
CSE5311 Design and Analysis of Algorithms 1Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms 1

CSE 5311
Lecture 9 Median and Order Statistics

Junzhou Huang, Ph.D.

Department of Computer Science and Engineering

Design and Analysis of Algorithms

CSE5311 Design and Analysis of Algorithms 2Dept. CSE, UT Arlington

Medians and Order Statistics

• The ith order statistic of n elements S={a1, a2,…, an} : ith
smallest elements

• Also called selection problem

• Minimum and maximum

• Median, lower median, upper median

• Selection in expected/average linear time

• Selection in worst-case linear time

CSE5311 Design and Analysis of Algorithms 3Dept. CSE, UT Arlington

Order Statistics

• The ith order statistic in a set of n elements is the ith smallest
element

• The minimum is thus the 1st order statistic

• The maximum is (duh) the nth order statistic

• The median is the n/2 order statistic

– If n is even, there are 2 medians

• How can we calculate order statistics?
• What is the running time?

CSE5311 Design and Analysis of Algorithms 4Dept. CSE, UT Arlington

• How many comparisons are
needed to find the minimum
element in a set? The maximum?
– To compute the maximum n − 1

comparisons are necessary and sufficient.

– The algorithm is optimal with respect to
the number of comparisons performed

– The same is true for the minimum.

Order Statistics

MINIMUM(A, n)
min ← A[1]
for i ← 2 to n

do if min > A[i]
then min ← A[i]

return min

Can we find the minimum and maximum with less cost?
Yes:

― Walk through elements by pairs
― Compare each element in pair to the other
― Compare the largest to maximum, smallest to minimum

CSE5311 Design and Analysis of Algorithms 5Dept. CSE, UT Arlington

• Simultaneous computation
of max and min
– Maintain the variables min and

max . Process the n numbers in
pairs.

– For the first pair, set min to
the smaller and max to the
other. After that, for each new
pair, compare the smaller with
min and the larger with max .

– Can be done in 3(n−3)/2 steps

Order Statistics

MAX-AND-MIN(A, n)

1: max ← A[n]; min ← A[n]
2: for i ← 1 to n/2 do
3: if A[2i − 1] ≥ A[2i] then
4: { if A[2i − 1] > max then
5: max ← A[2i − 1]
6: if A[2i] < min then
7: min ← A[2i] }
8: else { if A[2i] > max then
9: max ← A[2i]
10: if A[2i − 1] < min then
11: min ← A[2i − 1] }
12: return max and min

CSE5311 Design and Analysis of Algorithms 6Dept. CSE, UT Arlington

Example: Simultaneous Max, Min

• n = 5 (odd), array A = {2, 7, 1, 3, 4}

1. Set min = max = 2

2. Compare elements in pairs:

– 1 < 7  compare 1 with min and 7 with max

 min = 1, max = 7

– 3 < 4  compare 3 with min and 4 with max

 min = 1, max = 7

Total cost: 3(n-1)/2 = 6 comparisons

CSE5311 Design and Analysis of Algorithms 7Dept. CSE, UT Arlington

Example: Simultaneous Max, Min

• n = 6 (even), array A = {2, 5, 3, 7, 1, 4}

1. Compare 2 with 5: 2 < 5

2. Set min = 2, max = 5

3. Compare elements in pairs:

– 3 < 7  compare 3 with min and 7 with max

 min = 2, max = 7

– 1 < 4  compare 1 with min and 4 with max

 min = 1, max = 7 Total cost: 3n/2-2 = 7 comparisons

CSE5311 Design and Analysis of Algorithms 8Dept. CSE, UT Arlington

O(nlg n) Algorithm

• Suppose n elements are sorted by an O(nlg n) algorithm, e.g.,
MERGE-SORT
– Minimum: the first element; Maximum: the last element
– The ith order statistic: the ith element.
– Median:

 If n is odd, then ((n+1)/2)th element.
 If n is even,

– then ((n+1)/2)th element, lower median
– then ((n+1)/2)th element, upper median

• All selections can be done in O(1), so total: O(nlg n).
– Selection is a trivial problem if the input numbers are sorted.
– But using a sorting is more like using a cannon to shoot a fly since

only one number needs to computed.
• Can we do better?

CSE5311 Design and Analysis of Algorithms 9Dept. CSE, UT Arlington

Selection in Expected Linear Time O(n)

• Select ith element
• A divide-and-conquer algorithm RANDOMIZED-

SELECT
• Similar to quicksort, partition the input array recursively
• Unlike quicksort, which works on both sides of the

partition, just work on one side of the partition.
– Called prune-and-search, prune one side, just search the other

side).

CSE5311 Design and Analysis of Algorithms 10Dept. CSE, UT Arlington

Finding Order Statistics: The Selection Problem

• A more interesting problem is selection: finding the ith
smallest element of a set

• We will show:
– A practical randomized algorithm with O(n) expected running time

– A cool algorithm of theoretical interest only with O(n) worst-case running
time

CSE5311 Design and Analysis of Algorithms 11Dept. CSE, UT Arlington

Randomized Selection

• Key idea: use partition() from quicksort
– But, only need to examine one subarray

– This savings shows up in running time: O(n)

• We will again use a slightly different partition than
the book:
q = RandomizedPartition(A, p, r)

A[q] A[q]

qp r

CSE5311 Design and Analysis of Algorithms 12Dept. CSE, UT Arlington

Randomized Selection

RandomizedSelect(A, p, r, i)

if (p == r) then return A[p];

q = RandomizedPartition(A, p, r)

k = q - p + 1;

if (i == k) then return A[q];

if (i < k) then

return RandomizedSelect(A, p, q-1, i);

else

return RandomizedSelect(A, q+1, r, i-k);

A[q] A[q]

k

qp r

CSE5311 Design and Analysis of Algorithms 13Dept. CSE, UT Arlington

Randomized Selection

• Analyzing RandomizedSelect()

– Worst case: partition always 0:n-1

T(n) = T(n-1) + O(n) = ???
= O(n2) (arithmetic series)

No better than sorting!

– “Best” case: suppose a 9:1 partition

T(n) = T(9n/10) + O(n) = ???
= O(n) (Master Theorem, case 3)

Better than sorting!

What if this had been a 99:1 split?

CSE5311 Design and Analysis of Algorithms 14Dept. CSE, UT Arlington

Randomized Selection

• Average case
– For upper bound, assume ith element always falls in larger side

of partition:

– Let’s show that T(n) = O(n) by substitution

      

   















1

2/

1

0

2

,1max
1

n

nk

n

k

nkT
n

nknkT
n

nT

What happened here?

Max(k-1, n-k)=k-1 if k>┌n/2┐
Max(k-1, n-k)=n-k if k<=┌n/2┐

CSE5311 Design and Analysis of Algorithms 15Dept. CSE, UT Arlington

What happened he“Split” the recurrence

What happened he

What happened here?

What happened here?

Randomized Selection

• Assume T(n)  cn for sufficiently large c:

 

 

 

   

   nnc
nc

n
nn

nn
n

c

nkk
n

c

nck
n

nkT
n

nT

n

k

n

k

n

nk

n

nk







 















 





































1
22

1

2
1

22

1
1

2

12

2

2

)(
2

)(

12

1

1

1

1

2/

1

2/

The recurrence we started with

Substitute T(n)  cn for T(k)

Expand arithmetic series

Multiply it out

CSE5311 Design and Analysis of Algorithms 16Dept. CSE, UT Arlington

What happened here?Subtract c/2

What happened here?

What happened here?

What happened here?

• Assume T(n)  cn for sufficiently large c:

The recurrence so far

Multiply it out

Rearrange the arithmetic

What we set out to
prove

   

 

 

 

enough) big is c if(

24

24

24

1
22

1)(

cn

n
ccn

cn

n
ccn

cn

n
ccn

ccn

n
nc

ncnT









 











 

Randomized Selection

CSE5311 Design and Analysis of Algorithms 17Dept. CSE, UT Arlington

Worst-Case Linear-Time Selection

• Randomized algorithm works well in practice

• What follows is a worst-case linear time algorithm, really of
theoretical interest only

• Basic idea:
– Generate a good partitioning element

– Call this element x

CSE5311 Design and Analysis of Algorithms 18Dept. CSE, UT Arlington

Worst-Case Linear-Time Selection

• The algorithm in words:
1. Divide the elements into groups of five, where the last group may have less

than five elements in case when the input array size is not a multiple of five.

2. Find median of each group (How? How long?). Ties can be broken arbitrarily

3. Make a recursive call Select() to calculate the median of the medians. Set x
to the median.

4. Partition the n elements around x. Let k = rank(x)

5. if (i == k) then return x

if (i < k) then use Select() recursively to find ith smallest
element in first partition
else (i > k) use Select() recursively to find (i-k)th smallest
element in last partition

k = rank(x), x is the k-th smallest element and there are n-k elements on the high side of the partition

CSE5311 Design and Analysis of Algorithms 19Dept. CSE, UT Arlington

Example

• Find the –11th smallest element in array:

A = {12, 34, 0, 3, 22, 4, 17, 32, 3, 28, 43, 82, 25, 27, 34, 2 ,19
,12 ,5 ,18 ,20 ,33, 16, 33, 21, 30, 3, 47}

1. Divide the array into groups of 5 elements

4
17
32
3

28

12
34
0
3

22

43
82
25
27
34

2
19
12
5

18

20
33
16
33
21

30
3

47

CSE5311 Design and Analysis of Algorithms 20Dept. CSE, UT Arlington

Example

2. Sort the groups and find their medians

3. Find the median of the medians

12, 12, 17, 21, 34, 30

4
3

17
32
28

0
3

12
34
22

25
27
34
43
82

2
5

12
19
18

20
16
21
33
33

3
30
47

CSE5311 Design and Analysis of Algorithms 21Dept. CSE, UT Arlington

Example

4. Partition the array around the median of medians (17)

First partition:

{12, 0, 3, 4, 3, 2, 12, 5, 16, 3}

Pivot:

17 (position of the pivot is q = 11)

Second partition:

{34, 22, 32, 28, 43, 82, 25, 27, 34, 19, 18, 20, 33, 33,
21, 30, 47}

To find the 6-th smallest element we would have to recurse our
search in the first partition.

CSE5311 Design and Analysis of Algorithms 22Dept. CSE, UT Arlington

Analysis of Running Time

• Step 1: making groups of 5 elements takes O(n)

• Step 2: sorting n/5 groups in O(1) time each takes O(n)

• Step 3: calling SELECT on n/5 medians takes time T(n/5)

• Step 4: partitioning the n-element array around x takes O(n)

• Step 5: recursion on one partition takes

depends on the size of the partition!!

CSE5311 Design and Analysis of Algorithms 23Dept. CSE, UT Arlington

• (Sketch situation on the board)

• How many of the 5-element medians are  x?
– At least 1/2 of the medians = n/5 / 2 = n/10

• How many elements are  x?
– At least 3 n/10  elements

• For large n, 3 n/10   n/4 (How large?)
• So at least n/4 elements  x
• Similarly: at least n/4 elements  x

Worst-Case Linear-Time Selection

CSE5311 Design and Analysis of Algorithms 24Dept. CSE, UT Arlington

• Thus after partitioning around x, step 5 will call Select() on
at most 3n/4 elements

• The recurrence is therefore:

      
     

  
enough big is if

20

)(2019

)(435

435

435)(

ccn

ncncn

ncn

ncncn

nnTnT

nnTnTnT










???

???

???

???

???

n/5   n/5

Substitute T(n) = cn

Combine fractions

Express in desired form

What we set out to prove

Worst-Case Linear-Time Selection

CSE5311 Design and Analysis of Algorithms 25Dept. CSE, UT Arlington

• Intuitively:
– Work at each level is a constant fraction (19/20) smaller

Geometric progression!

– Thus the O(n) work at the root dominates

Worst-Case Linear-Time Selection

CSE5311 Design and Analysis of Algorithms 26Dept. CSE, UT Arlington

Linear-Time Median Selection

• Given a “black box” O(n) median algorithm, what can we do?

– ith order statistic:

Find median x

Partition input around x

if (i  (n+1)/2) recursively find ith element of first half

else find (i - (n+1)/2)th element in second half

T(n) = T(n/2) + O(n) = O(n)

– Can you think of an application to sorting?

CSE5311 Design and Analysis of Algorithms 27Dept. CSE, UT Arlington

Linear-Time Median Selection

• Worst-case O(n lg n) quicksort
– Find median x and partition around it

– Recursively quicksort two halves

– T(n) = 2T(n/2) + O(n) = O(n lg n)

CSE5311 Design and Analysis of Algorithms 28Dept. CSE, UT Arlington

Summary

• The ith order statistic of n elements S={a1, a2,…, an} : ith
smallest elements:
– Minimum and maximum.
– Median, lower median, upper median

• Selection in expected/average linear time
– Worst case running time
– Prune-and-search

• Selection in worst-case linear time:

