Design and Analysis of Algorithms

CSE 5311 Lecture 8 Sorting in Linear Time

Junzhou Huang, Ph.D.

Department of Computer Science and Engineering

Dept. CSE, UT Arlington

Sorting So Far

- Insertion sort:
 - Easy to code
 - Fast on small inputs (less than ~50 elements)
 - Fast on nearly-sorted inputs
 - O(n²) worst case
 - O(n²) average (equally-likely inputs) case
 - O(n²) reverse-sorted case

- Merge sort:
 - Divide-and-conquer:
 - ≻ Split array in half
 - Recursively sort subarrays
 - Linear-time merge step
 - O(n lg n) worst case

Dept. CSE, UT Arlington

Sorting So Far

• Heap sort:

- Uses the very useful heap data structure
 - Complete binary tree
 - Heap property: parent keychildren's keys
- O(n lg n) worst case
- Sorts in place
- Fair amount of shuffling memory around

• Quick sort:

- Divide-and-conquer:
 - Partition array into two subarrays, recursively sort
 - All of first subarray < all of second subarray
 - ≻No merge step needed!
- O(n lg n) average case
- Fast in practice
- O(n²) worst case
 - Naïve implementation: worst case on sorted input
 - Address this with randomized quicksort

How Fast Can We Sort?

• Lower bound

- Prove a Lower Bound for *any comparison based algorithm* for the Sorting Problem
- How? Decision trees help us.
- **Observation:** sorting algorithms so far are *comparison sorts*
 - The only operation used to gain ordering information about a sequence is the pairwise comparison of two elements
 - Theorem: all comparison sorts are $\Omega(n \lg n)$
 - A comparison sort must do O(n) comparisons (*why?*)
 - > What about the gap between O(n) and O(n lg n)

Each internal node is labeled *i*:*j* for *i*, *j* ∈ {1, 2,..., *n*}.
The left subtree shows subsequent comparisons if a_i ≤ a_j.
The right subtree shows subsequent comparisons if a_i ≥ a_j.

Dept. CSE, UT Arlington

Each internal node is labeled *i*:*j* for *i*, *j* ∈ {1, 2,..., *n*}.
The left subtree shows subsequent comparisons if a_i ≤ a_j.
The right subtree shows subsequent comparisons if a_i ≥ a_j.

Dept. CSE, UT Arlington

Each internal node is labeled *i*:*j* for *i*, *j* ∈ {1, 2,..., *n*}.
The left subtree shows subsequent comparisons if a_i ≤ a_j.
The right subtree shows subsequent comparisons if a_i ≥ a_j.

Dept. CSE, UT Arlington

Each internal node is labeled *i*:*j* for *i*, *j* ∈ {1, 2,..., *n*}.
The left subtree shows subsequent comparisons if a_i ≤ a_j.
The right subtree shows subsequent comparisons if a_i ≥ a_j.

Dept. CSE, UT Arlington

Each leaf contains a permutation $\langle \pi(1), \pi(2), ..., \pi(n) \rangle$ to indicate that the ordering $a_{\pi(1)} \leq a_{\pi(2)} \leq \cdots \leq a_{\pi(n)}$ has been established.

Dept. CSE, UT Arlington

A decision tree can model the execution of any comparison sort:

- One tree for each input size *n*.
- View the algorithm as splitting whenever it compares two elements.
- The tree contains the comparisons along all possible instruction traces.
- The running time of the algorithm = the length of the path taken.
- Worst-case running time = height of tree.

Any comparison sort can be turned into a Decision tree

Lower Bound for Decision-tree Sorting

Theorem. Any decision tree that can sort *n* elements must have height $\Omega(n \lg n)$.

Proof. The tree must contain $\ge n!$ leaves, since there are n! possible permutations. A height-*h* binary tree has $\le 2^h$ leaves. Thus, $n! \le 2^h$.

 $\therefore h \ge \lg(n!)$ $\ge \lg ((n/e)^n)$ $= n \lg n - n \lg e$ $= \Omega(n \lg n).$ (lg is mono. increasing) (Stirling's formula)

 $n \log n - n < \log(n!) < n \log n$

Decision Tree

- *Decision trees* provide an abstraction of comparison sorts
 - A decision tree represents the comparisons made by a comparison sort.
 Every thing else ignored
 - What do the leaves represent?
 - How many leaves must there be?
- Decision trees can model comparison sorts. For a given algorithm:
 - One tree for each n
 - Tree paths are all possible execution traces
 - What's the longest path in a decision tree for insertion sort? For merge sort?
- What is the asymptotic height of any decision tree for sorting n elements?
- Answer: $\Omega(n \lg n)$ (now let's prove it...)

Lower Bound For Comparison Sorting

- Theorem: Any decision tree that sorts *n* elements has height Ω(*n* lg *n*)
- What's the minimum # of leaves?
- What's the maximum # of leaves of a binary tree of height h?
- Clearly the minimum # of leaves is less than or equal to the maximum # of leaves
- So we have $n! \le 2^{h}$; Taking logarithms: $\lg (n!) \le h$
- Stirling's approximation tells us: $n! > \left(\frac{n}{e}\right)^n$

• Thus
$$h \ge \lg \left(\frac{n}{e}\right)^n = n \lg n - n \lg e = \Omega(n \lg n)$$

The minimum height of a decision tree is $\Omega(n \lg n)$

Dept. CSE, UT Arlington

Lower Bound For Comparison Sorting

- Thus the time to comparison sort *n* elements is $\Omega(n \lg n)$
- **Corollary**: Heapsort and Mergesort are asymptotically optimal comparison sorts
- But the name of this lecture is "Sorting in linear time"!
 - How can we do better than $\Omega(n \lg n)$?

Sorting In Linear Time

- Counting sort
 - No comparisons between elements!
 - *But*...depends on assumption about the numbers being sorted
 ➢ We assume numbers are in the range 1... k
 - The algorithm:
 - Finput: A[1..*n*], where A[j] $\in \{1, 2, 3, ..., k\}$
 - **Output**: B[1..*n*], sorted (notice: not sorting in place)
 - ► Also: Array C[1..*k*] for auxiliary storage

Counting Sort

1	CountingSort(A, B, k)
2	for i=1 to k
3	C[i] = 0;
4	for j=1 to n
5	C[A[j]] += 1;
6	for i=2 to k
7	C[i] = C[i] + C[i-1];
8	for j=n downto 1
9	B[C[A[j]]] = A[j];
10	C[A[j]] -= 1;

Work through example: A={4 1 3 4 3}, k = 4

Dept. CSE, UT Arlington

Counting Sort

What will be the running time?

Counting-sort Example

Dept. CSE, UT Arlington

for $i \leftarrow 1$ to kdo $C[i] \leftarrow 0$

Dept. CSE, UT Arlington

for $j \leftarrow 1$ to ndo $C[A[j]] \leftarrow C[A[j]] + 1$ $\triangleright C[i] = |\{\text{key} = i\}|$

Dept. CSE, UT Arlington

for
$$j \leftarrow 1$$
 to n
do $C[A[j]] \leftarrow C[A[j]] + 1 \qquad \triangleright C[i] = |\{\text{key} = i\}|$

Dept. CSE, UT Arlington

for
$$j \leftarrow 1$$
 to n
do $C[A[j]] \leftarrow C[A[j]] + 1$ $\triangleright C[i] = |\{\text{key} = i\}|$

Dept. CSE, UT Arlington

for
$$j \leftarrow 1$$
 to n
do $C[A[j]] \leftarrow C[A[j]] + 1$ $\triangleright C[i] = |\{\text{key} = i\}|$

Dept. CSE, UT Arlington

for
$$j \leftarrow 1$$
 to n
do $C[A[j]] \leftarrow C[A[j]] + 1 \qquad \triangleright C[i] = |\{\text{key} = i\}|$

Dept. CSE, UT Arlington

for $i \leftarrow 2$ to kdo $C[i] \leftarrow C[i] + C[i-1] \triangleright C[i] = |\{\text{key} \le i\}|$

for $i \leftarrow 2$ to kdo $C[i] \leftarrow C[i] + C[i-1] \triangleright C[i] = |\{\text{key} \le i\}|$

for $i \leftarrow 2$ to kdo $C[i] \leftarrow C[i] + C[i-1] \triangleright C[i] = |\{\text{key} \le i\}|$

for *j* ← *n* **downto** 1 **do** *B*[*C*[*A*[*j*]]] ← *A*[*j*] $C[A[j]] \leftarrow C[A[j]] - 1$

Dept. CSE, UT Arlington

for *j* ← *n* **downto** 1 **do** *B*[*C*[*A*[*j*]]] ← *A*[*j*] $C[A[j]] \leftarrow C[A[j]] - 1$

Dept. CSE, UT Arlington

for *j* ← *n* **downto** 1 **do** *B*[*C*[*A*[*j*]]] ← *A*[*j*] $C[A[j]] \leftarrow C[A[j]] - 1$

Dept. CSE, UT Arlington

for *j* ← *n* **downto** 1 **do** *B*[*C*[*A*[*j*]]] ← *A*[*j*] $C[A[j]] \leftarrow C[A[j]] - 1$

Dept. CSE, UT Arlington

for *j* ← *n* **downto** 1 **do** $B[C[A[j]]] \leftarrow A[j]$ $C[A[j]] \leftarrow C[A[j]] - 1$

Dept. CSE, UT Arlington

Analysis

$$\Theta(k) \begin{cases} \text{for } i \leftarrow 1 \text{ to } k \\ \text{do } C[i] \leftarrow 0 \\ \Theta(n) \end{cases} \begin{cases} \text{for } j \leftarrow 1 \text{ to } n \\ \text{do } C[A[j]] \leftarrow C[A[j]] + 1 \\ \Theta(k) \end{cases} \begin{cases} \text{for } i \leftarrow 2 \text{ to } k \\ \text{do } C[i] \leftarrow C[i] + C[i-1] \\ \text{do } C[i] \leftarrow C[i] + C[i-1] \end{cases} \\ \Theta(n) \begin{cases} \text{for } j \leftarrow n \text{ downto } 1 \\ \text{do } B[C[A[j]]] \leftarrow A[j] \\ C[A[j]] \leftarrow C[A[j]] - 1 \end{cases} \end{cases}$$

Counting Sort

- Total time: O(n + k)
 - Usually, k = O(n)
 - Thus counting sort runs in O(n) time
- But sorting is $\Omega(n \lg n)!$
 - No contradiction--this is not a comparison sort (in fact, there are *no* comparisons at all!)
 - Notice that this algorithm is *stable*
- Cool! Why don't we always use counting sort?
- Because it depends on range k of elements
- Could we use counting sort to sort 32 bit integers? Why or why not?
- Answer: no, k too large ($2^{32} = 4,294,967,296$)

Dept. CSE, UT Arlington

Stable Sorting

Counting sort is a *stable* sort: it preserves the input order among equal elements.

Exercise: What other sorts have this property?

Dept. CSE, UT Arlington

- Intuitively, you might sort on the **most significant digit**, then the second msd, etc.
- **Problem:** lots of intermediate piles of cards (read: scratch arrays) to keep track of
- Key idea: sort the *least* significant digit first

```
RadixSort(A, d)
```

for i=1 to d

StableSort(A) on digit i

– Example: Fig 9.3

- Can we prove it will work?
- Sketch of an inductive argument (induction on the number of passes):
 - Assume lower-order digits $\{j: j \le i\}$ are sorted
 - Show that sorting next digit i leaves array correctly sorted
 - If two digits at position i are different, ordering numbers by that digit is correct (lower-order digits irrelevant)
 - If they are the same, numbers are already sorted on the lower-order digits.
 Since we use a stable sort, the numbers stay in the right order

- What sort will we use to sort on digits?
- Counting sort is obvious choice:
 - Sort *n* numbers on digits that range from 1..k
 - Time: O(n + k)
- Each pass over *n* numbers with *d* digits takes time O(*n+k*), so total time O(*dn+dk*)
 - When d is constant and k=O(n), takes O(n) time
- How many bits in a computer word?

- **Problem:** sort 1 million 64-bit numbers
 - Treat as four-digit radix 2^{16} numbers
 - Can sort in just four passes with radix sort!
- Compares well with typical $O(n \lg n)$ comparison sort
 - Requires approximate $\log n = 20$ operations per number being sorted
- So why would we ever use anything but radix sort?
- In general, radix sort based on counting sort is
 - Fast, Asymptotically fast (i.e., O(n))
 - Simple to code
 - A good choice
- To think about: Can radix sort be used on floating-point numbers?

Operation of Radix Sort

Correctness of Radix Sort

Induction on digit position

- Assume that the numbers are sorted by their low-order t 1 digits.
- Sort on digit *t*

Correctness of Radix Sort

Induction on digit position

- Assume that the numbers are sorted by their low-order t 1 digits.
- Sort on digit *t*
 - Two numbers that differ in digit *t* are correctly sorted.

Correctness of Radix Sort

Induction on digit position

Assume that the numbers are sorted by their low-order *t* – 1 digits.

• Sort on digit *t*

- Two numbers that differ in digit *t* are correctly sorted.
- Two numbers equal in digit *t* are put in the same order as the input correct order.

Analysis of Radix Sort

- Assume counting sort is the auxiliary stable sort.
- Sort *n* computer words of *b* bits each.
- Each word can be viewed as having $\frac{b}{r}$ base- 2^r digits. 8 8 8 8

Example: 32-bit word

r = 8 b/r = 4 passes of counting sort on base-2⁸ digits; or r = 16 b/r = 2 passes of counting sort on base-2¹⁶ digits.

How many passes should we make?

Dept. CSE, UT Arlington

Recall: Counting sort takes $\Theta(n + k)$ time to sort *n* numbers in the range from 0 to k - 1.

If each *b*-bit word is broken into *r*-bit pieces, each pass of counting sort takes $\Theta(n + 2^r)$ time. Since there are b/r passes, we have

 $\Theta((b/r)n + 2^r)$

Choose *r* to minimize T(n, b):

Increasing *r* means fewer passes, but as *r* >> lg *n*, the time grows exponentially.

Choosing *r*

Minimize T(n, b) by differentiating and setting to 0.

Or, just observe that we don't want $2^r > n$, and there's no harm asymptotically in choosing *r* as large as possible subject to this constraint.

Choosing $r = \lg n$ implies $T(n, b) = \Theta(b n/\lg n)$.

• For numbers in the range from 0 to $n^d - 1$, we have $b = d \lg n \Rightarrow$ radix sort runs in $\Theta(d n)$ time.

Bucket Sort

- Assumption: uniform distribution
 - Input numbers are uniformly distributed in [0,1).
 - Suppose input size is *n*.
- Idea:
 - Divide [0,1) into *n* equal-sized subintervals (buckets).
 - Distribute *n* numbers into buckets
 - Expect that each bucket contains few numbers.
 - Sort numbers in each bucket (insertion sort as default).
 - Then go through buckets in order, listing elements,

BUCKET-SORT(A)

- 1. $n \leftarrow \text{length}[A]$
- **2.** for *i* ←1 to *n*
- 3. **do** insert A[*i*] into bucket B[$\lfloor nA[i] \rfloor$]
- **4. for** *i* ←0 to *n*-1
- 5. **do** sort bucket B[*i*] using insertion sort
- 6. Concatenate bucket B[0],B[1],...,B[*n*-1]

Example of BUCKET-SORT

Figure 8.4 The operation of BUCKET-SORT. (a) The input array A[1..10]. (b) The array B[0..9] of sorted lists (buckets) after line 5 of the algorithm. Bucket *i* holds values in the half-open interval [i/10, (i + 1)/10). The sorted output consists of a concatenation in order of the lists $B[0], B[1], \ldots, B[9]$.

Dept. CSE, UT Arlington

Analysis of BUCKET-SORT(A)

- 1. $n \leftarrow \text{length}[A]$
- **2.** for $i \leftarrow 1$ to n
- 3. **do** insert A[*i*] into bucket B[$\lfloor nA[i] \rfloor$]
- 4. for $i \leftarrow 0$ to n-1
- 5. **do** sort bucket B[*i*] with insertion sort $O(n_i^2) (\Sigma_{i=0}^{n-1} O(n_i^2))$
- 6. Concatenate bucket $B[0], B[1], \dots, B[n-1]$ O(n)

Where n_i is the size of bucket B[i]. Thus $T(n) = \Theta(n) + \sum_{i=0}^{n-1} O(n_i^2)$ $= \Theta(n) + n O(2-1/n) = \Theta(n)$ $\Omega(1)$ O(n) $\Omega(1) \text{ (i.e. total } O(n))$ O(n)

Analysis of BUCKET-SORT(A)

Time:
$$T(n) = \Theta(n) + \sum_{i=0}^{n-1} O(n_i^2) \quad (n_i: \text{ number of elements in } i^{\text{th}} \text{ bucket})$$
$$E[T(n)] = E\left[\Theta(n) + \sum_{i=0}^{n-1} O(n_i^2)\right]$$
$$= \Theta(n) + \sum_{i=0}^{n-1} E[O(n_i^2)] \quad (\text{linearity of expectation})$$
$$= \Theta(n) + \sum_{i=0}^{n-1} O(E[n_i^2]) \quad (E[aX] = aE[X])$$
$$E[n_i^2] = 2 - (1/n) \implies E[T(n)] = \Theta(n) + \sum_{i=0}^{n-1} O(2 - 1/n)$$
$$= \Theta(n)$$

Dept. CSE, UT Arlington