Design and Analysis of Algorithms

CSE 5311
Lecture 8 Sorting in Linear Time

Junzhou Huang, Ph.D.
Department of Computer Science and Engineering

Sorting So Far

- Insertion sort:

- Easy to code
- Fast on small inputs (less than ~ 50 elements)
- Fast on nearly-sorted inputs
- $\mathrm{O}\left(\mathrm{n}^{2}\right)$ worst case
- $\mathrm{O}\left(\mathrm{n}^{2}\right)$ average (equally-likely inputs) case
- $\mathrm{O}\left(\mathrm{n}^{2}\right)$ reverse-sorted case

- Merge sort:

- Divide-and-conquer: $>$ Split array in half
$>$ Recursively sort subarrays
$>$ Linear-time merge step
- $\mathrm{O}(\mathrm{n} \lg \mathrm{n})$ worst case

Merge Sort		
3 5 2 6 4 1		
3\|512	$6{ }_{6} 41$	
3 5	$6{ }_{6} 41$	
$3 \begin{array}{lll}3 & 5\end{array}$	$4 \begin{array}{llll}4 & 6 & 1\end{array}$	
31512	461	
2\|315	146	
1\|2	3	4\|516

Sorting So Far

- Heap sort:

- Uses the very useful heap data structure
$>$ Complete binary tree
$>$ Heap property: parent key
$>$ children's keys
- $\mathrm{O}(\mathrm{n} \lg \mathrm{n})$ worst case
- Sorts in place
- Fair amount of shuffling memory around
- Quick sort:
- Divide-and-conquer:
$>$ Partition array into two subarrays, recursively sort
$>$ All of first subarray $<$ all of second subarray
$>$ No merge step needed!
- $\mathrm{O}(\mathrm{n} \lg \mathrm{n})$ average case
- Fast in practice
- $\mathrm{O}\left(\mathrm{n}^{2}\right)$ worst case
$>$ Naïve implementation: worst case on sorted input
$>$ Address this with randomized quicksort

How Fast Can We Sort?

- Lower bound

- Prove a Lower Bound for any comparison based algorithm for the Sorting Problem
- How? Decision trees help us.
- Observation: sorting algorithms so far are comparison sorts
- The only operation used to gain ordering information about a sequence is the pairwise comparison of two elements
- Theorem: all comparison sorts are $\Omega(\mathrm{n} \lg \mathrm{n})$
$>$ A comparison sort must do $\mathrm{O}(\mathrm{n})$ comparisons (why:)
$>$ What about the gap between $\mathrm{O}(\mathrm{n})$ and $\mathrm{O}(\mathrm{n} \lg \mathrm{n})$

Decision-tree Example

Sort $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$

Each internal node is labeled $i: j$ for $i, j \in\{1,2, \ldots, n\}$.
-The left subtree shows subsequent comparisons if $a_{i} \leq a_{j}$.

- The right subtree shows subsequent comparisons if $a_{i} \geq a_{j}$.

Decision-tree Example

Each internal node is labeled $i: j$ for $i, j \in\{1,2, \ldots, n\}$.

- The left subtree shows subsequent comparisons if $a_{i} \leq a_{j}$.
- The right subtree shows subsequent comparisons if $a_{i} \geq a_{j}$.

Decision-tree Example

Each internal node is labeled $i: j$ for $i, j \in\{1,2, \ldots, n\}$.
-The left subtree shows subsequent comparisons if $a_{i} \leq a_{j}$.

- The right subtree shows subsequent comparisons if $a_{i} \geq a_{j}$.

Decision-tree Example

Each internal node is labeled $i: j$ for $i, j \in\{1,2, \ldots, n\}$.
-The left subtree shows subsequent comparisons if $a_{i} \leq a_{j}$.

- The right subtree shows subsequent comparisons if $a_{i} \geq a_{j}$.

Decision-tree Example

Each leaf contains a permutation $\langle\pi(1), \pi(2), \ldots, \pi(n)\rangle$ to indicate that the ordering $a_{\pi(1)} \leq a_{\pi(2)} \leq \cdots \leq a_{\pi(\mathrm{n})}$ has been established.

Decision-tree Example

A decision tree can model the execution of any

 comparison sort:- One tree for each input size n.
- View the algorithm as splitting whenever it compares two elements.
- The tree contains the comparisons along all possible instruction traces.
- The running time of the algorithm = the length of the path taken.
- Worst-case running time $=$ height of tree.

How?

Any comparison sort can be turned into a Decision tree

class InsertionSortAlgorithm \{

Lower Bound for Decision-tree Sorting

Theorem. Any decision tree that can sort n elements must have height $\Omega(n \lg n)$.

Proof. The tree must contain $\geq n$! leaves, since there are n ! possible permutations. A height- h binary tree has $\leq 2^{h}$ leaves. Thus, $n!\leq 2^{h}$.

$$
\begin{aligned}
\therefore \quad & h \geq \lg (n!) \\
& \geq \lg \left((n / e)^{n}\right) \\
& =n \lg n-n \lg e \\
& =\Omega(n \lg n) .
\end{aligned}
$$

(lg is mono. increasing)
(Stirling's formula)

$$
n \log n-n<\log (n!)<n \log n
$$

Decision Tree

- Decision trees provide an abstraction of comparison sorts
- A decision tree represents the comparisons made by a comparison sort. Every thing else ignored
- What do the leaves represent?
- How many leaves must there be?
- Decision trees can model comparison sorts. For a given algorithm:
- One tree for each n
- Tree paths are all possible execution traces
- What's the longest path in a decision tree for insertion sort? For merge sort?
- What is the asymptotic height of any decision tree for sorting n elements?
- Answer: $\Omega(n \lg n) \quad$ (now let's prove it...)

Lower Bound For Comparison Sorting

- Theorem: Any decision tree that sorts n elements has height $\Omega(\boldsymbol{n} \lg \boldsymbol{n})$
- What's the minimum \# of leaves?
- What's the maximum \# of leaves of a binary tree of height h?
- Clearly the minimum \# of leaves is less than or equal to the maximum \# of leaves
- So we have $n!\leq 2^{h}$; Taking logarithms: $\lg (n!) \leq h$
- Stirling's approximation tells us: $n!>\left(\frac{n}{e}\right)^{n}$
- Thus $h \geq \lg \left(\frac{n}{e}\right)^{n}=n \lg n-n \lg e=\Omega(n \lg n)$

The minimum height of a decision tree is $\Omega(n \lg n)$

Lower Bound For Comparison Sorting

- Thus the time to comparison sort n elements is $\Omega(n \lg n)$
- Corollary: Heapsort and Mergesort are asymptotically optimal comparison sorts
- But the name of this lecture is "Sorting in linear time"!
- How can we do better than $\Omega(n \lg n)$?

Sorting In Linear Time

- Counting sort
- No comparisons between elements!
- But...depends on assumption about the numbers being sorted
$>$ We assume numbers are in the range $1 \ldots k$
- The algorithm:
$>$ Input: $\mathrm{A}[1 . . n]$, where $\mathrm{A}[\mathrm{j}] \in\{1,2,3, \ldots, k\}$
$>$ Output: $\mathrm{B}[1 . . n]$, sorted (notice: not sorting in place)
$>$ Also: Array C[1..k] for auxiliary storage

Counting Sort

1	CountingSort (A, B, k)
2	for $i=1$ to k
3	$C[i]=0 ;$
4	for $j=1$ to n
5	$C[A[j]]+=1 ;$
6	for $i=2$ to k
7	$C[i]=C[i]+C[i-1] ;$
8	for $j=n$ downto 1
9	$B[C[A[j]]=A[j] ;$
10	$C[A[j]]=1 ;$

Work through example: $A=\{41343\}$, $k=4$

Counting Sort

Counting-sort Example

Loop 1

$B:$| | | | | |
| :--- | :--- | :--- | :--- | :--- |

for $i \leftarrow 1$ to k do $C[i] \leftarrow 0$

Loop 2

for $j \leftarrow 1$ to n do $C[A[j]] \leftarrow C[A[j]]+1 \quad \triangleright C[i]=\mid\{$ key $=$ i\}|

Loop 2

for $j \leftarrow 1$ to n do $C[A[j]] \leftarrow C[A[j]]+1 \quad \triangleright C[i]=\mid\{$ key $=$ i\}|

Loop 2

for $j \leftarrow 1$ to n do $C[A[j]] \leftarrow C[A[j]]+1 \quad \triangleright C[i]=\mid\{$ key $=$ i\}|

Loop 2

for $j \leftarrow 1$ to n do $C[A[j]] \leftarrow C[A[j]]+1 \quad \triangleright C[i]=\mid\{$ key $=$ i\}|

Loop 2

for $j \leftarrow 1$ to n do $C[A[j]] \leftarrow C[A[j]]+1 \quad \triangleright C[i]=\mid\{$ key $=$ i\}|

Loop 3

for $i \leftarrow 2$ to k

$$
\boldsymbol{d o} C[i] \leftarrow C[i]+C[i-1] \triangleright C[i]=\mid\{\text { key } \leq i\} \mid
$$

Loop 3

for $i \leftarrow 2$ to k

$$
\boldsymbol{d o} C[i] \leftarrow C[i]+C[i-1] \triangleright C[i]=\mid\{\text { key } \leq i\} \mid
$$

Loop 3

for $i \leftarrow 2$ to k

$$
\boldsymbol{d o} C[i] \leftarrow C[i]+C[i-1] \triangleright C[i]=\mid\{\text { key } \leq i\} \mid
$$

Loop 4

for $j \leftarrow n$ downto 1

$$
\begin{aligned}
& \mathbf{d o} B[C[A[j]]] \leftarrow \mathrm{A}[j] \\
& \quad C[A[j]] \leftarrow C[A[j]]-1
\end{aligned}
$$

Loop 4

for $j \leftarrow n$ downto 1 do $B[C[A[j]]] \leftarrow \mathrm{A}[j]$ $C[A[j]] \leftarrow C[A[j]]-1$

Loop 4

for $j \leftarrow n$ downto 1

$$
\begin{aligned}
& \mathbf{d o} B[C[A[j]]] \leftarrow \mathrm{A}[j] \\
& \quad C[A[j]] \leftarrow C[A[j]]-1
\end{aligned}
$$

Loop 4

for $j \leftarrow n$ downto 1

$$
\begin{aligned}
& \mathbf{d o} B[C[A[j]]] \leftarrow \mathrm{A}[j] \\
& \quad C[A[j]] \leftarrow C[A[j]]-1
\end{aligned}
$$

Loop 4

for $j \leftarrow n$ downto 1

$$
\begin{aligned}
& \mathbf{d o} B[C[A[j]]] \leftarrow \mathrm{A}[j] \\
& \quad C[A[j]] \leftarrow C[A[j]]-1
\end{aligned}
$$

Analysis

$$
\begin{array}{ll}
\Theta(k) & \left\{\begin{array}{c}
\text { for } i \leftarrow 1 \text { to } k \\
\text { do } C[i] \leftarrow 0
\end{array}\right. \\
\Theta(n) & \left\{\begin{array}{r}
\text { for } j \leftarrow 1 \text { to } n \\
\text { do } C[A[j]] \leftarrow C[A[j]]+1
\end{array}\right. \\
\Theta(k) & \left\{\begin{array}{c}
\text { for } i \leftarrow 2 \text { to } k \\
\text { do } C[i] \leftarrow C[i]+C[i-1]
\end{array}\right. \\
\Theta(n) & \left\{\begin{array}{c}
\text { for } j \leftarrow n \text { downto } 1 \\
\text { do } B[C[A[j]]] \leftarrow \mathrm{A}[j] \\
C[A[j]] \leftarrow C[A[j]]-1
\end{array}\right.
\end{array}
$$

Counting Sort

- Total time: $\mathbf{O}(n+k)$
- Usually, $k=\mathrm{O}(n)$
- Thus counting sort runs in $\mathrm{O}(n)$ time
- But sorting is $\Omega(n \lg n)$!
- No contradiction--this is not a comparison sort (in fact, there are no comparisons at all!)
- Notice that this algorithm is stable
- Cool! Why don't we always use counting sort?
- Because it depends on range k of elements
- Could we use counting sort to sort 32 bit integers? Why or why not?
- Answer: no, k too large $\left(2^{32}=4,294,967,296\right)$

Stable Sorting

Counting sort is a stable sort: it preserves the input order among equal elements.

Exercise: What other sorts have this property?

Radix Sort

- Intuitively, you might sort on the most significant digit, then the second msd, etc.
- Problem: lots of intermediate piles of cards (read: scratch arrays) to keep track of
- Key idea: sort the least significant digit first

$$
\begin{gathered}
\text { RadixSort(A, } \mathrm{d}) \\
\text { for } \mathrm{i}=1 \text { to } \mathrm{d}
\end{gathered}
$$

StableSort(A) on digit i

- Example: Fig 9.3

Radix Sort

- Can we prove it will work?
- Sketch of an inductive argument (induction on the number of passes):
- Assume lower-order digits $\{\mathrm{j}: \mathrm{j}<\mathrm{i}\}$ are sorted
- Show that sorting next digit i leaves array correctly sorted
$>$ If two digits at position i are different, ordering numbers by that digit is correct (lower-order digits irrelevant)
$>$ If they are the same, numbers are already sorted on the lower-order digits. Since we use a stable sort, the numbers stay in the right order

Radix Sort

- What sort will we use to sort on digits?
- Counting sort is obvious choice:
- Sort n numbers on digits that range from 1..k
- Time: $\mathrm{O}(n+k)$
- Each pass over n numbers with d digits takes time $O(n+k)$, so total time $O(d n+d k)$
- When d is constant and $k=\mathrm{O}(n)$, takes $\mathrm{O}(n)$ time
- How many bits in a computer word?

Radix Sort

- Problem: sort 1 million 64-bit numbers
- Treat as four-digit radix 2^{16} numbers
- Can sort in just four passes with radix sort!
- Compares well with typical $O(n \lg n)$ comparison sort
- Requires approximate $\log n=20$ operations per number being sorted
- So why would we ever use anything but radix sort?
- In general, radix sort based on counting sort is
- Fast, Asymptotically fast (i.e., $\mathrm{O}(n)$)
- Simple to code
- A good choice
- To think about: Can radix sort be used on floating-point numbers?

Operation of Radix Sort

$$
\begin{aligned}
& 329 \quad 720 \quad 720 \quad 329 \\
& 457 \quad 355 \\
& 329 \\
& 355 \\
& 657 \quad 436 \\
& 436 \\
& 436 \\
& 839 \\
& 457 \\
& 839 \\
& 457 \\
& 436 \\
& 657 \\
& 355 \\
& 657 \\
& 720 \quad 329 \\
& 457 \\
& 720 \\
& 355 \\
& 839 \\
& 657 \\
& 839
\end{aligned}
$$

Correctness of Radix Sort

Induction on digit position

- Assume that the numbers are sorted by their low-order $t-1$ digits.
- Sort on digit t

Correctness of Radix Sort

Induction on digit position

- Assume that the numbers are sorted by their low-order $t-1$ digits.
- Sort on digit t
- Two numbers that differ in digit t are correctly sorted.

Correctness of Radix Sort

Induction on digit position

- Assume that the numbers are sorted by their low-order $t-$ 1 digits.
- Sort on digit t
- Two numbers that differ in digit t are correctly sorted.
- Two numbers equal in digit t are put in the same order as the input correct order.

Analysis of Radix Sort

- Assume counting sort is the auxiliary stable sort.
- Sort n computer words of b bits each.
- Each word can be viewed as having b / r base- 2^{r} digits.
Example: 32-bit word

$r=8 \quad b / r=4$ passes of counting sort on base- 2^{8} digits; or $r=16 \quad b / r=2$ passes of counting sort on base- $2{ }^{16}$ digits.

How many passes should we make?

Analysis of Radix Sort

Recall: Counting sort takes $\Theta(n+k)$ time to sort n numbers in the range from 0 to $k-1$.

If each b-bit word is broken into r-bit pieces, each pass of counting sort takes $\Theta\left(n+2^{r}\right)$ time. Since there are b / r passes, we have

$$
\Theta\left((\mathrm{b} / \mathrm{r}) n+2^{r}\right)
$$

Choose r to minimize $T(n, b)$:

- Increasing r means fewer passes, but as $r \gg \lg n$, the time grows exponentially.

Choosing r

Minimize $T(n, b)$ by differentiating and setting to 0 .
Or, just observe that we don't want $2^{r}>n$, and there's no harm asymptotically in choosing r as large as possible subject to this constraint.

Choosing $r=\lg n$ implies $T(n, b)=\Theta(b n / \lg n)$.

- For numbers in the range from 0 to $n^{d}-1$, we have $b=d \lg n \Rightarrow$ radix sort runs in $\Theta(d n)$ time.

Bucket Sort

- Assumption: uniform distribution
- Input numbers are uniformly distributed in $[0,1)$.
- Suppose input size is n.
- Idea:
- Divide [0,1) into n equal-sized subintervals (buckets).
- Distribute n numbers into buckets
- Expect that each bucket contains few numbers.
- Sort numbers in each bucket (insertion sort as default).
- Then go through buckets in order, listing elements,

BUCKET-SORT(A)

1. $n \leftarrow$ length $[\mathrm{A}]$
2. for $i \leftarrow 1$ to n
3. do insert $A[1]$ into bucket $B[L n A[1]]]$
4. for $i \leftarrow 0$ to $n-1$
5. do sort bucket $\mathrm{B}[1]$ using insertion sort
6. Concatenate bucket $\mathrm{B}[0], \mathrm{B}[1], \ldots, \mathrm{B}[n-1]$

Example of BUCKET-SORT

	A
1	.78
2	.17
3	.39
4	.26
5	.72
	.94
7	.21
8	.12
9	.23
10	.68

(a)

(b)

Figure 8.4 The operation of BUCKET-SORT. (a) The input array $A[1 \ldots 10]$. (b) The array $B[0 . .9]$ of sorted lists (buckets) after line 5 of the algorithm. Bucket i holds values in the half-open interval $[i / 10,(i+1) / 10)$. The sorted output consists of a concatenation in order of the lists $B[0], B[1], \ldots, B[9]$.

Analysis of BUCKET-SORT(A)

1. $n \leftarrow$ length $[\mathrm{A}]$
2. \quad for $i \leftarrow 1$ to n
3. do insert $\mathrm{A}[7]$ into bucket $\mathrm{B}[\llcorner\mathrm{A}[2]]]$
4. for $i \leftarrow 0$ to $n-1$
5. do sort bucket $\mathrm{B}[i]$ with insertion sort
6. Concatenate bucket $\mathrm{B}[0], \mathrm{B}[1], \ldots, \mathrm{B}[n-1] \quad O(n)$

Where n_{i} is the size of bucket $\mathrm{B}[i]$.

$$
\text { Thus } \begin{aligned}
T(n) & =\Theta(n)+\sum_{i=0}{ }^{n-1} O\left(n_{i}^{2}\right) \\
& =\Theta(n)+n O(2-1 / n)=\Theta(n)
\end{aligned}
$$

Analysis of BUCKET-SORT(A)

Time: $\quad T(n)=\Theta(n)+\sum_{i=0} O\left(n_{i}^{2}\right) \quad \begin{aligned} & \left(n_{i}: \text { number of }\right. \\ & \left.\text { elements in } i^{\text {th }} \text { bucket }\right)\end{aligned}$

$$
\begin{array}{rlr}
\mathrm{E}[T(n)] & =\mathrm{E}\left[\Theta(n)+\sum_{i=0}^{n-1} O\left(n_{i}^{2}\right)\right] \\
& =\Theta(n)+\sum_{i=0}^{n-1} \mathrm{E}\left[O\left(n_{i}^{2}\right)\right] & \\
& \text { (linearity of expectation) } \\
& =\Theta(n)+\sum_{i=0}^{n-1} O\left(\mathrm{E}\left[n_{i}^{2}\right]\right) & \\
(\mathrm{E}[a X]=a \mathrm{E}[X])
\end{array}
$$

$$
\begin{aligned}
\mathrm{E}\left[n_{i}^{2}\right]=2-(1 / n) \Rightarrow \mathrm{E}[T(n)] & =\Theta(n)+\sum_{i=0}^{n-1} O(2-1 / n) \\
& =\Theta(n)
\end{aligned}
$$

