Design and Analysis of Algorithms

CSE 5311
Lecture 9 Median and Order Statistics

Junzhou Huang, Ph.D.

Department of Computer Science and Engineering

Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms

Medians and Order Statistics

* The 7th order statistic of 7 elements S={4,, a,,..., a,} : ith

smallest elements
* Also called selection problem
e Minimum and maximum
* Median, lower median, upper median
* Selection in expected/average linear time

e Selection in worst-case linear time

Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms

Order Statistics

e The th order statistic in a set of n elements is the ith smallest
clement

e The minimum is thus the 1st order statistic
* The maximum is (duh) the nth order statistic
e The medianis the n/2 order statistic

— If #1s even, there are 2 medians

e How can we calculate order statistics?

What is the running time?

Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms

Order Statistics

* How many comparisons are MINIMUM(A, n)
needed to find the minimum min < A[1]

. . fori < 2ton
element in a set? The maximum? do if min > A[i]

— To compute the maximum n — 1 return min then min < A[i]

COmMparisons are necessary and sufficient.

— 'The algorithm is optimal with respect to
the number of comparisons performed

— The same is true for the minimum.

Can we find the minimum and maximum with less cost?

Yes:
— Wialk through elements by pairs

— Compare each element in pair to the other
— Compare the largest to maximum, smallest to minimum

Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms 4

Order Statistics

* Simultaneous computation
of max and min

— Maintain the variables min and
max . Process the n numbers in
pairs.

— For the first pair, set min to
the smaller and max to the
other. After that, for each new
pair, compare the smaller with
min and the larger with max .

— Can be done in 3(n—3)/2 steps

MAX-AND-MIN(A, n)

1: max «— A[n]; min «— A[n]
2:fori— 1ton/2do
if A[2i — 1] = A[2i] then
{ if A[2i — 1] > max then
max «— A[2i — 1]
if A[2i] < min then
min <« A[2i] }
else { if A[2i] > max then
: max «— A[2]
10: if A[2i — 1] < min then
11: min <— A[2i — 1] }
12: return max and min

© 00N R W

Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms

Example: Simultaneous Max, Min

* n=5(odd),array A = {2,7,1, 3, 4}
1. Setmin = max =2
2. Compare elements in pairs:

— 1 <7 = compare 1 with min and 7 with max

—> min = 1, max = 7

— 3 <4 = compare 3 with min and 4 with max

—> min = 1, max = 7

Total cost: 3(n-1)/2 = 6 comparisons

Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms

Example: Simultaneous Max, Min

. n = 6 (even), array A = {2,5,3,7,1, 4}
1. Compare 2 with 5: 2 <5
2. Setmin =2 max =5
3. Compare elements in pairs:

— 3 <7 = compare 3 with min and 7 with max
— min = 2, max = 7
— 1 <4 = compare 1 with min and 4 with max

= min = 1, max =7 Total cost: 3n/2-2 = 7 compatisor

Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms 7

O(nlg 1) Algorithm

* Suppose n elements are sorted by an O(nlg n) algorithm, e.g.,
MERGE-SORT

— Minimum: the first element; Maximum: the last element
— 'The sth order statistic: the 7th element.
— Median:
» 1f nis odd, then ((n+1)/2)th element.
» If 7 is even,
— then d_(ﬂ+l) / ZJ)th element, lower median
— then (|_ (nt+1)/ 2—|)th element, upper median

* All selections can be done in O(1), so total: O(nlg n).
— Selection is a trivial problem if the input numbers are sorted.

— But using a sorting is more like using a cannon to shoot a tly since
only one number needs to computed.

e (Can we do better?

Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms

Selection in Expected Linear Time O(11)

e Select s/th element

* A divide-and-conquer algorithm RANDOMIZED-
SELECT

* Similar to quicksort, partition the input array recursively

* Unlike quicksort, which works on both sides of the
partition, just work on one side of the partition.

— Called prune-and-search, prune one side, just search the other

side).

Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms

Finding Order Statistics: The Selection Problem

* A more interesting problem is selection: finding the rth
smallest element of a set
* We will show:

— A practical randomized algorithm with O(n) expected running time

— A cool algorithm of theoretical interest only with O(n) worst-case running
time

Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms

10

Randomized Selection

* Key idea: use partition() from quicksort

— But, only need to examine one subarray

— 'This savings shows up in running time: O(n)
* We will again use a slightly different partition than
the book:

q = RandomizedPartition(A, p, 1)

< A[q] > Alq]
p q T

Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms

11

Randomized Selection

RandomizedSelect (A, p, r, 1)
if (p == r) then return A[p];
q = RandomizedPartition(A, p, r)
k=q-p+1;
if (1 == k) then return A[q];
if (i < k) then
return RandomizedSelect(A, p, g-1, 1i);

else

return RandomizedSelect(A, g+l1, r, i-k);

k
< A[q] > Alq]

P q I

Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms

12

Randomized Selection

* Analyzing RandomizedSelect()
— Worst case: partition always O:n-1
T(n) =T(n-1)+ O(n) = 777
= O(n?) (arithmetic seties)
»No better than sorting!
— “Best” case: suppose a 9:1 partition
T@n) =TOnr/10)+ O(n) =777
= O(n) (Master Theorem, case 3)
» Better than sorting!
» What if this had been a 99:1 split?

Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms

13

Randomized Selection

* Average case

— For upper bound, assume 7th element always falls in larger side
of partition'
-1

Z T(max(k —1,n—k))+0O(n)

n o

What happened here?

_ZT

N j=n/2
— Let’s show that T(#) = O(#) by substitution

Max(k-1, n-k)=k-1 if k> n/24
Max(k-1, n-k)=n-K if k<= n/24

Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms 14

Randomized Selection

* Assume T(n) < cn for sufficiently large c

n—1
T'(n) < % Z T(k)+ @(n) The recurrence we started with
k=n/2
2 n—1
< = ch + @(n) Substitute T(n) < cn for T(k)
W j=ns2
Defat 2l .
= _£ k — Z kj + @(n) “Split” the recurrence
o\ k=1 k=1

— E l(n — l)n — l n_ 1 n 4+ @(n) Expand arithmetic series
ni\2 2\2 2

= c(n-1)- %(g _ 1) +0(n) Multiply it out

Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms 15

Randomized Selection

* Assume T(n) < cn for sufficiently large c:

I'(n) < c(n — 1) — E(ﬁ — lj + @(n) The recurrence so far

2\ 2

= Cn—c-— % + g + @(n) Multiply it out
= -y @(n) Subtract ¢/2

4 2

cn C : :
= cn-— (7 + 5 @(n)j Rearrange the arithmetic
< cn (f cis big enough) What we set out to

prove

Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms 16

Worst-Case Linear-Time Selection

* Randomized algorithm works well in practice

* What follows is a worst-case linear time algorithm, really of
theoretical interest only

e Basic idea:
— (Generate a good partitioning element

— (Call this element x

Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms

17

Worst-Case Linear-Time Selection

* The algorithm in words:

1.

Divide the elements into groups of five, where the last group may have less
than five elements in case when the input array size 1s not a multiple of five.

Find median of each group (How? How long?). Ties can be broken arbitrarily

Make a recursive call Select() to calculate the median of the medians. Set x
to the median.

Partition the # elements around x. Let £ = rank(x)

if (1 == k) then return x

if (1 < k) then use Select() recurstvely to find 7th smallest
element in first partition

else (1 > k) use Select() recursively to find (7-£)th smallest
element in last partition

k£ = rank(x), x 1s the £-th smallest element and there are #-£ elements on the high side of the partition

Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms 18

Example

* Find the —11th smallest element in array:

A ={12,34,0,3,22, 4, 17,32, 3,28, 43,82, 25, 27, 34,

125,18 20 33, 16, 33, 21, 30, 3, 47}

1. Divide the array into groups of 5 elements

12
34
0
3
22

4
17
32

3
28

43
32
25
27
34

Dept. CSE, UT Arlington

2
19
12

5
18

20
33
16
33
21

30

47

CSE5311 Design and Analysis of Algorithms

2,19

b)

Example

2. Sort the groups and find their medians

0
3
12
34
22

3. Find the median of the medians

Dept. CSE, UT Arlington

4

3
17
32
28

25
27
34
43
82

2
5
12
19
18

20
16
21
33
33

30
47

12,12, 17, 21, 34, 30

CSE5311 Design and Analysis of Algorithms

20

Example

4. Partition the array around the median of medians (17)

First partition:

12,0, 3,4,3,2,12, 5,16, 3}

Pivot:

17 (position of the pivotis q = 11)

Second partition:
£34, 22, 32, 28, 43, 82, 25, 27, 34, 19, 18, 20, 33, 33,
21, 30, 47}

To find the 6-th smallest element we would have to recurse our
search in the first partition.

Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms

21

Analysis of Running Time

* Step 1: making groups of 5 elements takes O(n)

* Step 2: sorting n/5 groups in O(1) time each takes O(n)

* Step 3: calling SELECT on | n/5 | medians takes time T(I_ n/ 5—|)
* Step 4: partitioning the n-element array around x takes O(n)

* Step 5: recursion on one partition takes

depends on the size of the partition!!

Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms

22

Worst-Case Linear-Time Selection

* (Sketch situation on the board)

* How many of the 5-element medians are < x?
— Atleast 1/2 of the medians = |_|_n/5J / 2] = Ln/lOJ

 How many elements are < x?
— Atleast 3 |_n/ 10 | elements

* Forlarge n, 3[n/10]>n/4 (How large?)
e So at least n/4 elements < x

* Similarly: at least n/4 elements > x

Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms

23

Worst-Case Linear-Time Selection

* Thus after partitioning around x, step 5 will call Select() on
at most 37/4 elements

e The recurrence is therefore:

T(n)< T(n/5)+ T(3n/4)+ 0(n)

< T(n/5)+T(3n/4)+6(n) [n/5] <n/5
< cn/5+ 3cn/4 + O(n) Substitute T(n) = cn
= 19¢n/20 + O(n) Combine fractions
= cn —(cn/20 - ©(n)) Express in desired form

<cn 1f c1s b]g en()ugh What we set out to prove

Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms

24

Worst-Case Linear-Time Selection

* Intuitively:
— Work at each level is a constant fraction (19/20) smaller
» Geometric progression!

— Thus the O(n) work at the root dominates

Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms

25

Linear-Time Median Selection

* Given a “black box” O(n) median algorithm, what can we do?
— sth order statistic:
»Find median x
» Partition input around x
»if (/< (n+1)/2) recursively find /th element of first half
»>else find (7- (n+1)/2)th element in second half
»>T(n) =Tn/2) + On) = O(n)

— Can you think of an application to sorting?

Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms

26

Linear-Time Median Selection

* Worst-case O(n lg n) quicksort

— Find median x and partition around it

— Recurstvely quicksort two halves
— T(n) = 2T(n/2) + O(n) = O(n Ig n)

Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms

27

Summary

* The 7th order statistic of n elements S={a,, a,,..., a } : ith
smallest elements:

— Minimum and maximum.
— Median, lower median, upper median

* Selection in expected/average linear time
— Wortst case running time
— Prune-and-search

e Selection 1n worst-case linear time:

Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms

28

