Design and Analysis of Algorithms

CSE 5311 Lecture 9 Median and Order Statistics

Junzhou Huang, Ph.D.

Department of Computer Science and Engineering

Dept. CSE, UT Arlington

Medians and Order Statistics

- The *i*th order statistic of *n* elements S={*a*₁, *a*₂,..., *a_n*} : *i*th smallest elements
- Also called selection problem
- Minimum and maximum
- Median, lower median, upper median
- Selection in expected/average linear time
- Selection in worst-case linear time

Order Statistics

- The *i*th *order statistic* in a set of *n* elements is the *i*th smallest element
- The *minimum* is thus the 1st order statistic
- The maximum is (duh) the *n*th order statistic
- The median is the n/2 order statistic
 If n is even, there are 2 medians
- How can we calculate order statistics?
- What is the running time?

Order Statistics

- How many comparisons are needed to find the minimum element in a set? The maximum?
 - To compute the maximum n 1 comparisons are necessary and sufficient.
 - The algorithm is optimal with respect to the number of comparisons performed
 - The same is true for the minimum.

```
\begin{array}{l} \text{MINIMUM}(A, n) \\ \text{min} \leftarrow A[1] \\ \text{for i} \leftarrow 2 \text{ to } n \\ \text{do if min} > A[i] \\ \text{then min} \leftarrow A[i] \\ \text{return min} \end{array}
```

Can we find the minimum and maximum with less cost? Yes:

- Walk through elements by pairs
- Compare each element in pair to the other
- Compare the largest to maximum, smallest to minimum

Dept. CSE, UT Arlington

Order Statistics

- Simultaneous computation of max and min
 - Maintain the variables min and max . Process the n numbers in pairs.
 - For the first pair, set min to the smaller and max to the other. After that, for each new pair, compare the smaller with min and the larger with max .
 - Can be done in 3(n-3)/2 steps

MAX-AND-MIN(A, n)

1: max \leftarrow A[n]; min \leftarrow A[n] 2: **for** i ← 1 **to** n/2 **do if** A[2i − 1] ≥ A[2i] **then** 3: { if A[2i - 1] > max then 4: 5: $max \leftarrow A[2i - 1]$ **if** A[2i] < min **then** 6: 7: min \leftarrow A[2i] } else { if A[2i] > max then 8: $max \leftarrow A[2i]$ 9: **if** A[2i – 1] < min **then** 10: 11: min \leftarrow A[2i - 1] } 12: return max and min

Example: Simultaneous Max, Min

- $n = 5 \pmod{3}, \operatorname{array} A = \{2, 7, 1, 3, 4\}$
 - 1. Set min = max = 2
 - 2. Compare elements in pairs:
 - $1 < 7 \Rightarrow$ compare 1 with **min** and 7 with **max**

 \Rightarrow min = 1, max = 7

- $3 < 4 \Rightarrow$ compare 3 with **min** and 4 with **max**

 \Rightarrow min = 1, max = 7

Total cost: 3(n-1)/2 = 6 comparisons

Dept. CSE, UT Arlington

Example: Simultaneous Max, Min

- n = 6 (even), array $A = \{2, 5, 3, 7, 1, 4\}$
 - 1. Compare 2 with 5: 2 < 5
 - 2. Set min = 2, max = 5
 - 3. Compare elements in pairs:

- $3 < 7 \Rightarrow$ compare 3 with **min** and 7 with **max**

 \Rightarrow min = 2, max = 7

- $1 < 4 \Rightarrow$ compare 1 with **min** and 4 with **max**

 \Rightarrow min = 1, max = 7 Total cost: 3n/2-2 = 7 comparison

Dept. CSE, UT Arlington

O(nlg n) Algorithm

- Suppose *n* elements are sorted by an O(nlg n) algorithm, e.g., MERGE-SORT
 - Minimum: the first element; Maximum: the last element
 - The *i*th order statistic: the *i*th element.
 - Median:
 - > If *n* is odd, then ((n+1)/2)th element.
 - > If *n* is even,
 - then ((n+1)/2) th element, lower median
 - then ((n+1)/2) th element, upper median
- All selections can be done in O(1), so total: $O(n \lg n)$.
 - Selection is a trivial problem if the input numbers are sorted.
 - But using a sorting is more like using a cannon to shoot a fly since only one number needs to computed.
- Can we do better?

Dept. CSE, UT Arlington

Selection in Expected Linear Time O(n)

- Select *i*th element
- A divide-and-conquer algorithm RANDOMIZED-SELECT
- Similar to quicksort, partition the input array recursively
- Unlike quicksort, which works on both sides of the partition, just work on one side of the partition.
 - Called prune-and-search, prune one side, just search the other side).

Finding Order Statistics: The Selection Problem

- A more interesting problem is *selection*: finding the *i*th smallest element of a set
- We will show:
 - A practical randomized algorithm with O(n) expected running time
 - A cool algorithm of theoretical interest only with O(n) worst-case running time

• Key idea: use partition() from quicksort

- But, only need to examine one subarray
- This savings shows up in running time: O(n)
- We will again use a slightly different partition than the book:

q = RandomizedPartition(A, p, r)

RandomizedSelect(A, p, r, i)

 $\leq A[q]$

Dept. CSE, UT Arlington

p

CSE5311 Design and Analysis of Algorithms

q

 $\geq A[q]$

r

- Analyzing RandomizedSelect()
 - Worst case: partition always 0:n-1

T(n) = T(n-1) + O(n) = ???= O(n²) (arithmetic series) > No better than sorting! - "Best" case: suppose a 9:1 partition T(n) = T(9n/10) + O(n) = ???= O(n) (Master Theorem, case 3) > Better than sorting!

> What if this had been a 99:1 split?

Dept. CSE, UT Arlington

- Average case
 - For upper bound, assume *i*th element always falls in larger side of partition:

$$T(n) \leq \frac{1}{n} \sum_{k=0}^{n-1} T(\max(k-1, n-k)) + \Theta(n)$$

What happened here?

$$\leq \frac{2}{n} \sum_{k=n/2}^{n-1} T(k) + \Theta(n)$$

- Let's show that T(n) = O(n) by substitution

Max(k-1, n-k)=k-1 if $k \ge \lceil n/2 \rceil$ Max(k-1, n-k)=n-k if $k \le \lceil n/2 \rceil$

• Assume $T(n) \leq cn$ for sufficiently large c:

$$T(n) \leq \frac{2}{n} \sum_{k=n/2}^{n-1} T(k) + \Theta(n)$$
 The recurrence we started with

$$\leq \frac{2}{n} \sum_{k=n/2}^{n-1} ck + \Theta(n)$$
 Substitute T(n) \leq cn for T(k)

$$= \frac{2c}{n} \left(\sum_{k=1}^{n-1} k - \sum_{k=1}^{n/2-1} k \right) + \Theta(n)$$
 "Split" the recurrence

$$= \frac{2c}{n} \left(\frac{1}{2} (n-1)n - \frac{1}{2} \left(\frac{n}{2} - 1 \right) \frac{n}{2} \right) + \Theta(n)$$
 Expand arithmetic series

$$= c(n-1) - \frac{c}{2} \left(\frac{n}{2} - 1 \right) + \Theta(n)$$
 Multiply it out

Dept. CSE, UT Arlington

• Assume $T(n) \le cn$ for sufficiently large *c*:

$$T(n) \leq c(n-1) - \frac{c}{2} \left(\frac{n}{2} - 1 \right) + \Theta(n)$$
 The recurrence so far

$$= cn - c - \frac{cn}{4} + \frac{c}{2} + \Theta(n)$$
 Multiply it out

$$= cn - \frac{cn}{4} - \frac{c}{2} + \Theta(n)$$
 Subtract c/2

$$= cn - \left(\frac{cn}{4} + \frac{c}{2} - \Theta(n) \right)$$
 Rearrange the arithmetic

$$\leq cn$$
 (if c is big enough) What we set out to
prove

- Randomized algorithm works well in practice
- What follows is a worst-case linear time algorithm, really of theoretical interest only
- Basic idea:
 - Generate a good partitioning element
 - Call this element x

• The algorithm in words:

- 1. Divide the elements into groups of five, where the last group may have less than five elements in case when the input array size is not a multiple of five.
- 2. Find median of each group (*How? How long?*). Ties can be broken arbitrarily
- 3. Make a recursive call **Select()** to calculate the median of the medians. Set x to the median.
- 4. Partition the *n* elements around *x*. Let $k = \operatorname{rank}(x)$
- 5. **if** (i == k) **then** return x

if (i < k) **then** use Select() recursively to find *i*th smallest element in first partition **else** (i > k) use Select() recursively to find (*i*-*k*)th smallest element in last partition

 $k = \operatorname{rank}(x)$, x is the k-th smallest element and there are *n*-k elements on the high side of the partition

Example

- Find the -11th smallest element in array:
 A = {12, 34, 0, 3, 22, 4, 17, 32, 3, 28, 43, 82, 25, 27, 34, 2, 19, 12, 5, 18, 20, 33, 16, 33, 21, 30, 3, 47}
- 1. Divide the array into groups of 5 elements

Example

2. Sort the groups and find their medians

3. Find the median of the medians

12, 12, 17, 21, 34, 30

Dept. CSE, UT Arlington

Example

4. Partition the array around the median of medians (17)

First partition: {12, 0, 3, 4, 3, 2, 12, 5, 16, 3}

Pivot:

17 (position of the pivot is q = 11)

Second partition:

{34, 22, 32, 28, 43, 82, 25, 27, 34, 19, 18, 20, 33, 33, 21, 30, 47}

To find the 6-th smallest element we would have to recurse our search in the first partition.

Dept. CSE, UT Arlington

Analysis of Running Time

- Step 1: making groups of 5 elements takes **O(n)**
- Step 2: sorting n/5 groups in O(1) time each takes O(n)
- Step 3: calling SELECT on $\lceil n/5 \rceil$ medians takes time $T(\lceil n/5 \rceil)$
- Step 4: partitioning the n-element array around x takes O(n)
- Step 5: recursion on one partition takes depends on the size of the partition!!

- (Sketch situation on the board)
- How many of the 5-element medians are $\leq x$? - At least 1/2 of the medians = $\lfloor \lfloor n/5 \rfloor / 2 \rfloor = \lfloor n/10 \rfloor$
- How many elements are ≤ x?
 At least 3 [n/10] elements
- For large n, $3\lfloor n/10 \rfloor \ge n/4$

(How large?)

- So at least n/4 elements $\leq x$
- Similarly: at least n/4 elements $\geq x$

- Thus after partitioning around *x*, step 5 will call Select() on at most 3n/4 elements
- The recurrence is therefore:

$$T(n) \leq T(\lfloor n/5 \rfloor) + T(3n/4) + \Theta(n)$$

$$\leq T(n/5) + T(3n/4) + \Theta(n) \qquad \lfloor n/5 \rfloor \leq n/5$$

$$\leq cn/5 + 3cn/4 + \Theta(n) \qquad \text{Substitute T}(n) = cn$$

$$= 19cn/20 + \Theta(n) \qquad \text{Combine fractions}$$

$$= cn - (cn/20 - \Theta(n)) \qquad \text{Express in desired form}$$

$$\leq cn \quad \text{if } c \text{ is big enough} \qquad \text{What we set out to prove}$$

Dept. CSE, UT Arlington

• Intuitively:

- Work at each level is a constant fraction (19/20) smaller
 - ➢ Geometric progression!
- Thus the O(n) work at the root dominates

Linear-Time Median Selection

- Given a "black box" O(n) median algorithm, what can we do?
 - *i*th order statistic:
 - Find median x
 - \succ Partition input around x

 \succ if (*i* ≤ (n+1)/2) recursively find *i*th element of first half

▶else find (i - (n+1)/2)th element in second half

$$\succ$$
T(n) = T(n/2) + O(n) = O(n)

- Can you think of an application to sorting?

Linear-Time Median Selection

• Worst-case O(n lg n) quicksort

- Find median x and partition around it
- Recursively quicksort two halves
- $T(n) = 2T(n/2) + O(n) = O(n \lg n)$

Summary

- The *i*th order statistic of *n* elements $S = \{a_1, a_2, ..., a_n\} :$ *i*th smallest elements:
 - Minimum and maximum.
 - Median, lower median, upper median
- Selection in expected/average linear time
 - Worst case running time
 - Prune-and-search
- Selection in worst-case linear time: