact: for array of length n, all elements in range

A[n/2 + 1 .. n] are heaps (Why?)
– So:

Walk backwards through the array from n/2 to 1, calling
Heapify() on each node.

Order of processing guarantees that the children of node i
are heaps when i is processed

single node

CSE5311 Design and Analysis of Algorithms 14Dept. CSE, UT Arlington

4 1 3 2 16 9 1014 8 7
1 2 3 4 5 6 7 8 9 10

A

4

1 3

2 16 9 10

14 8 7

2 3

4 5 6 7

8 9 10

i

1 4

1 3

2 16 9 10

14 8 7

2 3

4 5 6 7

8 9 10

i

1

4

1 3

14 16 9 10

2 8 7

2 3

4 5 6 7

8 9 10

i

1 4

1 10

14 16 9 3

2 8 7

2 3

4 5 6 7

8 9 10

i

1

BuildHeap()

CSE5311 Design and Analysis of Algorithms 15Dept. CSE, UT Arlington

4

16 10

14 7 9 3

2 8 1

2 3

4 5 6 7

8 9 10

i1 16

14 10

8 7 9 3

2 4 1

2 3

4 5 6 7

8 9 10

1

// given an unsorted array A, make A a heap

BuildHeap(A)

{

heap_size(A) = length(A);

for (i = length[A]/2 downto 1)
Heapify(A, i);

}

BuildHeap()

CSE5311 Design and Analysis of Algorithms 16Dept. CSE, UT Arlington

Analyzing BuildHeap()

• Each call to Heapify() takes O(lg n) time

• There are O(n) such calls (specifically, n/2)
• Thus the running time is O(n lg n)

– Is this a correct asymptotic upper bound?

– Is this an asymptotically tight bound?

• A tighter bound is O(n)
– How can this be? Is there a flaw in the above

reasoning?

CSE5311 Design and Analysis of Algorithms 17Dept. CSE, UT Arlington

Analyzing BuildHeap(): Tight

• To Heapify() a subtree takes O(h) time where h is the
height of the subtree
– h = O(lg m), m = # nodes in subtree

– The height of most subtrees is small

• Fact: an n-element heap has at most n/2h+1 nodes of
height h

• Using this fact, it can be proved that BuildHeap() takes
O(n) time

CSE5311 Design and Analysis of Algorithms 18Dept. CSE, UT Arlington

Analysis

• Tighter analysis: O(n)
– Assume n = 2k-1, a complete binary tree. The time required

by Heapify when called on a node of height h is O(h).

– Total cost =

by exercise:

h = k
k-1
…
1
0

  kn lg

   
)()

2
()(

2

lg

0

lg

0
1

nO
h

nOhO
n n

h
h

n

h
h





 




2
20




h
h

h

CSE5311 Design and Analysis of Algorithms 19Dept. CSE, UT Arlington

Heapsort

• Given BuildHeap(), an in-place sorting algorithm is
easily constructed:
– Maximum element is at A[1]

– Discard by swapping with element at A[n]

Decrement heap_size[A]

A[n] now contains correct value

– Restore heap property at A[1] by calling Heapify()

– Repeat, always swapping A[1] for A[heap_size(A)]

CSE5311 Design and Analysis of Algorithms 20Dept. CSE, UT Arlington

Heapsort

CSE5311 Design and Analysis of Algorithms 21Dept. CSE, UT Arlington

Heapsort

Heapsort(A)

{

BuildHeap(A);

for (i = length(A) downto 2)

{

Swap(A[1], A[i]);

heap_size(A) -= 1;

Heapify(A, 1);

}

}

CSE5311 Design and Analysis of Algorithms 22Dept. CSE, UT Arlington

Analyzing Heapsort

• The call to BuildHeap() takes O(n) time

• Each of the n - 1 calls to Heapify() takes O(lg n) time

• Thus the total time taken by HeapSort()
= O(n) + (n - 1) O(lg n)
= O(n) + O(n lg n)
= O(n lg n)

CSE5311 Design and Analysis of Algorithms 23Dept. CSE, UT Arlington

Priority Queues

• Heapsort is a nice algorithm, but in practice Quicksort
(next lecture) usually wins

• But the heap data structure is incredibly useful for
implementing priority queues
– A data structure for maintaining a set S of elements, each with

an associated value or key

– Supports the operations Insert(), Maximum(), and
ExtractMax()

– What might a priority queue be useful for?

CSE5311 Design and Analysis of Algorithms 24Dept. CSE, UT Arlington

Priority Queue Operations

• Insert(S, x) inserts the element x into set S

• Maximum(S) returns the element of S with the maximum
key

• ExtractMax(S) removes and returns the element of S with
the maximum key

• How could we implement these operations using a heap?

O(lg n)

CSE5311 Design and Analysis of Algorithms 25Dept. CSE, UT Arlington

HeapInsert(A, key) // what’s running time?
{

heap_size[A] ++;
i = heap_size[A];
while (i > 1 AND A[Parent(i)] < key)
{

A[i] = A[Parent(i)];
i = Parent(i);

}
A[i] = key;

}

Implementing Priority Queues

O(lg n)

CSE5311 Design and Analysis of Algorithms 26Dept. CSE, UT Arlington

HeapMaximum(A)
{

// This one is really tricky:

return A[i];
}

Implementing Priority Queues

Θ(1)

CSE5311 Design and Analysis of Algorithms 27Dept. CSE, UT Arlington

Implementing Priority Queues

HeapExtractMax(A)
{

if (heap_size[A] < 1) { error; }
max = A[1];
A[1] = A[heap_size[A]]
heap_size[A] --;
Heapify(A, 1);
return max;

}

It performs only a constant amount of work on top of the
O(lg n) time for HEAPIFY

CSE5311 Design and Analysis of Algorithms 28Dept. CSE, UT Arlington

Example

CSE5311 Design and Analysis of Algorithms 29Dept. CSE, UT Arlington

Example

CSE5311 Design and Analysis of Algorithms 30Dept. CSE, UT Arlington

Example

