Computational Methods

Eigenvalues and Singular Values
Eigenvalues and Singular Values

- Eigenvalues and singular values describe important aspects of transformations and of data relations
 - Eigenvalues determine the important the degree to which a linear transformation changes the length of transformed vectors
 - Eigenvectors indicate the directions in which the principal change happen
- Eigenvalues are important for many problems in computer science and engineering, including
 - Dimensionality reduction
 - Compression
Eigenvalues

- Eigenvalues λ and eigenvectors x characterize dimensions that are purely stretched by a given linear transformation

$$Ax = \lambda x$$

- The spectrum of A is the set of its eigenvalues
- The spectral radius of A is the magnitude of the largest of its eigenvalues
- Eigenvalues characterize the degree to which a linear transformation stretches input vectors
 - Also important for sensitivity analysis of linear problems
Eigenvalues

- A linear transformation has as many eigenvalues and eigenvectors as it has dimensions
 - Eigenvectors might be duplicates
 - Eigenvalues might be complex
- Any data point (vector) can be written as a linear combination of eigenvectors
 - Allows efficient decomposition of vectors
Power Iteration

- The eigenvalue equation is related to the fixed point equations (except with scaling)
 \[Ax = \lambda x \]
 - Simplest solution method to find eigenvectors (and eigenvalues) is power iteration
 - Characterize dimensions that are purely stretched by a given linear transformation
- Power iteration converges to a scaled version of the eigenvector with the dominant eigenvalue
 \[x_{t+1} = Ax_t \]
Power Iteration

- Power iteration converges except if
 - x_0 has no component of the dominant eigenvector
 - There are more than one eigenvector with the same eigenvalue

- Normalized power iteration renormalizes the result x_{t+1} after each iteration

$$y_{k+1} = Ax_k \quad , \quad x_{k+1} = \frac{y_{k+1}}{\|y_{k+1}\|_\infty}$$

- Converges to dominant eigenvector and dominant eigenvalue

$$\|y_k\|_\infty \rightarrow \lambda_d \quad , \quad x_k \rightarrow \frac{1}{\|v_d\|_\infty} v_d$$
Inverse Iteration

- Inverse iteration is used to find the smallest eigenvalue
- Converges except if
- \(Ay_{k+1} = x_k \), \(x_{k+1} = \frac{y_{k+1}}{\|y_{k+1}\|_\infty} \)
 - Inverse iteration corresponds to power iteration with the inverse matrix \(A^{-1} \)
 - Inverse iteration and power iteration can only find the smallest and the largest eigenvalues
 - Need to find a way to determine other eigenvalues and eigenvectors
Characteristic Polynomial

- The determination of eigenvectors and eigenvalues can be transformed into a root finding problem
 \[(A - \lambda I)x = 0\]

 - Has a nonzero solution for the eigenvector \(x\) if and only if \((A - \lambda I)\) is not singular
 - Eigenvalues of the nonsingular matrix are the roots of the characteristic polynomial
 \[\det(A - \lambda I) = 0\]
 - The characteristic polynomial is a polynomial of degree \(n\)
 - Complex eigenvalues occur in conjugate pairs

- Computation of the characteristic polynomial is complex
 - Can be accelerated by first performing LU factorization
Characteristic Polynomial

- Computing roots of a polynomial of degree larger than 4 cannot always be computed directly and require an iterative solution
- Computing eigenvalues using the characteristic polynomial is numerically not stable and highly complex
 - Computing coefficients of characteristic polynomial requires computation of the determinant
 - Root finding requires iterative solution process
 - Coefficients of characteristic are very sensitive
- Characteristic polynomial is a powerful theoretical tool but not a practical computational approach
Eigenvalue Problems

- Characteristics of eigenvalue problems influence the choice of algorithm
 - All or only some eigenvalues
 - Only eigenvalues or eigenvalues and eigenvectors
 - Dense or sparse matrix
 - Real of complex values
 - Other properties of matrix A
Problem Transformations

- A number of transformations either preserve or have a predictable effect on the eigenvalues
 - Shift: For any scalar σ
 \[Ax = \lambda x \quad \rightarrow \quad (A - \sigma I)x = (\lambda - \sigma)x \]
 - Inversion:
 \[Ax = \lambda x \quad \rightarrow \quad A^{-1}x = \frac{1}{\lambda}x \]
 - Powers:
 \[Ax = \lambda x \quad \rightarrow \quad A^k x = \lambda^k x \]
 - Polynomial: for any polynomial $p(t)$
 \[Ax = \lambda x \quad \rightarrow \quad p(A)x = p(\lambda)x \]
 - Similarity: for any similar matrix $B = T^{-1}AT$
 \[Bx = \lambda x \quad \rightarrow \quad ATx = \lambda(Tx) \]
Problem Transformations

- Eigenvalues and eigenvectors of diagonal matrices are easy to determine
 - Eigenvalues are the values on the diagonal
 - Eigenvectors are the columns of the identity matrix
- Not all matrices are diagonalizable using similarity transformations
- Eigenvalues of triangular matrices can also be determined easily
 - Eigenvalues are diagonal entries of the matrix
 - Eigenvectors can be computed from \((A - \lambda I)x = 0\)
Convergence of Iterations

- Speed of convergence of power iteration and inverse iteration depends on the ratio of two eigenvalues
 - For power iteration, convergence is faster the larger the ratio of the largest and the second largest eigenvalue is
 - For inverse iteration, convergence is faster the smaller the ratio of the smallest and the second smallest eigenvector is
- Shift transformation allows to change the ratio of eigenvalues
 \[
 \frac{\lambda_1}{\lambda_2} \rightarrow \frac{\lambda_1 - \sigma}{\lambda_2 - \sigma}
 \]
 - Knowledge of eigenvalue of sought after eigenvector would allow to lower this ratio to 0
 - Allows to increase the convergence rate of inverse iteration
Rayleigh Quotient Iteration

- Rayleigh quotient iteration uses the Rayleigh quotient as a shift parameter \(\sigma = \frac{x^T Ax}{x^T x} \), \((A - \sigma I)\)

- This allows to make the ratio of eigenvalues close to 0 and thus accelerates the convergence of inverse iteration

\[
(A - \sigma_k I)y_{k+1} = x_k
\]

\[
x_{k+1} = \frac{y_{k+1}}{\|y_{k+1}\|_\infty}
\]

- This algorithm is usually called Rayleigh quotient iteration

- Rayleigh quotient iteration converges usually very fast
 - Each iteration requires a new matrix factorization and is therefore \(O(n^3)\) F
Computing All Eigenvalues

- Power iteration and inverse iteration allow to compute only the largest and the smallest eigenvalues and eigenvectors.

 - To compute the other eigenvalues we need to either
 - Remove the already found eigenvector (and eigenvalue) from the matrix to be able to reapply power or inverse iteration
 - Find a way to find all the eigenvectors simultaneously
 - Removing eigenvectors from the space spanned by a transformation A is called deflation
Deflation

- To remove an eigenvalue (and corresponding eigenvector) we have to find a set of transformations that preserves all other eigenvalues
 - Householder transforms can be used to derive such a transformation \(H \) with
 \[
 Hx_1 = \alpha e_1
 \]
 - The similarity transform described by \(H \) yields a matrix
 \[
 HAH^{-1} = \begin{pmatrix}
 \lambda & b^T \\
 0 & B
 \end{pmatrix}
 \]
 - Since similarity transforms were used this matrix has the same eigenvalues
 - \(B \) has all the eigenvalues of \(A \) with the exception of \(\lambda_1 \)
 - Power iteration can be applied to this new matrix \(B \)
Deflation

- Power iteration with deflation can compute all eigenvalues but requires determining the eigenvector in each iteration
 - Eigenvector in B can be used to compute eigenvector in A
 \[
 x_3 = H^{-1} \begin{pmatrix} \frac{b^T y_2}{\lambda_2 - \lambda_1} \\ y_2 \end{pmatrix}
 \]
 - Alternatively, the eigenvalue could be used directly in A to determine the eigenvector
 - More computationally complex
Simultaneous Iteration

- Simultaneous iteration attempts to simultaneously iterate multiple vectors

\[X_{k+1} = AX_k \]

- \(X \) converges to the space spanned by the \(p \) dominant eigenvectors
 - Subspace iteration

- But \(X \) becomes ill-conditioned since all columns in \(X \) ultimately converge to the dominant eigenvector
 - Need normalization that keeps vectors well conditioned and non-equal
 - Orthogonal iteration using QR factorization
QR Iteration

- As for least squares (and equation solving) QR factorization allows a factorization of the matrix into components that stay well conditioned

\[Q_{k+1}R_{k+1} = X_k \]
\[X_{k+1} = AQ_{k+1} \]

- By using Q (a similarity transform) for the iteration, the eigenvalues are preserved and it converges to block triangular form
 - Triangular form if all eigenvalues are real values and distinct
QR Iteration

- To find eigenvalues, QR iteration can be applied directly to A
 \[A_k = Q_k^H A_{k-1} Q_k \]
 - Converges to triangular or block triangular matrix containing all eigenvalues as diagonal elements of diagonal blocks
 - Can be computed without explicitly performing the product
 \[Q_{k+1} R_{k+1} = A_k \]
 \[A_{k+1} = R_{k+1} Q_{k+1} (= Q_{k+1}^H A_k Q_{k+1}) \]
- Can be accelerated using shift transformation
Singular Values

- Singular values are related to Eigenvalues and characterize important aspects of the space described by the transformation
 - Nullspace
 - Span
- Singular Value Decomposition divides a transformation A into a sequence of 3 transformations where the second is pure rescaling
 - Scaling parameters are the singular values
 - Columns of the other two transformations are the left and right singular vectors, respectively
Singular Values

- Singular values exist for all transformations A, independent of A being square or not
 - Right singular vectors represent the input vectors that span the orthogonal basis that is being scaled
 - Left singular vectors represent the vectors that the scaled internal basis vectors are transformed into for the output
- Singular values are directly related to the eigenvalues
 - Singular values are the nonnegative square roots of the eigenvalues of AA^T or A^TA
 - Left singular vectors are eigenvectors of AA^T
 - Right singular vectors are eigenvectors of A^TA
Singular Value Decomposition

- Singular value decomposition (SVD) factorizes A
 \[
 A = U \Sigma V^T
 \]
 - U is an $m \times m$ orthogonal matrix of left singular vectors
 - V is an $n \times n$ orthogonal matrix of right singular vectors
 - Σ is an $m \times n$ diagonal matrix of singular values
 - Usually Σ is arranged such that the singular values are ordered by magnitude
 - Left and right singular vectors are related through the singular values
 \[
 Av_{i} = \sigma_{i}u_{i}
 \]
 \[
 A^T u_{i} = \sigma_{i}v_{i}
 \]
Singular Value Decomposition

- Singular value decomposition (SVD) can be computed in different ways
 - Using eigenvalue computation on AA^T
 - Compute eigenvalues of AA^T
 - Determine left singular vectors as eigenvectors for AA^T
 - Determine right singular vectors as eigenvectors for A^TA
 - Leads to some conditioning issues due to the need for matrix multiplication
 - Directly from A by performing Householder transformations and givens rotations until a diagonal matrix is reached
 - Perform QR factorization to achieve triangular matrix
 - Use Householder transforms to achieve bidiagonal shape
 - Use Givens rotations to achieve diagonal form
 - This is usually better conditioned
Singular Value Decomposition

- Singular value decomposition (SVD) can be used for a range of applications
 - Compute least squares solution \(Ax \equiv b \rightarrow x = \sum_{\sigma_i \neq 0} \frac{u_i^T b}{\sigma_i} v_i \)
 - Compute pseudoinverse \(A^+ = V \Sigma^+ U^T \)
 - Euclidean matrix norm: \(\|A\|_2 = \sigma_{\text{max}} \)
 - Condition number of a matrix: \(\text{cond}(A) = \sigma_{\text{max}} / \sigma_{\text{min}} \)
 - Matrix rank is equal to the number of non-zero singular values
 - Nullspace of the matrix is spanned by the set of right singular vectors corresponding to singular values of 0
 - Span of a matrix is spanned by the left singular vectors corresponding to non-zero singular values
Singular Value Decomposition

- Singular value decomposition (SVD) is useful in a number of applications

 - Data compression
 - Right singular values transform data into a basis in which it is only scaled
 - Data dimensions with 0 or very small scaling factors are not important for the overall data

 - Wide range of applications:
 - Image compression
 - Dimensionality reduction for data
 - Dimensionality reduction for matrix operations

- Filtering and noise reduction
 - Most of the time, data has only few important dimensions and noise is most apparent in additional dimensions (with smaller singular values)
 - Ignoring dimensions with small singular values can lead to less noisy data
Compression Example

- Image compression is an area where SVD has been used relatively early on
 - Given an image, can we reduce the amount of data that has to be transmitted without losing too much information
 - Use SVD to find a lower rank approximation of the image that has only limited loss.
Compression Example

- In SVD, the magnitude of the singular values often decreases rapidly after the first few singular values.

- To compress the image, only keep the k largest singular values (and thus singular vectors) to reconstruct the image

$$A \approx U_p \Sigma_p V_p^T$$
Compression Example

- Different compression levels have different loss
Eigenvalues and Singular Values

- Eigenvalues and Eigenvectors capture important properties about linear transformations A.

- Eigenvalues and Singular values indicate the importance of particular dimensions of the space.
 - Can be used for compression.

- Singular values can capture noise characteristics.
 - Can be used for filtering of data.
 - Can be used to remove noise from data before transformations are applied.

- Singular values are also important to analyze problems such as conditioning and sensitivity.