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Sorting So Far

• Insertion sort:
– Easy to code

– Fast on small inputs (less than ~50 
elements)

– Fast on nearly-sorted inputs

– O(n2) worst case

– O(n2) average (equally-likely inputs) case

– O(n2) reverse-sorted case

• Merge sort:
– Divide-and-conquer:

Split array in half

Recursively sort subarrays

Linear-time merge step

– O(n lg n) worst case
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• Quick sort:
– Divide-and-conquer:

Partition array into two subarrays, 
recursively sort

All of first subarray < all of second 
subarray

No merge step needed!

– O(n lg n) average case

– Fast in practice

– O(n2) worst case

Naïve implementation: worst case 
on sorted input

Address this with randomized 
quicksort

Sorting So Far

• Heap sort:
– Uses the very useful heap data 

structure

Complete binary tree

Heap property: parent key 
> children’s keys

– O(n lg n) worst case

– Sorts in place

– Fair amount of  shuffling 
memory around
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How Fast Can We Sort?

• Lower bound
– Prove a Lower Bound for any comparison based algorithm for the 

Sorting Problem

– How? Decision trees help us. 

• Observation: sorting algorithms so far are comparison sorts
– The only operation used to gain ordering information about a sequence 

is the pairwise comparison of two elements

– Theorem: all comparison sorts are (n lg n)

A comparison sort must do O(n) comparisons (why?)

What about the gap between O(n) and O(n lg n)
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Decision-tree Example

1:2

2:3

123 1:3

132 312

1:3

213 2:3

231 321

Each internal node is labeled i:j for i, j {1, 2,…, n}.
•The left subtree shows subsequent comparisons if ai  aj.
•The right subtree shows subsequent comparisons if ai  aj.

Sort a1, a2, …, an
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1:2

2:3

123 1:3

132 312

1:3

213 2:3

231 321

Each internal node is labeled i:j for i, j {1, 2,…, n}.
•The left subtree shows subsequent comparisons if ai  aj.
•The right subtree shows subsequent comparisons if ai  aj.

9  4Sort a1, a2, 
a3 9, 4, 6 

Decision-tree Example
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1:2

2:3

123 1:3

132 312

1:3

213 2:3

231 321

Each internal node is labeled i:j for i, j {1, 2,…, n}.
•The left subtree shows subsequent comparisons if ai  aj.
•The right subtree shows subsequent comparisons if ai  aj.

9  6

Sort a1, a2, 
a3 9, 4, 6 

Decision-tree Example
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1:2

2:3

123 1:3

132 312

1:3

213 2:3

231 321

Each internal node is labeled i:j for i, j {1, 2,…, n}.
•The left subtree shows subsequent comparisons if ai  aj.
•The right subtree shows subsequent comparisons if ai  aj.

4  6

Sort a1, a2, 
a3 9, 4, 6 

Decision-tree Example
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1:2

2:3

123 1:3

132 312

1:3

213 2:3

231 321

Each leaf contains a permutation , ,…, (n) to 
indicate that the ordering a(1) a(2)   a(n) has been 
established.

4  6  9

Sort a1, a2, 
a3 9, 4, 6 

Decision-tree Example
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A decision tree can model the execution of  any 
comparison sort:

• One tree for each input size n. 
• View the algorithm as splitting whenever it compares two elements.
• The tree contains the comparisons along all possible instruction 

traces.
• The running time of  the algorithm = the length of  the path taken.
• Worst-case running time = height of  tree.

Decision-tree Example
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class InsertionSortAlgorithm  {

for (int i = 1; i < a.length; i++) {

int j = i;

while ((j > 0) && (a[j-1] > a[i])) {

a[j] = a[j-1];

j--;  }

a[j] = B;  }}        

How?

1:2

2:3

123 1:3

132 312

1:3

213 2:3

231 321

Any comparison sort can be turned into a Decision tree
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Lower Bound for Decision-tree Sorting

Theorem. Any decision tree that can sort n elements must 
have height (n lg n) .

Proof. The tree must contain  n! leaves, since there are n! possible 
permutations.  A height-h binary tree has  2h leaves.  Thus, n!  2h .

 h  lg(n!) (lg is mono. increasing)
 lg ((n/e)n) (Stirling’s formula)
= n lg n – n lg e
= (n lg n) .

n log n − n < log(n!) < n log n



CSE5311 Design and Analysis of  Algorithms 13Dept. CSE, UT Arlington

• Decision trees provide an abstraction of comparison sorts
– A decision tree represents the comparisons made by a comparison sort.  

Every thing else ignored

– What do the leaves represent?

– How many leaves must there be?

• Decision trees can model comparison sorts.  For a given algorithm:

– One tree for each n

– Tree paths are all possible execution traces

– What’s the longest path in a decision tree for insertion sort?  For merge sort?

• What is the asymptotic height of any decision tree for sorting n elements?
• Answer: (n lg n)    (now let’s prove it…)

Decision Tree
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Lower Bound For Comparison Sorting

• Theorem: Any decision tree that sorts n elements has height (n lg n)

• What’s the minimum # of leaves?

• What’s the maximum # of leaves of a binary tree of height h?

• Clearly the minimum # of leaves is less than or equal to the maximum 
# of leaves

• So we have n!  2h; Taking logarithms: lg (n!)  h

• Stirling’s approximation tells us:

• Thus

The minimum height of  a decision tree is (n lg n)
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• Thus the time to comparison sort n elements is (n lg n)

• Corollary: Heapsort and Mergesort are asymptotically optimal 
comparison sorts

• But the name of this lecture is “Sorting in linear time”!
– How can we do better than (n lg n)?

Lower Bound For Comparison Sorting
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Sorting In Linear Time

• Counting sort

– No comparisons between elements!

– But…depends on assumption about the numbers being sorted

We assume numbers are in the range 1… k

– The algorithm:

Input: A[1..n], where A[j]  {1, 2, 3, …, k}

Output: B[1..n], sorted (notice: not sorting in place)

Also: Array C[1..k] for auxiliary storage
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Counting Sort

1 CountingSort(A, B, k)

2 for i=1 to k

3 C[i]= 0;

4 for j=1 to n

5 C[A[j]] += 1;

6 for i=2 to k

7 C[i] = C[i] + C[i-1];

8 for j=n downto 1

9 B[C[A[j]]] = A[j];

10 C[A[j]] -= 1;

Work through example: A={4 1 3 4 3}, k = 4
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Counting Sort

1 CountingSort(A, B, k)

2 for i=1 to k

3 C[i]= 0;

4 for j=1 to n

5 C[A[j]] += 1;

6 for i=2 to k

7 C[i] = C[i] + C[i-1];

8 for j=n downto 1

9 B[C[A[j]]] = A[j];

10 C[A[j]] -= 1;

What will be the running time?

Takes time O(k)

Takes time O(n)
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Counting-sort Example

A: 4 1 3 4 3

B:

1 2 3 4 5

C:

1 2 3 4
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Loop 1

A: 4 1 3 4 3

B:

1 2 3 4 5

C: 0 0 0 0

1 2 3 4

for i  1 to k
do C[i]  0
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A: 4 1 3 4 3

B:

1 2 3 4 5

C: 0 0 0 1

1 2 3 4

for j  1 to n
do C[A[ j]]  C[A[ j]] + 1 C[i] = |{key = 
i}|

Loop 2
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A: 4 1 3 4 3

B:

1 2 3 4 5

C: 1 0 0 1

1 2 3 4

for j  1 to n
do C[A[ j]]  C[A[ j]] + 1 C[i] = |{key = 
i}|

Loop 2
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A: 4 1 3 4 3

B:

1 2 3 4 5

C: 1 0 1 1

1 2 3 4

for j  1 to n
do C[A[ j]]  C[A[ j]] + 1 C[i] = |{key = 
i}|

Loop 2



CSE5311 Design and Analysis of  Algorithms 24Dept. CSE, UT Arlington

A: 4 1 3 4 3

B:

1 2 3 4 5

C: 1 0 1 2

1 2 3 4

for j  1 to n
do C[A[ j]]  C[A[ j]] + 1 C[i] = |{key = 
i}|

Loop 2
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A: 4 1 3 4 3

B:

1 2 3 4 5

C: 1 0 2 2

1 2 3 4

for j  1 to n
do C[A[ j]]  C[A[ j]] + 1 C[i] = |{key = 
i}|

Loop 2
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A: 4 1 3 4 3

B:

1 2 3 4 5

C: 1 0 2 2

1 2 3 4

C': 1 1 2 2

for i  2 to k
do C[i]  C[i] + C[i–1] C[i] = |{key  i}|

Loop 3
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A: 4 1 3 4 3

B:

1 2 3 4 5

C: 1 0 2 2

1 2 3 4

C': 1 1 3 2

for i  2 to k
do C[i]  C[i] + C[i–1] C[i] = |{key  i}|

Loop 3
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A: 4 1 3 4 3

B:

1 2 3 4 5

C: 1 0 2 2

1 2 3 4

C': 1 1 3 5

for i  2 to k
do C[i]  C[i] + C[i–1] C[i] = |{key  i}|

Loop 3
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A: 4 1 3 4 3

B: 3

1 2 3 4 5

C: 1 1 3 5

1 2 3 4

C': 1 1 2 5

for j  n downto 1
doB[C[A[ j]]] A[ j]

C[A[ j]]  C[A[ j]] – 1

Loop 4
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A: 4 1 3 4 3

B: 3 4

1 2 3 4 5

C: 1 1 2 5

1 2 3 4

C': 1 1 2 4

for j  n downto 1
doB[C[A[ j]]] A[ j]

C[A[ j]]  C[A[ j]] – 1

Loop 4
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A: 4 1 3 4 3

B: 3 3 4

1 2 3 4 5

C: 1 1 2 4

1 2 3 4

C': 1 1 1 4

for j  n downto 1
doB[C[A[ j]]] A[ j]

C[A[ j]]  C[A[ j]] – 1

Loop 4
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A: 4 1 3 4 3

B: 1 3 3 4

1 2 3 4 5

C: 1 1 1 4

1 2 3 4

C': 0 1 1 4

for j  n downto 1
doB[C[A[ j]]] A[ j]

C[A[ j]]  C[A[ j]] – 1

Loop 4
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A: 4 1 3 4 3

B: 1 3 3 4 4

1 2 3 4 5

C: 0 1 1 4

1 2 3 4

C': 0 1 1 3

for j  n downto 1
doB[C[A[ j]]] A[ j]

C[A[ j]]  C[A[ j]] – 1

Loop 4
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Analysis

for i  1 to k
do C[i]  0

(n)

(k)

(n)

(k)

for j  1 to n
do C[A[ j]]  C[A[ j]] + 1

for i  2 to k
do C[i]  C[i] + C[i–1]

for j  n downto 1
do B[C[A[ j]]] A[ j]

C[A[ j]]  C[A[ j]] – 1
(n + k)
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• Total time: O(n + k)
– Usually, k = O(n)

– Thus counting sort runs in O(n) time

• But sorting is (n lg n)!
– No contradiction--this is not a comparison sort (in fact, there are no

comparisons at all!)

– Notice that this algorithm is stable

Counting Sort

• Cool!  Why don’t we always use counting sort?

• Because it depends on range k of  elements

• Could we use counting sort to sort 32 bit integers?  Why or why not?

• Answer: no, k too large (232 = 4,294,967,296)
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Stable Sorting

Counting sort is a stable sort: it preserves the input 
order among equal elements.

A: 4 1 3 4 3

B: 1 3 3 4 4

Exercise: What other sorts have this property?
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Radix Sort

• Intuitively, you might sort on the most significant digit, then the 
second msd, etc.

• Problem: lots of intermediate piles of cards (read: scratch arrays) to 
keep track of

• Key idea: sort the least significant digit first

RadixSort(A, d)

for i=1 to d

StableSort(A) on digit i

– Example: Fig 9.3
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• Can we prove it will work?
• Sketch of an inductive argument (induction on the number of 

passes):
– Assume lower-order digits {j: j<i}are sorted

– Show that sorting next digit i leaves array correctly sorted 

 If two digits at position i are different, ordering numbers by that digit is 
correct (lower-order digits irrelevant)

 If they are the same, numbers are already sorted on the lower-order digits.  
Since we use a stable sort, the numbers stay in the right order

Radix Sort
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• What sort will we use to sort on digits?
• Counting sort is obvious choice: 

– Sort n numbers on digits that range from 1..k

– Time: O(n + k)

• Each pass over n numbers with d digits takes time 
O(n+k), so total time O(dn+dk)
– When d is constant and k=O(n), takes O(n) time

• How many bits in a computer word?

Radix Sort
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• Problem: sort 1 million 64-bit numbers
– Treat as four-digit radix 216 numbers

– Can sort in just four passes with radix sort!

• Compares well with typical O(n lg n) comparison sort 
– Requires approximate log n = 20 operations per number being sorted

• So why would we ever use anything but radix sort?

• In general, radix sort based on counting sort is
– Fast, Asymptotically fast (i.e., O(n))

– Simple to code

– A good choice

• To think about: Can radix sort be used on floating-point numbers?

Radix Sort
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Operation of Radix Sort

3 2 9
4 5 7
6 5 7
8 3 9
4 3 6
7 2 0
3 5 5

7 2 0
3 5 5
4 3 6
4 5 7
6 5 7
3 2 9
8 3 9

7 2 0
3 2 9
4 3 6
8 3 9
3 5 5
4 5 7
6 5 7

3 2 9
3 5 5
4 3 6
4 5 7
6 5 7
7 2 0
8 3 9
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•Sort on digit t

Correctness of Radix Sort

Induction on digit position 
• Assume that the numbers are 

sorted by their low-order t – 1
digits.

7 2 0
3 2 9
4 3 6
8 3 9
3 5 5
4 5 7
6 5 7

3 2 9
3 5 5
4 3 6
4 5 7
6 5 7
7 2 0
8 3 9
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•Sort on digit t

Induction on digit position 

• Assume that the numbers are 
sorted by their low-order t – 1
digits.

7 2 0
3 2 9
4 3 6
8 3 9
3 5 5
4 5 7
6 5 7

3 2 9
3 5 5
4 3 6
4 5 7
6 5 7
7 2 0
8 3 9

Two numbers that differ in 
digit t are correctly sorted.

Correctness of Radix Sort
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•Sort on digit t

Induction on digit position 

•Assume that the numbers are 
sorted by their low-order t –
1 digits.

7 2 0
3 2 9
4 3 6
8 3 9
3 5 5
4 5 7
6 5 7

3 2 9
3 5 5
4 3 6
4 5 7
6 5 7
7 2 0
8 3 9

Two numbers that differ in 
digit t are correctly sorted.

Two numbers equal in digit t
are put in the same order as 
the input  correct order.

Correctness of Radix Sort
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Analysis of Radix Sort

•Assume counting sort is the auxiliary stable sort.

•Sort n computer words of  b bits each.

•Each word can be viewed as having b/r base-2r

digits.
Example: 32-bit word

8 8 8 8

r = 8 b/r = 4 passes of  counting sort on 
base-28 digits; or r = 16 b/r = 2 passes of  
counting sort on base-216 digits.

How many passes should we make?
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Recall: Counting sort takes (n + k) time to sort n
numbers in the range from 0 to k – 1.

If each b-bit word is broken into r-bit pieces, each pass of 
counting sort takes (n + 2r) time.  Since there are b/r
passes, we have

Choose r to minimize T(n, b):
• Increasing r means fewer passes, but as r >>  lg n, the 

time grows exponentially.

Analysis of Radix Sort

( (b/r)n + 2r)
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Choosing r

Minimize T(n, b) by differentiating and setting to 0.

Or, just observe that we don’t want 2r >  n, and there’s no harm 
asymptotically in choosing r as large as possible subject to this 
constraint.

Choosing r = lg n implies T(n, b) = (b n/lg n) .

• For numbers in the range from 0 to n d – 1, we have b = d lg n 
radix sort runs in (d n) time.
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Bucket Sort

• Assumption: uniform distribution 
– Input numbers are uniformly distributed in [0,1).

– Suppose input size is n.

• Idea:
– Divide [0,1) into n equal-sized subintervals (buckets).

– Distribute n numbers into buckets

– Expect that each bucket contains few numbers.

– Sort numbers in each bucket (insertion sort as default).

– Then go through buckets in order, listing elements,
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BUCKET-SORT(A)

1. n length[A]

2. for i 1 to n

3. do insert A[i] into bucket B[nA[i]]
4. for i 0 to n-1

5. do sort bucket B[i] using insertion sort

6. Concatenate bucket B[0],B[1],…,B[n-1]
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Example of BUCKET-SORT
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1. n length[A] (1)
2. for i 1 to n O(n)
3. do insert A[i] into bucket B[nA[i]] (1) (i.e. total O(n))

4. for i 0 to n-1 O(n)
5. do sort bucket B[i] with insertion sort O(ni

2) (i=0
n-1 O(ni

2))

6. Concatenate bucket B[0],B[1],…,B[n-1] O(n)

Where ni is the size of bucket B[i].
Thus T(n) = (n) + i=0

n-1 O(ni
2)

= (n)  + n O(2-1/n) = (n)

Analysis of BUCKET-SORT(A)
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Analysis of BUCKET-SORT(A)


