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ABSTRACT

By addressing both the theoretical and practical
issues of a geographically distributed application domain,
we propose a way to construct a processing system using
the computational aspects of a brain/mind system. The
Alchemy distributed processing environment has been
developed to support the geographical distribution of a set
of intelligent applications running over the Internet. We
focus here on the implementation details of the Alchemy
architecture and how its performance has been
demonstrated using a model of a geographically
distributed information system. Using this model we
compare our approach to more traditional approaches like
distributed objects and mobile agents.
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1 INTRODUCTION

Geographically distributed processing environments
have evolved from parallel processing emulation (e.g.,
PVM, MPI, etc.) and traditional networked applications
(e.g., distributed databases and file-sharing, network-
enabled HMIs, etc.). These environments are based on
either a tightly-coupled cluster of processing elements
(e.g., Beowulf) dedicated to a set of carefully controlled
tasks, or a grid of very loosely connected processing
elements (e.g., Legion or Globus) that allow program-
level tasks to compete for available resources. While
there are advantages to using either approach as the
distributed processing layer of an intelligent system, their
disadvantages merit the examination of computational
models that fit somewhat in the middle of these two
extremes. Using what is known of the workings of the
brain/mind computational system, our Alchemy system
attempts to build a distributed processing domain that
supports a more loosely connected environment than a
traditional cluster while providing more resource-wide
process control than most current grid approaches.

Alchemy builds on what was learned using a more
specialized Adaptive Multi-agent environment for
Explanatory-Based Agents (AMEBA) system [5]. Unlike
pure connectionist approaches, Alchemy does not try to

simulate a neural-network, but draws a processing
analogy from the brain’s design and construction. This
not only reduces the resulting complexity of the
environment but allows us to incorporate other important
features like secure communication, GUI-based
application control and load balancing.

In the next section, we will further justify using our
own architecture for the distributed basis of our research
by providing an overall contrast between it and related
systems. We will then discuss how Alchemy’s
concurrency model, security mechanisms, and other
aspects relate to an exemplary distributed object and
mobile agent approach, these being OMG’s CORBA and
IBM Aglets. Finally, we define an experiment for testing
Alchemy’s performance against the CORBA and Aglets
environments and discuss the results of this experiment.

2  RELATED SYSTEMS

Alchemy has been designed for intelligent
applications that have critical time relationships between
components. While some Alchemy applications can be
run on a cluster, others (like remote smart home
monitoring and control) need to be geographically
distributed. These applications are also poorly suited for
grid architectures which best handle the batch-like
processing done on a supercomputer. Alchemy is by no
means the only distributed environment attempting to fill
the middle ground between clusters and grids. Even early
research on distributed operating systems like Amoeba
[9] and distributed shared memory systems like Linda [2]
had the goal of a tightly-controlled distributed domain
running on a loosely-coupled processing environment, but
the low-level nature of these systems failed to deliver on
such a promise. More recently, distributed object
environments like CORBA [7] and DCOM [3] have
attempted to seamlessly extend object models across
processors, but these approaches suffer from the overhead
of a generic approach to the object distribution problem.
Even with new process paradigms, like the mobile agents
systems of IBM Aglets [6] and Sun’s JINI [4], their
success is affected by the complexity of a distributed
approach using a traditional computation model.

To function in a geographically distributed domain,
both the distributed operating system and distributed



shared memory approaches need to unify portions of the
Internet into virtual computational systems. While
completely hiding the underlying communication and
security difficulties from the application level, the
resulting approach must maintain a high degree of data
concurrency between all of the various processes or
threads of all the applications running under that
environment. Even with careful assignment, monitoring
and migration of all of the threads of execution of all of
the supported applications, these approaches would be
highly susceptible to load mismatch in a loosely
connected environment where the communication latency
is for the most part non-deterministic.

One approach to reduce the need for system-wide
understanding of processing state and data concurrency is
to break an application into a collection of objects or
agents and allow either the application as a whole or its
components to distribute themselves. Such applications
can then decide for themselves which data elements need
to be globally shared and can somewhat control their own
process concurrency by controlling where objects or
agents are located in the processing domain. In a
geographically distributed object approach, it is
theoretically possible to reduce the concurrency problem
down to the way methods are called, since the execution
of a task can be fully contained in a known sequence of
method invocations and the resulting execution and
communication time need to temporally traverse this
sequence. However, there are normally far too many
possible sequences at any given state of an application for
them to be used as a predictive mechanism of the total
processing load of the distributed application even if the
communication latency between computation nodes could
be characterized. This can be somewhat overcome by
using something like a name service to clone additional
objects of a given type in additional threads of execution
when it is determined that a method in the sequence has
formed a processing bottleneck.

Mobile agents can theoretically further improve the
concurrent performance of an application by allowing
pieces of the application to distribute, clone and/or
redistribute themselves based on overall processing load.
However, both the object and agent approaches have little
or no way of balancing the demands of the overall
processing environment since they result from a divide-
and-conquer approach which is inherently greedy. For
example, in creating a new set of server-side objects in
CORBA to improve task execution or moving a set of
Aglets to improve the system’s overall communication
load, either to new objects or mobile agents can cause one
or more computational nodes to be become so unbalanced
that there is no overall system gain.

To overcome these limitations with the existing
approaches discussed above, it is necessary of reevaluate
our whole approach of dealing with a geographically

distributed domain. The massive number of nodes making
up the Internet’s processing resources and the loose
communication structure making up its connection
mechanism make it quite different from a traditional set
of tightly coupled processors found in parallel message-
passing, SMP, or cc-NUMA architectures. When looking
at the time-critical aspects of geographically distributed
intelligent systems, any further extension of the sequential
processing model may simply not be applicable, and thus,
we propose revisiting a wetware-based analogy. When
you consider enough of its computational nodes, the
Internet forms a processing graph which is very similar to
a logical representation of parts of the brain. Further, the
range and rate of communication speeds in the brain are
very similar to that of the Internet [1].

3  CONCURRENCY

Unless an application is being distributed to simply
improve access to distributed data sources (e.g., the
World Wide Web, FTP, etc.), there is a clear expectation
that the distribution of an application across multiple
processing nodes will result in some level of speedup.
However, a number of factors may result in a distributed
environment being inherently poorly suited for its
applications to gain the maximum benefit from concurrent
operations. CORBA, for example, was originally
designed to provide a simple object-based connection
mechanism for legacy software, and therefore, was
designed around a Remote Procedure Call (RPC)
communication mechanism. RPC is inherently sequential
in operation, with a client making a call to a server via the
remote procedure, and then, waiting for the return value
of this call. While the designers of CORBA have always
understood this as a limitation and from the very
beginning of its standardization took steps to incorporate
concurrent mechanisms in CORBA, the environment is
still not very concurrency friendly with the application
designer being forced to supply most of the multi-
threaded aspects via raw thread calls.

To thread a CORBA application both the server and
client side of every RPC connection must be addressed.
On the server side, most implementations of CORBA
allow the designer to automatically spawn a new server
thread to support the client’s execution of the RPC via a
name service, but this mechanism works best (and
sometime only) in a SMP type of environment since
ORBs do not normally extend across processor group
boundaries. The application designer is, of course, free to
thread a server herself, but in doing so, the way the IDL is
defined and used by the ORB can often make this
difficult. As a general rule, most ORBs (due to the way
the processed IDL definition relate to the data storage
used for parameter and state maintenance) only support a
channel-based threading model and do not allow the



threading of each transaction. On the client-side, the
problem of threading is even more difficult since all
RPCs in CORBA stall the calling thread and threading
each and every client-side RPC in an application can be
problematic at best since the internal data within a RPC is
not always stored in a thread-safe manner.

IBM Aglets support a very rich set of message
types, including both synchronous and asynchronous
messages, as well as, some rather strange synchronous
message types that do not block the caller but schedule
return messages to be sent in the future. While fixing the
obvious problems with the RPC type of messaging,
Aglets introduce a new concurrency difficulty in that they
are built on top of Java. This means that an Aglets
application is not directly sending messages to the
network interface, but to the Java Virtual Machine
(JVM). Newer versions of Java (in fact, since version
1.1.8) support both green (Java’s original user-level)
threads and native threads (which are system-level
threads on most system). Even if the JVM is set up to use
native threads, Java’s thread interface runs very slowly.
The test results presented later in this paper will show that
this performance problem greatly affects an Aglets
application’s concurrent operations.

Unlike either CORBA or Aglets, Alchemy attempts
to hide as much of the threading details as possible from
the application designer. Being based on a brain model,
Alchemy does not natively support the concept of
traditional sequential processing, and therefore, does not
support any type of synchronous messaging. Instead, the
Alchemy architecture divides an application into a set of
asynchronous processing elements (called message
handlers) that process messages received from other
processing elements via either a client-side or server-side
connection. The only difference between these connection
types is that each server-side connection can be connected
to multiple client-side connections. Each connection
instance in an Alchemy application runs in its own
process thread within a heavy-weight container called a
node. All nodes, connections and handlers are accessed
via a name service. This name service hides all of the
connection and threading details of an application from
the designer. To build an application, the designer simply
builds a graph of nodes using a GUI interface to define its
nodes and connection arcs, and then, defines all of the
handlers needed to do the work of the application. Once
this is done, the Alchemy support layer is responsible for
distributing the application and balancing its load with all
of the other applications running on the defined set of
processors.

4 SECURITY

Most grid systems are built on top of something like
the openSSL security libraries [8]. Neither CORBA nor

any other distributed objects domain was originally
designed to support any security mechanism. While there
is a great deal of interest in providing both
communication and process control security to CORBA,
these efforts are severely limited by some early design
decisions. Unless a secure CORBA is being used,
CORBA provides little or no support for adding security
mechanisms at the application layer. For example, while
message encryption can be added to an application by
simply encrypting the data before it is sent through the
RPC, this process basically breaks the way IDL is
designed to handle the passing of data of various types
between distributed objects and each server-side RPC
implementation would have to explicitly handle the
decryption of input and encryption of output. Secure
CORBA uses SSL as its transport layer and makes other
security changes to the ORB, but this use of SSL greatly
impacts the overall performance of a CORBA application
in the process.

IBM Aglets, on the other hand, was designed
around the built-in security mechanisms of Java to
provide a complex set of security parameters for
controlling what a mobile agent can or can not do once it
arrives at a processing node. This capability was
introduced into Aglets based on a rather optimistic view
of how agents would travel around an unconfederated
network doing their work on computers not managed or
even controlled by the party or parties owning the Aglets
application. Since Aglets were primarily designed to
support the fetching of data by the agent by moving to the
source and then back to its point of origin, very little
thought has been put into securing the way data is passed
between agents. The results of these design decisions is a
complex security mechanism which is actually not that
useful.

Alchemy uses a common communication interface
for both system-level and application messages and
supplies a three-level security method which includes
communication channel authentication, encryption and
message tracking. This communication interface is
socket-channel based (like SSL), but unlike SSL has been
highly tailored to improve connection time in a dynamic
environment with many related clients and servers. The
Alchemy security mechanisms are primarily designed to:
(1) provide a very secure communication method for
process control messaging, (2) allow the application
designer to decide how much communication security
they want to provide for application messages, and (3)
provide a test bed for further network security
enhancements.

The lowest security level (level 1) uses a four-way
authentication method to confirm that both the client and
server are in fact Alchemy components. A four-way
authentication method is used because the Alchemy key
management system shares these messages for passing the



information used to construct the first symmetric session
key used by a message channel. Thus, the authentication
protocol is also encrypted using a ‘pre-session’ key (a
symmetric key created and maintained like a session key
but only used during authentication to remove the need
for a second public key). At level 2, the encrypted of all
message content is added using randomly rotating
symmetric keys. At level 3, a message tracking
mechanism (currently built on MDS5) is added. All
system-level support traffic (e.g., GUI to process control
servers, server-to-server, etc.) is locked to level 3. The
security level of all other traffic can be selected by
defining the security level of each server during the
application design. The location of the data in a level 1
and level 2/3 message is shifted so that one cannot easily
gain information about message construction by sending
the same message both encrypted and in the clear.

Alchemy uses both RSA public and Blowfish
symmetric encryption to form a three-step key creation
process which is both very secure and relatively fast. To
avoid the need to lock box a super-secret key, each server
creates a 1024-bit RSA public key at startup. To improve
both security and speed, this public key is only used once
per channel session and is never used to authenticate the
server. When a client attempts to connect, it is sent the
modulus part of the public key. It then encrypts a 256-bit
‘pre-session’ key for use during authentication. Encoded
in the authentication stream are pieces of the first session
key, so if both the client and the server pass
authentication, they both end up with the first session key.
This key is then randomly changed during the session to
further improve security.

5 OTHER ASPECTS OF ALCHEMY

The Alchemy architecture in many ways functions
like a purely object-oriented environment, like Smalltalk,
where class methods are called by event messages, not by
direct invocation. However, Alchemy 1is inherently
distributed and totally dynamic. Concurrency is not an
optional feature but the only mechanism by which an
application can be implemented. The number of
distributed nodes in an application, the number of server
and client connections maintained by a node, and the
mapping between handlers and connections can all be
changed at any time during the application’s life. Thus, an
application can dynamically reconfigure any application’s
processing environment or completely change its or
another application’s functionality while they are running.

As depicted in figure 1, Alchemy uses the concept
of nodes to support the distribution of processing
elements across a set of computational resources. The
encapsulated message handlers of these nodes are
abstracted from their and other handlers’ physical
locations by a name service which (1) maps client

connections, server connections and handlers to nodes
and (2) maps nodes to physical processors. Process
mobility is accomplished by simply moving a connection
and its associated handler to a new node in the system.
This allows Alchemy to more tightly manage its
processing elements than most mobile agent and
distributed object approaches while providing a better
capacity to handle the dynamic nature of the Internet. Due
to this flexibility, an application’s processing elements are
more loosely coupled than a traditional distributed
system. While adding some complexity in application
design, this statistically overcomes some of the jitter in
the communication latency experienced by a
geographically distributed domain.

Applications under Alchemy use a processing
model that allows individual handlers to run completely
independent from other handlers. A handler listens for
messages from other handlers, and then, performs
asynchronous actions that most often create new
messages. Using a broadcast or multicast communication
method, each handler becomes a completely isolated
process that accepts only the messages it understands and
has time to handle. This results in a far more non-
deterministic process flow where trails of execution can
fork, merge and die without causing such traditional
problems as deadlocks and race conditions. Further, any
number of handlers can be ganged together as a service
group, thus allowing any jitter on the communication
latency to be overcome by the geographic distribution of
the required service.

The Alchemy environment has no separate support
layer. Process control is handled by two special types of
nodes, the Alchemy Server and the Generic Alchemy
Definition, Generation and Evaluation Tool (GADGET).
These tools allow nodes to be started, stopped and moved
to any processor (or cluster) during application execution.
They also allow the individual control of the client and
server connections and the assignment of handlers to
connections. The GADGET also supports a GUI

Processor Processor Processor Processar Processor
MNode Node Node Mode Node

Figure 1. Alchemy’s Process Architecture



construction tool for designing applications and a trace
mechanism for application testing.

Another special node type, the Alchemy
Superserver, is used to map the function of servers to a
named service type. The Superserver is most similar to
the way JINI supports service connections, but also has
similarities to CORBA’s name service. An Alchemy
client can chose to connect to a particular server or simply
a particular service type. For example, if client (Appl:
Nodel:Clientl) needs to communicate with (Appl:
Node2:Serverl) or (Appl:Node3:Server2) which both
provide service (Appl:Servicel), then the application
designer can select the connection using either the logical
location (e.g., Appl:Node2:Serverl) or the service type
(i.e., Appl: Servicel).

An important aspect of any distributed object or
agent environment is the mechanisms used for component
communicate. For example, CORBA uses its IDL to
define a set of data types, and then, handles the
marshaling of these types across the IPC communication
channels created by the ORB. Most implementations of
CORBA select the IPC method of the communication
channel based on the relative location of the client and
server. CORBA also provides a name space and name
service to allow some level of location abstraction.

Alchemy uses a very basic form of data marshaling
which converts all data passed between nodes to their
string representation. This method was selected due to its
cross-platform simplicity and compatibility with block
encryption methods. The tested version of Alchemy only
uses Internet (or Berkeley) sockets, but other versions
select the IPC method based on node locality. Alchemy’s
name space crosses application boundaries. This allows
multiple applications to run on the same set of Alchemy
servers and provides better load balancing across multiple
distributed applications running on common resources.
The mapping between the logical location and physical
location (i.e., the host processor or cluster) of a node can
either be stored as part of the application definition or
dynamically selected using the GADGET.

6 THE TESTING ENVIRONMENT

A number of parallel/distributed benchmarks are
available for anything from low-level system calls to
high-level functional tasks. After examining a number of
these benchmarks, it was determined that none of them
were particularly well suited to evaluate Alchemy’s
unique ability to handle geographically distributed
intelligent applications. Therefore, we developed our own
simplified testing application which was constructed to
formally capture the search domain of a generic Internet-
based information system. This new ‘benchmark’ was
designed to reflect the processing load of an intelligent

system without containing any of the programmatic
complexity of a truly intelligent system.

The domain consisted of: (1) data element types
labeled A4 through Z, (2) result types labeled aa through
dz, and (3) a set of mapping rules of the form:

1w &< Dy, [D,, ... D,] (rel n.nn)

where the left-hand-side (/As) consists of a single result
type and right-hand-side (rAs) consists of a conjunction of
any number of data element types and a simple relevance
factor for the rule.

The test system consists of five component types,
each of which can be replicated as many times as needed
to support the domain instance. These components are:
(1) a Data Consumer that can execute any query (i.e., a
request for a result) and relevance order the results, (2) a
Data Mapping Index that knows the location of all
mapping rules for a single query type, (3) a Data
Mapping Device that contains a single mapping rule that
it can execute upon request, (4) a Data Storage Index that
knows the location of all instances of one of the data
element types, and (5) a Data Storage Device that stores
any number of instances of any number of data element
types. To simplify testing, each instance of a data element
is labeled D,,, where m is a number that uniquely
identifies the Data Storage Device on which the element
resides and # is the number of the instance on that device
that is being addressed.

Any Data Consumer in the system can initiate a
search by sending a query to a Data Mapping Index. The
Data Mapping Index then locates all matching Data
Mapping Devices and sends a request for them to resolve
all rule matches. A Data Mapping Device then requests
the location of any Data Storage Devices containing
relevant data from the Data Storage Index and requests
the relevant data from these devices. The Data Storage
Devices then send a list of all data elements matched to
the requesting Data Mapping Device which creates a
complete list of all rule matches. The rule matches are
sent to the requesting Data Consumer which combines the
lists and orders the results based on relevance.

7  RESULTS

The test application has been implemented using
three different distributed environments: (1) CORBA
(Orbit and others), (2) IBM Aglets (running under Java)
and (3) Alchemy. Testing was performed on a Beowulf-
like 16 processor (2x8) SMP cluster running Linux. To
simulate something closer to the Internet, the network
channel bonding of this system was turned off and only
one of its three 100baseT networks was used. This
network was also connected via a hub, instead of its
normal switch, reducing the maximum network
throughput to 100Mbits/sec.



Figure 2 depicts the average execution time of a set
of 25 runs on two different data sets. As can be seen from
this graph (which uses a logarithmic scale), the Alchemy-
based application demonstrates better performance than
the CORBA-based application and much better
performance than the Java-based application even when
the JVM is using native threads. Figure 3 presents the
speedup calculations from the raw data given in figure 2.
Again, Alchemy demonstrates the best speedup
performance and Java again demonstrates the worst level
of speedup. Both the Alchemy and CORBA get message
bound when the application is distributed across 16
processors, but this is a little misleading for the Alchemy
implementation since the overall design of the application
had to be somewhat serialized to accommodate CORBA’s
RPC message mechanism and we had problems getting
the CORBA application to handle larger databases where
this message binding would not be as much of a factor.

8 CONCLUSION

The test application shows that Alchemy is faster in
overall performance and demonstrates better speedup than
either IBM Aglets or CORBA for very simple intelligent
applications while improving the communication security
and local control of the application. Past work with
AMEBA has shown that extending the intelligence of the
application improves its speedup. Therefore, our decision
to create our own special purpose distributed domain has
been somewhat justified by the results presented here.

One concern introduced by our results is the fall off
in speedup seen when the test application is distributed
across a large number of processors. Any application will
at some point reach processing saturation and this will
always occur faster with coarse-grain parallelism like that
being used in Alchemy. While further testing of Alchemy
is needed to completely understand its potential as a more
generic distributed processing environment, the results so
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far indicate that it might be able to overcome some of the
difficult problems encountered in a geographically
distributed domain while still providing some level of
speedup. Given that it can support a number of
simultaneously running dynamic applications, this type
of processing model could potentially improve how the
limited resource of wide-area network bandwidth are used
by a number of competing applications.
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