
CSE5311 Design and Analysis of Algorithms 1Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms 1

CSE 5311
Lecture 8 Sorting in Linear Time

Junzhou Huang, Ph.D.

Department of Computer Science and Engineering

Design and Analysis of Algorithms

CSE5311 Design and Analysis of Algorithms 2Dept. CSE, UT Arlington

Sorting So Far

• Insertion sort:
– Easy to code

– Fast on small inputs (less than ~50
elements)

– Fast on nearly-sorted inputs

– O(n2) worst case

– O(n2) average (equally-likely inputs) case

– O(n2) reverse-sorted case

• Merge sort:
– Divide-and-conquer:

Split array in half

Recursively sort subarrays

Linear-time merge step

– O(n lg n) worst case

CSE5311 Design and Analysis of Algorithms 3Dept. CSE, UT Arlington

• Quick sort:
– Divide-and-conquer:

Partition array into two subarrays,
recursively sort

All of first subarray < all of second
subarray

No merge step needed!

– O(n lg n) average case

– Fast in practice

– O(n2) worst case

Naïve implementation: worst case
on sorted input

Address this with randomized
quicksort

Sorting So Far

• Heap sort:
– Uses the very useful heap data

structure

Complete binary tree

Heap property: parent key
> children’s keys

– O(n lg n) worst case

– Sorts in place

– Fair amount of shuffling
memory around

CSE5311 Design and Analysis of Algorithms 4Dept. CSE, UT Arlington

How Fast Can We Sort?

• Lower bound
– Prove a Lower Bound for any comparison based algorithm for the

Sorting Problem

– How? Decision trees help us.

• Observation: sorting algorithms so far are comparison sorts
– The only operation used to gain ordering information about a sequence

is the pairwise comparison of two elements

– Theorem: all comparison sorts are (n lg n)

A comparison sort must do O(n) comparisons (why?)

What about the gap between O(n) and O(n lg n)

CSE5311 Design and Analysis of Algorithms 5Dept. CSE, UT Arlington

Decision-tree Example

1:2

2:3

123 1:3

132 312

1:3

213 2:3

231 321

Each internal node is labeled i:j for i, j {1, 2,…, n}.
•The left subtree shows subsequent comparisons if ai  aj.
•The right subtree shows subsequent comparisons if ai  aj.

Sort a1, a2, …, an

CSE5311 Design and Analysis of Algorithms 6Dept. CSE, UT Arlington

1:2

2:3

123 1:3

132 312

1:3

213 2:3

231 321

Each internal node is labeled i:j for i, j {1, 2,…, n}.
•The left subtree shows subsequent comparisons if ai  aj.
•The right subtree shows subsequent comparisons if ai  aj.

9  4Sort a1, a2,
a3 9, 4, 6 

Decision-tree Example

CSE5311 Design and Analysis of Algorithms 7Dept. CSE, UT Arlington

1:2

2:3

123 1:3

132 312

1:3

213 2:3

231 321

Each internal node is labeled i:j for i, j {1, 2,…, n}.
•The left subtree shows subsequent comparisons if ai  aj.
•The right subtree shows subsequent comparisons if ai  aj.

9  6

Sort a1, a2,
a3 9, 4, 6 

Decision-tree Example

CSE5311 Design and Analysis of Algorithms 8Dept. CSE, UT Arlington

1:2

2:3

123 1:3

132 312

1:3

213 2:3

231 321

Each internal node is labeled i:j for i, j {1, 2,…, n}.
•The left subtree shows subsequent comparisons if ai  aj.
•The right subtree shows subsequent comparisons if ai  aj.

4  6

Sort a1, a2,
a3 9, 4, 6 

Decision-tree Example

CSE5311 Design and Analysis of Algorithms 9Dept. CSE, UT Arlington

1:2

2:3

123 1:3

132 312

1:3

213 2:3

231 321

Each leaf contains a permutation , ,…, (n) to
indicate that the ordering a(1) a(2)   a(n) has been
established.

4  6  9

Sort a1, a2,
a3 9, 4, 6 

Decision-tree Example

CSE5311 Design and Analysis of Algorithms 10Dept. CSE, UT Arlington

A decision tree can model the execution of any
comparison sort:

• One tree for each input size n.
• View the algorithm as splitting whenever it compares two elements.
• The tree contains the comparisons along all possible instruction

traces.
• The running time of the algorithm = the length of the path taken.
• Worst-case running time = height of tree.

Decision-tree Example

CSE5311 Design and Analysis of Algorithms 11Dept. CSE, UT Arlington

class InsertionSortAlgorithm {

for (int i = 1; i < a.length; i++) {

int j = i;

while ((j > 0) && (a[j-1] > a[i])) {

a[j] = a[j-1];

j--; }

a[j] = B; }}

How?

1:2

2:3

123 1:3

132 312

1:3

213 2:3

231 321

Any comparison sort can be turned into a Decision tree

CSE5311 Design and Analysis of Algorithms 12Dept. CSE, UT Arlington

Lower Bound for Decision-tree Sorting

Theorem. Any decision tree that can sort n elements must
have height (n lg n) .

Proof. The tree must contain  n! leaves, since there are n! possible
permutations. A height-h binary tree has  2h leaves. Thus, n!  2h .

 h  lg(n!) (lg is mono. increasing)
 lg ((n/e)n) (Stirling’s formula)
= n lg n – n lg e
= (n lg n) .

n log n − n < log(n!) < n log n

CSE5311 Design and Analysis of Algorithms 13Dept. CSE, UT Arlington

• Decision trees provide an abstraction of comparison sorts
– A decision tree represents the comparisons made by a comparison sort.

Every thing else ignored

– What do the leaves represent?

– How many leaves must there be?

• Decision trees can model comparison sorts. For a given algorithm:

– One tree for each n

– Tree paths are all possible execution traces

– What’s the longest path in a decision tree for insertion sort? For merge sort?

• What is the asymptotic height of any decision tree for sorting n elements?
• Answer: (n lg n) (now let’s prove it…)

Decision Tree

CSE5311 Design and Analysis of Algorithms 14Dept. CSE, UT Arlington

Lower Bound For Comparison Sorting

• Theorem: Any decision tree that sorts n elements has height (n lg n)

• What’s the minimum # of leaves?

• What’s the maximum # of leaves of a binary tree of height h?

• Clearly the minimum # of leaves is less than or equal to the maximum
of leaves

• So we have n!  2h; Taking logarithms: lg (n!)  h

• Stirling’s approximation tells us:

• Thus

The minimum height of a decision tree is (n lg n)

n

e

n
n 






!

 nnennn
e

n
h

n

lglglglg 







CSE5311 Design and Analysis of Algorithms 15Dept. CSE, UT Arlington

• Thus the time to comparison sort n elements is (n lg n)

• Corollary: Heapsort and Mergesort are asymptotically optimal
comparison sorts

• But the name of this lecture is “Sorting in linear time”!
– How can we do better than (n lg n)?

Lower Bound For Comparison Sorting

CSE5311 Design and Analysis of Algorithms 16Dept. CSE, UT Arlington

Sorting In Linear Time

• Counting sort

– No comparisons between elements!

– But…depends on assumption about the numbers being sorted

We assume numbers are in the range 1… k

– The algorithm:

Input: A[1..n], where A[j]  {1, 2, 3, …, k}

Output: B[1..n], sorted (notice: not sorting in place)

Also: Array C[1..k] for auxiliary storage

CSE5311 Design and Analysis of Algorithms 17Dept. CSE, UT Arlington

Counting Sort

1 CountingSort(A, B, k)

2 for i=1 to k

3 C[i]= 0;

4 for j=1 to n

5 C[A[j]] += 1;

6 for i=2 to k

7 C[i] = C[i] + C[i-1];

8 for j=n downto 1

9 B[C[A[j]]] = A[j];

10 C[A[j]] -= 1;

Work through example: A={4 1 3 4 3}, k = 4

CSE5311 Design and Analysis of Algorithms 18Dept. CSE, UT Arlington

Counting Sort

1 CountingSort(A, B, k)

2 for i=1 to k

3 C[i]= 0;

4 for j=1 to n

5 C[A[j]] += 1;

6 for i=2 to k

7 C[i] = C[i] + C[i-1];

8 for j=n downto 1

9 B[C[A[j]]] = A[j];

10 C[A[j]] -= 1;

What will be the running time?

Takes time O(k)

Takes time O(n)

CSE5311 Design and Analysis of Algorithms 19Dept. CSE, UT Arlington

Counting-sort Example

A: 4 1 3 4 3

B:

1 2 3 4 5

C:

1 2 3 4

CSE5311 Design and Analysis of Algorithms 20Dept. CSE, UT Arlington

Loop 1

A: 4 1 3 4 3

B:

1 2 3 4 5

C: 0 0 0 0

1 2 3 4

for i  1 to k
do C[i]  0

CSE5311 Design and Analysis of Algorithms 21Dept. CSE, UT Arlington

A: 4 1 3 4 3

B:

1 2 3 4 5

C: 0 0 0 1

1 2 3 4

for j  1 to n
do C[A[j]]  C[A[j]] + 1 C[i] = |{key =
i}|

Loop 2

CSE5311 Design and Analysis of Algorithms 22Dept. CSE, UT Arlington

A: 4 1 3 4 3

B:

1 2 3 4 5

C: 1 0 0 1

1 2 3 4

for j  1 to n
do C[A[j]]  C[A[j]] + 1 C[i] = |{key =
i}|

Loop 2

CSE5311 Design and Analysis of Algorithms 23Dept. CSE, UT Arlington

A: 4 1 3 4 3

B:

1 2 3 4 5

C: 1 0 1 1

1 2 3 4

for j  1 to n
do C[A[j]]  C[A[j]] + 1 C[i] = |{key =
i}|

Loop 2

CSE5311 Design and Analysis of Algorithms 24Dept. CSE, UT Arlington

A: 4 1 3 4 3

B:

1 2 3 4 5

C: 1 0 1 2

1 2 3 4

for j  1 to n
do C[A[j]]  C[A[j]] + 1 C[i] = |{key =
i}|

Loop 2

CSE5311 Design and Analysis of Algorithms 25Dept. CSE, UT Arlington

A: 4 1 3 4 3

B:

1 2 3 4 5

C: 1 0 2 2

1 2 3 4

for j  1 to n
do C[A[j]]  C[A[j]] + 1 C[i] = |{key =
i}|

Loop 2

CSE5311 Design and Analysis of Algorithms 26Dept. CSE, UT Arlington

A: 4 1 3 4 3

B:

1 2 3 4 5

C: 1 0 2 2

1 2 3 4

C': 1 1 2 2

for i  2 to k
do C[i]  C[i] + C[i–1] C[i] = |{key  i}|

Loop 3

CSE5311 Design and Analysis of Algorithms 27Dept. CSE, UT Arlington

A: 4 1 3 4 3

B:

1 2 3 4 5

C: 1 0 2 2

1 2 3 4

C': 1 1 3 2

for i  2 to k
do C[i]  C[i] + C[i–1] C[i] = |{key  i}|

Loop 3

CSE5311 Design and Analysis of Algorithms 28Dept. CSE, UT Arlington

A: 4 1 3 4 3

B:

1 2 3 4 5

C: 1 0 2 2

1 2 3 4

C': 1 1 3 5

for i  2 to k
do C[i]  C[i] + C[i–1] C[i] = |{key  i}|

Loop 3

CSE5311 Design and Analysis of Algorithms 29Dept. CSE, UT Arlington

A: 4 1 3 4 3

B: 3

1 2 3 4 5

C: 1 1 3 5

1 2 3 4

C': 1 1 2 5

for j  n downto 1
doB[C[A[j]]] A[j]

C[A[j]]  C[A[j]] – 1

Loop 4

CSE5311 Design and Analysis of Algorithms 30Dept. CSE, UT Arlington

A: 4 1 3 4 3

B: 3 4

1 2 3 4 5

C: 1 1 2 5

1 2 3 4

C': 1 1 2 4

for j  n downto 1
doB[C[A[j]]] A[j]

C[A[j]]  C[A[j]] – 1

Loop 4

CSE5311 Design and Analysis of Algorithms 31Dept. CSE, UT Arlington

A: 4 1 3 4 3

B: 3 3 4

1 2 3 4 5

C: 1 1 2 4

1 2 3 4

C': 1 1 1 4

for j  n downto 1
doB[C[A[j]]] A[j]

C[A[j]]  C[A[j]] – 1

Loop 4

CSE5311 Design and Analysis of Algorithms 32Dept. CSE, UT Arlington

A: 4 1 3 4 3

B: 1 3 3 4

1 2 3 4 5

C: 1 1 1 4

1 2 3 4

C': 0 1 1 4

for j  n downto 1
doB[C[A[j]]] A[j]

C[A[j]]  C[A[j]] – 1

Loop 4

CSE5311 Design and Analysis of Algorithms 33Dept. CSE, UT Arlington

A: 4 1 3 4 3

B: 1 3 3 4 4

1 2 3 4 5

C: 0 1 1 4

1 2 3 4

C': 0 1 1 3

for j  n downto 1
doB[C[A[j]]] A[j]

C[A[j]]  C[A[j]] – 1

Loop 4

CSE5311 Design and Analysis of Algorithms 34Dept. CSE, UT Arlington

Analysis

for i  1 to k
do C[i]  0

(n)

(k)

(n)

(k)

for j  1 to n
do C[A[j]]  C[A[j]] + 1

for i  2 to k
do C[i]  C[i] + C[i–1]

for j  n downto 1
do B[C[A[j]]] A[j]

C[A[j]]  C[A[j]] – 1
(n + k)

CSE5311 Design and Analysis of Algorithms 35Dept. CSE, UT Arlington

• Total time: O(n + k)
– Usually, k = O(n)

– Thus counting sort runs in O(n) time

• But sorting is (n lg n)!
– No contradiction--this is not a comparison sort (in fact, there are no

comparisons at all!)

– Notice that this algorithm is stable

Counting Sort

• Cool! Why don’t we always use counting sort?

• Because it depends on range k of elements

• Could we use counting sort to sort 32 bit integers? Why or why not?

• Answer: no, k too large (232 = 4,294,967,296)

CSE5311 Design and Analysis of Algorithms 36Dept. CSE, UT Arlington

Stable Sorting

Counting sort is a stable sort: it preserves the input
order among equal elements.

A: 4 1 3 4 3

B: 1 3 3 4 4

Exercise: What other sorts have this property?

CSE5311 Design and Analysis of Algorithms 37Dept. CSE, UT Arlington

Radix Sort

• Intuitively, you might sort on the most significant digit, then the
second msd, etc.

• Problem: lots of intermediate piles of cards (read: scratch arrays) to
keep track of

• Key idea: sort the least significant digit first

RadixSort(A, d)

for i=1 to d

StableSort(A) on digit i

– Example: Fig 9.3

CSE5311 Design and Analysis of Algorithms 38Dept. CSE, UT Arlington

• Can we prove it will work?
• Sketch of an inductive argument (induction on the number of

passes):
– Assume lower-order digits {j: j<i}are sorted

– Show that sorting next digit i leaves array correctly sorted

 If two digits at position i are different, ordering numbers by that digit is
correct (lower-order digits irrelevant)

 If they are the same, numbers are already sorted on the lower-order digits.
Since we use a stable sort, the numbers stay in the right order

Radix Sort

CSE5311 Design and Analysis of Algorithms 39Dept. CSE, UT Arlington

• What sort will we use to sort on digits?
• Counting sort is obvious choice:

– Sort n numbers on digits that range from 1..k

– Time: O(n + k)

• Each pass over n numbers with d digits takes time
O(n+k), so total time O(dn+dk)
– When d is constant and k=O(n), takes O(n) time

• How many bits in a computer word?

Radix Sort

CSE5311 Design and Analysis of Algorithms 40Dept. CSE, UT Arlington

• Problem: sort 1 million 64-bit numbers
– Treat as four-digit radix 216 numbers

– Can sort in just four passes with radix sort!

• Compares well with typical O(n lg n) comparison sort
– Requires approximate log n = 20 operations per number being sorted

• So why would we ever use anything but radix sort?

• In general, radix sort based on counting sort is
– Fast, Asymptotically fast (i.e., O(n))

– Simple to code

– A good choice

• To think about: Can radix sort be used on floating-point numbers?

Radix Sort

CSE5311 Design and Analysis of Algorithms 41Dept. CSE, UT Arlington

Operation of Radix Sort

3 2 9
4 5 7
6 5 7
8 3 9
4 3 6
7 2 0
3 5 5

7 2 0
3 5 5
4 3 6
4 5 7
6 5 7
3 2 9
8 3 9

7 2 0
3 2 9
4 3 6
8 3 9
3 5 5
4 5 7
6 5 7

3 2 9
3 5 5
4 3 6
4 5 7
6 5 7
7 2 0
8 3 9

CSE5311 Design and Analysis of Algorithms 42Dept. CSE, UT Arlington

•Sort on digit t

Correctness of Radix Sort

Induction on digit position
• Assume that the numbers are

sorted by their low-order t – 1
digits.

7 2 0
3 2 9
4 3 6
8 3 9
3 5 5
4 5 7
6 5 7

3 2 9
3 5 5
4 3 6
4 5 7
6 5 7
7 2 0
8 3 9

CSE5311 Design and Analysis of Algorithms 43Dept. CSE, UT Arlington

•Sort on digit t

Induction on digit position

• Assume that the numbers are
sorted by their low-order t – 1
digits.

7 2 0
3 2 9
4 3 6
8 3 9
3 5 5
4 5 7
6 5 7

3 2 9
3 5 5
4 3 6
4 5 7
6 5 7
7 2 0
8 3 9

Two numbers that differ in
digit t are correctly sorted.

Correctness of Radix Sort

CSE5311 Design and Analysis of Algorithms 44Dept. CSE, UT Arlington

•Sort on digit t

Induction on digit position

•Assume that the numbers are
sorted by their low-order t –
1 digits.

7 2 0
3 2 9
4 3 6
8 3 9
3 5 5
4 5 7
6 5 7

3 2 9
3 5 5
4 3 6
4 5 7
6 5 7
7 2 0
8 3 9

Two numbers that differ in
digit t are correctly sorted.

Two numbers equal in digit t
are put in the same order as
the input  correct order.

Correctness of Radix Sort

CSE5311 Design and Analysis of Algorithms 45Dept. CSE, UT Arlington

Analysis of Radix Sort

•Assume counting sort is the auxiliary stable sort.

•Sort n computer words of b bits each.

•Each word can be viewed as having b/r base-2r

digits.
Example: 32-bit word

8 8 8 8

r = 8 b/r = 4 passes of counting sort on
base-28 digits; or r = 16 b/r = 2 passes of
counting sort on base-216 digits.

How many passes should we make?

CSE5311 Design and Analysis of Algorithms 46Dept. CSE, UT Arlington

Recall: Counting sort takes (n + k) time to sort n
numbers in the range from 0 to k – 1.

If each b-bit word is broken into r-bit pieces, each pass of
counting sort takes (n + 2r) time. Since there are b/r
passes, we have

Choose r to minimize T(n, b):
• Increasing r means fewer passes, but as r >> lg n, the

time grows exponentially.

Analysis of Radix Sort

((b/r)n + 2r)

CSE5311 Design and Analysis of Algorithms 47Dept. CSE, UT Arlington

Choosing r

Minimize T(n, b) by differentiating and setting to 0.

Or, just observe that we don’t want 2r > n, and there’s no harm
asymptotically in choosing r as large as possible subject to this
constraint.

Choosing r = lg n implies T(n, b) = (b n/lg n) .

• For numbers in the range from 0 to n d – 1, we have b = d lg n 
radix sort runs in (d n) time.

CSE5311 Design and Analysis of Algorithms 48Dept. CSE, UT Arlington

Bucket Sort

• Assumption: uniform distribution
– Input numbers are uniformly distributed in [0,1).

– Suppose input size is n.

• Idea:
– Divide [0,1) into n equal-sized subintervals (buckets).

– Distribute n numbers into buckets

– Expect that each bucket contains few numbers.

– Sort numbers in each bucket (insertion sort as default).

– Then go through buckets in order, listing elements,

CSE5311 Design and Analysis of Algorithms 49Dept. CSE, UT Arlington

BUCKET-SORT(A)

1. n length[A]

2. for i 1 to n

3. do insert A[i] into bucket B[nA[i]]
4. for i 0 to n-1

5. do sort bucket B[i] using insertion sort

6. Concatenate bucket B[0],B[1],…,B[n-1]

CSE5311 Design and Analysis of Algorithms 50Dept. CSE, UT Arlington

Example of BUCKET-SORT

CSE5311 Design and Analysis of Algorithms 51Dept. CSE, UT Arlington

1. n length[A] (1)
2. for i 1 to n O(n)
3. do insert A[i] into bucket B[nA[i]] (1) (i.e. total O(n))

4. for i 0 to n-1 O(n)
5. do sort bucket B[i] with insertion sort O(ni

2) (i=0
n-1 O(ni

2))

6. Concatenate bucket B[0],B[1],…,B[n-1] O(n)

Where ni is the size of bucket B[i].
Thus T(n) = (n) + i=0

n-1 O(ni
2)

= (n) + n O(2-1/n) = (n)

Analysis of BUCKET-SORT(A)

CSE5311 Design and Analysis of Algorithms 52Dept. CSE, UT Arlington

Analysis of BUCKET-SORT(A)

