Design and Analysis of Algorithms

CSE 5311

Lecture 9 Median and Order Statistics

Junzhou Huang, Ph.D.
Department of Computer Science and Engineering

Medians and Order Statistics

- The i th order statistic of n elements $\mathrm{S}=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}: i$ th smallest elements
- Also called selection problem
- Minimum and maximum
- Median, lower median, upper median
- Selection in expected/average linear time
- Selection in worst-case linear time

Order Statistics

- The $\boldsymbol{i t h}$ order statistic in a set of n elements is the $\dot{\boldsymbol{t}} \mathrm{h}$ smallest element
- The minimum is thus the 1st order statistic
- The maximum is (duh) the nth order statistic
- The median is the $n / 2$ order statistic
- If n is even, there are 2 medians
- How can we calculate order statistics?
- What is the running time?

Order Statistics

- How many comparisons are needed to find the minimum element in a set? The maximum?
- To compute the maximum $n-1$ comparisons are necessary and sufficient.

```
MINIMUM \((A, n)\)
\(\min \leftarrow A^{\prime}[1]\)
for \(i \leftarrow 2\) to \(n\)
do if \(\min >A[i]\)
then \(\min \leftarrow A[i]\)
return \(\min\)
```

- The algorithm is optimal with respect to the number of comparisons performed
- The same is true for the minimum.

Can we find the minimum and maximum with less cost? Yes:

- Walk through elements by pairs
- Compare each element in pair to the other
- Compare the largest to maximum, smallest to minimum

Order Statistics

- Simultaneous computation of max and min
- Maintain the variables min and max. Process the n numbers in pairs.
- For the first pair, set min to the smaller and max to the other. After that, for each new pair, compare the smaller with min and the larger with max .
- Can be done in $3(\mathrm{n}-3) / 2$ steps

MAX-AND-MIN(A, n)

1: $\max \leftarrow A[n] ; \min \leftarrow A[n]$
2: for $\mathrm{i} \leftarrow 1$ to $\mathrm{n} / 2$ do
3: if $\mathrm{A}[2 \mathrm{i}-1] \geq \mathrm{A}[2 \mathrm{i}]$ then
4: $\{$ if $A[2 i-1]>\max$ then
$\max \leftarrow A[2 i-1]$
if $\mathrm{A}[2 \mathrm{i}]<\min$ then $\min \leftarrow A[2 i]\}$
else $\{$ if $A[2 i]>$ max then $\max \leftarrow A[2 i]$
if $A[2 i-1]<\min$ then $\min \leftarrow A[2 i-1]\}$
12: return max and min

Example: Simultaneous Max, Min

- $\quad \mathrm{n}=5$ (odd), array $\mathrm{A}=\{2,7,1,3,4\}$

1. \quad Set $\min =\max =2$
2. Compare elements in pairs:
$-\quad 1<7 \Rightarrow$ compare 1 with min and 7 with max

$$
\Rightarrow \min =1, \max =7
$$

$-\quad 3<4 \Rightarrow$ compare 3 with min and 4 with max

$$
\Rightarrow \min =1, \max =7
$$

Total cost: $3(\mathrm{n}-1) / 2=6$ comparisons

Example: Simultaneous Max, Min

- $n=6$ (even), array $A=\{2,5,3,7,1,4\}$

1. Compare 2 with $5: 2<5$
2. \quad Set $\min =2, \max =5$
3. Compare elements in pairs:
$-\quad 3<7 \Rightarrow$ compare 3 with min and 7 with max

$$
\Rightarrow \min =2, \max =7
$$

$-\quad 1<4 \Rightarrow$ compare 1 with min and 4 with max

$$
\Rightarrow \min =1, \max =7 \quad \text { Total cost: } 3 \mathrm{n} / 2-2=7 \text { comparisor }
$$

O(nlg n) Algorithm

- Suppose n elements are sorted by an $O(n l g n)$ algorithm, e.g., MERGE-SORT
- Minimum: the first element; Maximum: the last element
- The i th order statistic: the i th element.
- Median:
$>$ If n is odd, then $((n+1) / 2)$ th element.
$>$ If n is even,
- then $(L(n+1) / 2\rfloor)$ th element, lower median
- then $((n+1) / 2\rceil)$ th element, upper median
- All selections can be done in $O(1)$, so total: $O(n l g n)$.
- Selection is a trivial problem if the input numbers are sorted.
- But using a sorting is more like using a cannon to shoot a fly since only one number needs to computed.
- Can we do better?

Selection in Expected Linear Time $\boldsymbol{O}(\boldsymbol{n})$

- Select i th element
- A divide-and-conquer algorithm RANDOMIZEDSELECT
- Similar to quicksort, partition the input array recursively
- Unlike quicksort, which works on both sides of the partition, just work on one side of the partition.
- Called prune-and-search, prune one side, just search the other side).

Finding Order Statistics: The Selection Problem

- A more interesting problem is selection: finding the th smallest element of a set
- We will show:
- A practical randomized algorithm with $\mathrm{O}(\mathrm{n})$ expected running time
- A cool algorithm of theoretical interest only with $\mathrm{O}(\mathrm{n})$ worst-case running time

Randomized Selection

- Key idea: use partition() from quicksort
- But, only need to examine one subarray
- This savings shows up in running time: $\mathrm{O}(\mathrm{n})$
- We will again use a slightly different partition than the book:
$\mathrm{q}=$ RandomizedPartition(A, $\mathrm{p}, \mathrm{r})$

	$\leq \mathrm{A}[\mathrm{q}]$	
	$\mathrm{A}[\mathrm{q}]$	
p	q	

Randomized Selection

```
RandomizedSelect(A, p, r, i)
    if (p == r) then return A[p];
    q = RandomizedPartition(A, p, r)
    k = q - p + 1;
    if (i == k) then return A[q];
    if (i < k) then
        return RandomizedSelect(A, p, q-1, i);
    else
        return RandomizedSelect(A, q+1, r, i-k);
        l-k
        p

\section*{Randomized Selection}
- Analyzing RandomizedSelect()
- Worst case: partition always 0:n-1
\[
\begin{aligned}
\mathrm{T}(\mathrm{n}) & =\mathrm{T}(\mathrm{n}-1)+\mathrm{O}(\mathrm{n}) \quad=? ? ? \\
& =\mathrm{O}\left(\mathrm{n}^{2}\right) \quad \quad \text { (arithmetic series) }
\end{aligned}
\]
\(>\) No better than sorting!
- "Best" case: suppose a 9:1 partition
\(\mathrm{T}(\mathrm{n})=\mathrm{T}(9 n / 10)+\mathrm{O}(\mathrm{n}) \quad=? ?\)
\(=\mathrm{O}(\mathrm{n}) \quad(\) Master Theorem, case 3)
\(>\) Better than sorting!
\(>\) What if this had been a 99:1 split?

\section*{Randomized Selection}
- Average case
- For upper bound, assume \(i\) th element always falls in larger side of partition:
\[
T(n) \leq \frac{1}{n} \sum_{k=0}^{n-1} T(\max (k-1, n-k))+\Theta(n)
\]

\section*{What happened here?}
\[
\leq \frac{2}{n} \sum_{k=n / 2}^{n-1} T(k)+\Theta(n)
\]
- Let's show that \(\mathrm{T}(n)=\mathrm{O}(n)\) by substitution
\[
\begin{aligned}
& \left.\operatorname{Max}(k-1, n-k)=k-1 \text { if } k>\Gamma^{n} / 2\right\rceil \\
& \operatorname{Max}(k-1, n-k)=n-k \text { if } k<=\Gamma n / 2 \eta
\end{aligned}
\]

\section*{Randomized Selection}
- Assume \(T(n) \leq c n\) for sufficiently large \(c\) :
\[
\begin{array}{rlr}
T(n) & \leq \frac{2}{n} \sum_{k=n / 2}^{n-1} T(k)+\Theta(n) & \text { The recurrence we started with } \\
& \leq \frac{2}{n} \sum_{k=n / 2}^{n-1} c k+\Theta(n) & \text { Substitute } \mathbf{T}(\mathbf{n}) \leq \mathbf{c n} \text { for } \mathbf{T}(\mathbf{k}) \\
& =\frac{2 c}{n}\left(\sum_{k=1}^{n-1} k-\sum_{k=1}^{n / 2-1} k\right)+\Theta(n) & \text { "Split" the recurrence } \\
& =\frac{2 c}{n}\left(\frac{1}{2}(n-1) n-\frac{1}{2}\left(\frac{n}{2}-1\right) \frac{n}{2}\right)+\Theta(n) \text { Expand arithmetic series } \\
& =c(n-1)-\frac{c}{2}\left(\frac{n}{2}-1\right)+\Theta(n) & \text { Multiply it out }
\end{array}
\]

\section*{Randomized Selection}
- Assume \(T(n) \leq c n\) for sufficiently large \(c\) :
\[
\begin{array}{rlrl}
T(n) & \leq c(n-1)-\frac{c}{2}\left(\frac{n}{2}-1\right)+\Theta(n) & & \text { The recurrence so far } \\
& =c n-c-\frac{c n}{4}+\frac{c}{2}+\Theta(n) & & \text { Multiply it out } \\
& =c n-\frac{c n}{4}-\frac{c}{2}+\Theta(n) & & \text { Subtract c/2 } \\
& =c n-\left(\frac{c n}{4}+\frac{c}{2}-\Theta(n)\right) & & \text { Rearrange the arithmetic } \\
& \leq c n \quad \text { if c is big enough) } & & \text { What we set out to } \\
\text { prove }
\end{array}
\]

\section*{Worst-Case Linear-Time Selection}
- Randomized algorithm works well in practice
- What follows is a worst-case linear time algorithm, really of theoretical interest only
- Basic idea:
- Generate a good partitioning element
- Call this element \(x\)

\section*{Worst-Case Linear-Time Selection}
- The algorithm in words:
1. Divide the elements into groups of five, where the last group may have less than five elements in case when the input array size is not a multiple of five.
2. Find median of each group (How? How long?). Ties can be broken arbitrarily
3. Make a recursive call \(\operatorname{Select}()\) to calculate the median of the medians. Set \(x\) to the median.
4. Partition the \(n\) elements around \(x\). Let \(k=\operatorname{rank}(x)\)
5. if \((i==k)\) then return \(x\)
if \((\mathrm{i}<\mathrm{k})\) then use Select() recursively to find \(i\) th smallest element in first partition else ( \(\mathrm{i}>\mathrm{k}\) ) use \(\operatorname{Select}\) ) recursively to find ( \(i-\mathrm{k}\) ) th smallest element in last partition
\(k=\operatorname{rank}(x), \mathrm{x}\) is the \(k\)-th smallest element and there are \(n-k\) elements on the high side of the partition

\section*{Example}
- Find the -11 th smallest element in array:
\(A=\{12,34,0,3,22,4,17,32,3,28,43,82,25,27,34,2,19\) ,12, 5, 18, 20, 33, 16, 33, 21, 30, 3, 47\}
1. Divide the array into groups of 5 elements
\begin{tabular}{|r}
\hline 12 \\
34 \\
0 \\
3 \\
22
\end{tabular}\(\quad\)\begin{tabular}{|r}
4 \\
17 \\
32 \\
3 \\
28
\end{tabular}\(\quad\)\begin{tabular}{|l}
43 \\
82 \\
25 \\
27 \\
34
\end{tabular}\(\quad\)\begin{tabular}{|r}
2 \\
19 \\
12 \\
5 \\
18
\end{tabular}\(\quad\)\begin{tabular}{|l}
20 \\
33 \\
16 \\
33 \\
21
\end{tabular}\(\quad\)\begin{tabular}{|r}
30 \\
3 \\
47 \\
\hline
\end{tabular}

\section*{Example}
2. Sort the groups and find their medians
\begin{tabular}{|r}
\hline 0 \\
3 \\
12 \\
34 \\
22
\end{tabular}\(\quad\)\begin{tabular}{|r}
4 \\
3 \\
17 \\
32 \\
28
\end{tabular}\(\quad\)\begin{tabular}{|}
25 \\
27 \\
34 \\
43 \\
82
\end{tabular}\(\quad\)\begin{tabular}{|r}
2 \\
5 \\
12 \\
19 \\
18
\end{tabular}\(\quad\)\begin{tabular}{|l|}
\hline 20 \\
16 \\
21 \\
33 \\
33
\end{tabular}
3. Find the median of the medians
\[
12,12,17,21,34,30
\]

\section*{Example}
4. Partition the array around the median of medians (17)

First partition:
\(\{12,0,3,4,3,2,12,5,16,3\}\)
Pivot:
17 (position of the pivot is \(\mathrm{q}=11\) )
Second partition:
\(\{34,22,32,28,43,82,25,27,34,19,18,20,33,33\), \(21,30,47\}\)

To find the 6-th smallest element we would have to recurse our search in the first partition.

\section*{Analysis of Running Time}
- Step 1: making groups of 5 elements takes \(\mathbf{O}(\mathrm{n})\)
- Step 2: sorting \(n / 5\) groups in \(\mathrm{O}(1)\) time each takes \(\mathbf{O}(\mathrm{n})\)
- Step 3: calling SELECT on \(\lceil\mathrm{n} / 5\rceil\) medians takes time \(T(\lceil\mathrm{n} / 5\rceil)\)
- Step 4: partitioning the n-element array around \(x\) takes \(\mathbf{O}(\mathrm{n})\)
- Step 5: recursion on one partition takes
depends on the size of the partition!!

\section*{Worst-Case Linear-Time Selection}
- (Sketch situation on the board)
- How many of the 5-element medians are \(\leq x\) ?
- At least \(1 / 2\) of the medians \(=\lfloor\lfloor\mathrm{n} / 5\rfloor / 2\rfloor=\lfloor\mathrm{n} / 10\rfloor\)
- How many elements are \(\leq x\) ?
- At least \(3\lfloor n / 10 」\) elements
- For large n, \(3\lfloor\mathrm{n} / 10\rfloor \geq \mathrm{n} / 4 \quad\) (How large?)
- So at least \(n / 4\) elements \(\leq x\)
- Similarly: at least \(n / 4\) elements \(\geq x\)

\section*{Worst-Case Linear-Time Selection}
- Thus after partitioning around \(x\), step 5 will call Select() on at most \(3 n / 4\) elements
- The recurrence is therefore:
\[
\begin{array}{rlr}
T(n) & \leq T(\lfloor n / 5\rfloor)+T(3 n / 4)+\Theta(n) & \\
& \leq T(n / 5)+T(3 n / 4)+\Theta(n) & \lfloor\mathrm{n} / 5\rfloor \leq \mathrm{n} / 5 \\
& \leq c n / 5+3 c n / 4+\Theta(n) & \text { Substitute T(n) }=\mathrm{cn} \\
& =19 c n / 20+\Theta(n) & \text { Combine fractions } \\
& =c n-(c n / 20-\Theta(n)) & \text { Express in desired form } \\
& \leq c n \text { if } c \text { is big enough } & \text { What we set out to prove }
\end{array}
\]

\section*{Worst-Case Linear-Time Selection}
- Intuitively:
- Work at each level is a constant fraction \((19 / 20)\) smaller
\(>\) Geometric progression!
- Thus the \(\mathrm{O}(\mathrm{n})\) work at the root dominates

\section*{Linear-Time Median Selection}
- Given a "black box" O(n) median algorithm, what can we do?
- \(i\) th order statistic:
\(\Rightarrow\) Find median \(x\)
\(\Rightarrow\) Partition input around \(x\)
\(>\) if \((i \leq(\mathrm{n}+1) / 2)\) recursively find \(i\) th element of first half
\(>\) else find \((i-(\mathrm{n}+1) / 2)\) th element in second half
\(\Rightarrow \mathrm{T}(\mathrm{n})=\mathrm{T}(\mathrm{n} / 2)+\mathrm{O}(\mathrm{n})=\mathrm{O}(\mathrm{n})\)
- Can you think of an application to sorting?

\section*{Linear-Time Median Selection}
- Worst-case \(\mathbf{O}(\mathrm{n} \lg \mathrm{n})\) quicksort
- Find median \(x\) and partition around it
- Recursively quicksort two halves
\(-\mathrm{T}(\mathrm{n})=2 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{O}(\mathrm{n})=\mathrm{O}(\mathrm{n} \lg \mathrm{n})\)

\section*{Summary}
- The \(\boldsymbol{i t h}\) order statistic of \(n\) elements \(S=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}: i\) th smallest elements:
- Minimum and maximum.
- Median, lower median, upper median
- Selection in expected/average linear time
- Worst case running time
- Prune-and-search
- Selection in worst-case linear time:```

