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Medians and Order Statistics

• The ith order statistic of n elements S={a1, a2,…, an} : ith 
smallest elements

• Also called selection problem

• Minimum and maximum

• Median, lower median, upper median

• Selection in expected/average linear time

• Selection in worst-case linear time
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Order Statistics

• The ith order statistic in a set of n elements is the ith smallest 
element

• The minimum is thus the 1st order statistic 

• The maximum is (duh) the nth order statistic

• The median is the n/2 order statistic

– If n is even, there are 2 medians

• How can we calculate order statistics?
• What is the running time?
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• How many comparisons are 
needed to find the minimum 
element in a set?  The maximum?
– To compute the maximum n − 1 

comparisons are necessary and sufficient. 

– The algorithm is optimal with respect to 
the number of comparisons performed

– The same is true for the minimum.  

Order Statistics

MINIMUM(A, n)
min ← A[1]
for i ← 2 to n

do if min > A[i]
then min ← A[i]

return min

Can we find the minimum and maximum with less cost?   
Yes:

― Walk through elements by pairs
― Compare each element in pair to the other
― Compare the largest to maximum, smallest to minimum
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• Simultaneous computation 
of max and min 
– Maintain the variables min and 

max . Process the n numbers in 
pairs.

– For the first pair, set min to 
the smaller and max to the 
other. After that, for each new 
pair, compare the smaller with 
min and the larger with max .

– Can be done in 3(n−3)/2 steps

Order Statistics

MAX-AND-MIN(A, n) 

1: max ← A[n]; min ← A[n] 
2: for i ← 1 to n/2 do
3:     if A[2i − 1] ≥ A[2i] then 
4:     { if A[2i − 1] > max then
5:          max ← A[2i − 1] 
6:         if A[2i] < min then
7:            min ← A[2i] }
8:      else { if A[2i] > max then
9:            max ← A[2i] 
10:       if A[2i − 1] < min then
11:          min ← A[2i − 1] }
12: return max and min
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Example: Simultaneous Max, Min 

• n = 5 (odd), array A = {2, 7, 1, 3, 4}

1. Set min = max = 2 

2. Compare elements in pairs:

– 1 < 7  compare 1 with min and 7 with max

 min = 1, max = 7

– 3 < 4  compare 3 with min and 4 with max

 min = 1, max = 7

Total cost: 3(n-1)/2 = 6 comparisons
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Example: Simultaneous Max, Min 

• n = 6 (even), array A = {2, 5, 3, 7, 1, 4}

1. Compare 2 with 5: 2 < 5

2. Set min = 2, max = 5 

3. Compare elements in pairs:

– 3 < 7  compare 3 with min and 7 with max

 min = 2, max = 7

– 1 < 4  compare 1 with min and 4 with max

 min = 1, max = 7 Total cost: 3n/2-2 = 7 comparisons
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O(nlg n) Algorithm

• Suppose n elements are sorted by an O(nlg n) algorithm, e.g., 
MERGE-SORT
– Minimum: the first element; Maximum: the last element
– The ith order statistic: the ith element.
– Median:

 If n is odd, then ((n+1)/2)th element.
 If n is even, 

– then ((n+1)/2)th element, lower median
– then ((n+1)/2)th element, upper median

• All selections can be done in O(1), so total: O(nlg n).
– Selection is a trivial problem if the input numbers are sorted. 
– But using a sorting is more like using a cannon to shoot a fly since 

only one number needs to computed.
• Can we do better?
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Selection in Expected Linear Time O(n)

• Select ith element
• A divide-and-conquer algorithm RANDOMIZED-

SELECT
• Similar to quicksort, partition the input array recursively
• Unlike quicksort, which works on both sides of the 

partition, just work on one side of the partition.
– Called prune-and-search, prune one side, just search the other 

side).
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Finding Order Statistics: The Selection Problem

• A more interesting problem is selection: finding the ith 
smallest element of a set 

• We will show:
– A practical randomized algorithm with O(n) expected running time

– A cool algorithm of theoretical interest only with O(n) worst-case running 
time
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Randomized Selection

• Key idea: use partition() from quicksort
– But, only need to examine one subarray

– This savings shows up in running time: O(n)

• We will again use a slightly different partition than 
the book:
q = RandomizedPartition(A, p, r)

A[q] A[q]

qp r
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Randomized Selection

RandomizedSelect(A, p, r, i)

if (p == r) then return A[p];

q = RandomizedPartition(A, p, r)

k = q - p + 1;

if (i == k) then return A[q];   

if (i < k) then

return RandomizedSelect(A, p, q-1, i);

else

return RandomizedSelect(A, q+1, r, i-k);

A[q] A[q]

k

qp r
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Randomized Selection

• Analyzing RandomizedSelect()

– Worst case: partition always 0:n-1

T(n) = T(n-1) + O(n) = ???
= O(n2) (arithmetic series)

No better than sorting!

– “Best” case: suppose a 9:1 partition

T(n) = T(9n/10) + O(n) = ???
= O(n) (Master Theorem, case 3)

Better than sorting!

What if this had been a 99:1 split?



CSE5311 Design and Analysis of  Algorithms 14Dept. CSE, UT Arlington

Randomized Selection

• Average case
– For upper bound, assume ith element always falls in larger side 

of partition:

– Let’s show that T(n) = O(n) by substitution
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What happened here?

Max(k-1, n-k)=k-1 if k>┌n/2┐
Max(k-1, n-k)=n-k if k<=┌n/2┐
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What happened he“Split” the recurrence

What happened he

What happened here?

What happened here?

Randomized Selection

• Assume T(n)  cn for sufficiently large c:
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The recurrence we started with

Substitute T(n)  cn  for T(k) 

Expand arithmetic series

Multiply it out
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What happened here?Subtract c/2

What happened here?

What happened here?

What happened here?

• Assume T(n)  cn for sufficiently large c:

The recurrence so far

Multiply it out

Rearrange the arithmetic

What we set out to 
prove
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Randomized Selection
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Worst-Case Linear-Time Selection

• Randomized algorithm works well in practice

• What follows is a worst-case linear time algorithm, really of 
theoretical interest only

• Basic idea: 
– Generate a good partitioning element

– Call this element x
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Worst-Case Linear-Time Selection

• The algorithm in words:
1. Divide the elements into groups of five, where the last group may have less 

than five elements in case when the input array size is not a multiple of five. 

2. Find median of each group (How?  How long?). Ties can be broken arbitrarily

3. Make a recursive call Select() to calculate the median of the medians. Set x 
to the median. 

4. Partition the n elements around x.  Let k = rank(x)

5. if (i == k) then return x

if (i < k) then use Select() recursively to find ith smallest 
element in first partition
else (i > k) use Select() recursively to find (i-k)th smallest 
element in last partition

k = rank(x), x is the k-th smallest element and there are n-k elements on the high side of  the partition 
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Example

• Find the –11th smallest element in array:

A = {12, 34, 0, 3, 22, 4, 17, 32, 3, 28, 43, 82, 25, 27, 34, 2 ,19 
,12 ,5 ,18 ,20 ,33, 16, 33, 21, 30, 3, 47} 

1. Divide the array into groups of 5 elements

4
17
32
3

28

12
34
0
3

22

43
82
25
27
34

2
19
12
5

18

20
33
16
33
21

30
3

47



CSE5311 Design and Analysis of  Algorithms 20Dept. CSE, UT Arlington

Example

2. Sort the groups and find their medians

3. Find the median of the medians

12, 12, 17, 21, 34, 30

4
3

17
32
28

0
3

12
34
22

25
27
34
43
82

2
5

12
19
18

20
16
21
33
33

3
30
47
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Example

4. Partition the array around the median of medians (17)

First partition:

{12, 0, 3, 4, 3, 2, 12, 5, 16, 3}

Pivot:

17 (position of the pivot is q = 11)

Second partition:

{34, 22, 32, 28, 43, 82, 25, 27, 34, 19, 18, 20, 33, 33,   
21, 30, 47}

To find the 6-th smallest element we would have to recurse our 
search in the first partition.
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Analysis of Running Time

• Step 1: making groups of 5 elements takes O(n)

• Step 2: sorting n/5 groups in O(1) time each takes O(n)

• Step 3: calling SELECT on n/5 medians takes time  T(n/5)

• Step 4: partitioning the n-element array around x takes O(n)

• Step 5: recursion on one partition takes

depends on the size of  the partition!!
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• (Sketch situation on the board)

• How many of the 5-element medians are  x?
– At least 1/2 of the medians = n/5 / 2 = n/10

• How many elements are  x?
– At least 3 n/10  elements

• For large n,    3 n/10   n/4 (How large?)
• So at least n/4 elements  x
• Similarly: at least n/4 elements  x

Worst-Case Linear-Time Selection
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• Thus after partitioning around x, step 5 will call Select() on 
at most 3n/4 elements

• The recurrence is therefore: 
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Substitute T(n) = cn

Combine fractions 

Express in desired form

What we set out to prove

Worst-Case Linear-Time Selection
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• Intuitively:
– Work at each level is a constant fraction (19/20) smaller

Geometric progression!

– Thus the O(n) work at the root dominates

Worst-Case Linear-Time Selection
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Linear-Time Median Selection

• Given a “black box” O(n) median algorithm, what can we do?

– ith order statistic: 

Find median x

Partition input around x

if (i  (n+1)/2) recursively find ith element of first half

else find (i - (n+1)/2)th element in second half

T(n) = T(n/2) + O(n) = O(n)

– Can you think of an application to sorting?
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Linear-Time Median Selection

• Worst-case O(n lg n) quicksort
– Find median x and partition around it

– Recursively quicksort two halves

– T(n) = 2T(n/2) + O(n) = O(n lg n)
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Summary

• The ith order statistic of n elements S={a1, a2,…, an} : ith 
smallest elements:
– Minimum and maximum.
– Median, lower median, upper median

• Selection in expected/average linear time
– Worst case running time
– Prune-and-search

• Selection in worst-case linear time:


