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Heap Data Structure

• Definition
– (binary) heap data structure is an array object that we can view as a nearly 

complete binary tree

• A node of  the tree corresponds to an element of  the array 
A[1…n]
– n: heap size

– A[1]: root

– [i/2]: parent of  node i

– 2i: left child of  node i

– 2i+1: right child of  node i
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Binary Tree

• Contains no node, or

• eg.

• A node without subtree is called a leaf.

• In a full binary tree, each node has 2 or NO children.

• A complete binary tree has all leaves with the same depth and all 
internal nodes have 2 children.

root

Left 
subtree

right 
subtree
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Heaps

• A heap is a “complete” binary tree, usually represented 
as an array:
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Heap Data Structure

• Height of  node = # of  edges on a longest simple path from 
the node down to a leaf

• Height of  heap = height of  root 
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Heaps

• To represent a heap as an array: 
Parent(i) { return i/2; }
Left(i) { return 2*i; }

right(i) { return 2*i + 1; }
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Properties of Heap

• Height of  heap: 

• Max-heap:
– for all node i except the root 

– Root store the largest value

• Min-heap:
– for all node i except the root 

– Root store the smallest value
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The Heap Property

• Heaps also satisfy the heap property:

A[Parent(i)]  A[i] for all nodes i > 1
– In other words, the value of a node is at most the value of its 

parent

– The largest value is thus stored at the root (A[1])

• Because the heap is a binary tree, the height of 
any node is at most (lg n)

Max-heap!
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Heapify()

• Heapify(): maintain the heap property
– Given: a node i in the heap with children l and r

– Given: two subtrees rooted at l and r, assumed to be heaps

– Action: let the value of the parent node “float down” so subtree at 
i satisfies the heap property 

If A[i] < A[l] or A[i] < A[r], swap A[i] with the largest of A[l] 
and A[r]

Recurse on that subtree

– Running time: O(h), h = height of heap = O(lg n)
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Pseudocode Heapify(A,i)
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Heapify(A,i)

• Running Time:
– The running time of HEAPIFY on a subtree of size n rooted at 

a given node i is the  Θ(1) time to fix up the relationships 
among the elements A[i], A[LEFT(i)], and A[RIGHT(i)]

– Plus the time to run HEAPIFY on a subtree rooted at one of 
the children of node i (assuming that the recursive call occurs).

• Formula:
– The children’s subtrees each have size at most 2n/3

– The worst case occurs when the bottom level of the tree is 
exactly half full

Time: O(lg n), T(n)≤T(2n/3)+Θ(1) 
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BuildHeap()

• We can build a heap in a bottom-up manner by running 
Heapify() on successive subarrays
– Fact: for array of length n, all elements in range 

A[n/2 + 1 .. n] are heaps (Why? ) 
– So: 

Walk backwards through the array from n/2 to 1, calling 
Heapify() on each node.

Order of processing guarantees that the children of node i
are heaps when i is processed

single node
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// given an unsorted array A, make A a heap

BuildHeap(A)

{

heap_size(A) = length(A);

for (i = length[A]/2 downto 1)
Heapify(A, i);

}

BuildHeap()



CSE5311 Design and Analysis of  Algorithms 16Dept. CSE, UT Arlington

Analyzing BuildHeap()

• Each call to Heapify() takes O(lg n) time

• There are O(n) such calls (specifically, n/2)
• Thus the running time is O(n lg n)

– Is this a correct asymptotic upper bound?

– Is this an asymptotically tight bound?

• A tighter bound is O(n) 
– How can this be?  Is there a flaw in the above 

reasoning?
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Analyzing BuildHeap(): Tight

• To Heapify() a subtree takes O(h) time where h is the 
height of the subtree
– h = O(lg m), m = # nodes in subtree

– The height of most subtrees is small

• Fact: an n-element heap has at most n/2h+1 nodes of 
height h

• Using this fact, it can be proved that BuildHeap() takes 
O(n) time 
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Analysis

• Tighter analysis: O(n)
– Assume n = 2k-1, a complete binary tree. The time required 

by Heapify when called on a node of height h is O(h).

– Total cost = 

by exercise: 
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Heapsort

• Given BuildHeap(),  an in-place sorting algorithm is 
easily constructed:
– Maximum element is at A[1]

– Discard by swapping with element at A[n]

Decrement heap_size[A]

A[n] now contains correct value

– Restore heap property at A[1] by calling Heapify()

– Repeat, always swapping A[1] for A[heap_size(A)]
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Heapsort
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Heapsort

Heapsort(A)

{

BuildHeap(A);

for (i = length(A) downto 2)

{

Swap(A[1], A[i]);

heap_size(A) -= 1;

Heapify(A, 1);

}

}
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Analyzing Heapsort

• The call to BuildHeap() takes O(n) time 

• Each of the n - 1 calls to Heapify() takes O(lg n) time

• Thus the total time taken by HeapSort()
= O(n) + (n - 1) O(lg n)
= O(n) + O(n lg n)
= O(n lg n)
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Priority Queues

• Heapsort is a nice algorithm, but in practice Quicksort 
(next lecture) usually wins

• But the heap data structure is incredibly useful for 
implementing priority queues
– A data structure for maintaining a set S of elements, each with 

an associated value or key

– Supports the operations Insert(), Maximum(), and 
ExtractMax()

– What might a priority queue be useful for?
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Priority Queue Operations

• Insert(S, x) inserts the element x into set S

• Maximum(S) returns the element of S with the maximum 
key

• ExtractMax(S) removes and returns the element of S with 
the maximum key

• How could we implement these operations using a heap?

O(lg n)
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HeapInsert(A, key)    // what’s running time?
{

heap_size[A] ++;
i = heap_size[A];
while (i > 1  AND  A[Parent(i)] < key)
{

A[i] = A[Parent(i)];
i = Parent(i);

}
A[i] = key;

}

Implementing Priority Queues

O(lg n)
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HeapMaximum(A)
{

// This one is really tricky:

return A[i];
}

Implementing Priority Queues

Θ(1) 
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Implementing Priority Queues

HeapExtractMax(A)
{

if (heap_size[A] < 1) { error; }
max = A[1];
A[1] = A[heap_size[A]]
heap_size[A] --;
Heapify(A, 1);
return max;

}

It performs only a constant amount of  work on top of  the 
O(lg n) time for HEAPIFY
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Example
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Example
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Example


