
1

Computational Methods

Numeric Integration
and Differentiation

© Manfred Huber 2010

© Manfred Huber 2010 2

Integration and Differentiation

  Integration and differentiation of functions can be
performed in two ways
  Symbolic integration and differentiation

  If the function is given, the derivative and integral can often be derived as
closed form functions

  Numeric integration and differentiation
  If a symbolic integration or differentiation is not possible, it can be solved

numerically

  If the function is unknown, numeric integration can be used to
approximate the integral or derivative from a set of sample function values

  Numeric integration and differentiation techniques compute
the integral or derivative value for a particular interval or
point, not the functional form of the integral or derivative

© Manfred Huber 2010 3

Numeric Integration and Riemann Sums
  Integration can be approximated by summation of

normalized function values
  Riemann sums approximate the integral by estimating it as the sum of

the area of rectangles covering the interval with height equal to the
function value at some point within the interval

  Riemann sums approach the true value of the integral as n
approaches infinity for continuous bounded functions independent of
the particular choice of ξ

  Absolute condition number of integration is equal to the
width of the interval, b-a.
  Integration is well-conditioned because it is effectively an averaging

(or smoothing) operation which reduces the effect of errors.

€

f (x)dx ≈ (xi+1 − xi) f (ξ i) , xi ≤ ξ i ≤ xi+1i=1

n
∑a

b
∫

© Manfred Huber 2010 4

Integration using Riemann Sums
  Riemann sums with even-spaced data points

  The simplest form of numeric integration uses evenly spaced data
points and the interval between them for the Riemann sum

  Can use value of one of the interval’s end points as value for Riemann sum

  Can use the average of the end-point values of the interval

  Evenly spaced points and use of sample point values for Riemann
sums require a large number of samples to achieve good results

  Does not take advantage of the characteristics of the function

  Intractable very for high-dimensional functions

  Monte-Carlo Integration with randomly distributed points can
lead to better performance in high-dimensional cases

  Random sampling ensures convergence characteristics

€

f (x)dx ≈ b − a
n

xii=1

n
∑a

b
∫

© Manfred Huber 2010 5

Numerical Quadrature

  Numerical quadrature is an extension of Riemann sums
representing the integral as a weighted sum of a finite
number of sample values

  As opposed to Riemann sums the weight does not have to be related
to the width of a sub-interval

  Many quadrature rules are possible, determining how to choose the
data points and how to compute the corresponding weights

  To achieve efficient results, numerical quadrature rules
are based on polynomial interpolation
  Takes advantage of the shape of the function by integrating the

interpolating polynomial

€

f (x)dx ≈Qn (f) = wi f (xi)
i=1

n
∑a

b
∫

© Manfred Huber 2010 6

Numerical Quadrature
  Numerical quadrature rules use samples at a finite number

of points and computes the approximate integral as the
integral of a polynomial interpolation function of these points
  Rather than explicitly computing the interpolant, quadrature

rules explicitly computes weights such that the the weighted
sum of function values is equal to the integral of the
interpolating polynomial

  Since the integral of a weighted sum of basis polynomials is the sum of the
integral of the weighted basis functions, the quadrature weights can be
determined independently of the actual function values

  Function values weigh the basis polynomial contributions in the quadrature sum

  For Lagrange interpolation, the weights can be determined as

€

wi = li(x)dxa

b
∫

© Manfred Huber 2010 7

Method of Undetermined Coefficients

  Method of undetermined coefficients uses a more
general way to determine the quadrature weights
  Consider weights as unknown parameters that have to be

determined given the n sample locations (not their values)

  To constrain coefficients, force them to correctly integrate the
first n basis polynomials

  If they correctly integrate base polynomials then they correctly integrate
any sum of the base polynomials, i.e. any polynomial of degree n-1

  Resulting system of equations are called moment equations

€

wipk (xi) = pk (x)dx , 1≤ k ≤ n
a

b
∫i=1

n
∑

© Manfred Huber 2010 8

Undetermined Coefficients

  Common choice for quadrature rules use monomial
basis and evenly spaced points with a sample point at
each end of the integration interval
  For n=3 results in

  Leading to linear system

€

w1 *1+ w2 *1+ w3 *1= 1dx
a

b
∫ = b − a

w1 * a + w2 * (b + a) 2 + w3 *b = xdx
a

b
∫ = b2 − a2() 2

w1 * a
2 + w2 * b + a() 2()2 + w3 *b

2 = x 2dx
a

b
∫ = b3 − a3() 3

€

1 1 1
a (b + a) 2 b
a2 b + a() 2()2

b2

















w1

w2

w3






 






 

=

b − a
b2 − a2() 2
b3 − a3() 3

















© Manfred Huber 2010 9

Undetermined Coefficients

  Generally, monomial basis polynomials result in
Vandermonde system for determining weights

  For equally spaced points yields Newton-Cotes quadrature rules
  Midpoint rule for one data point in the middle of the interval

  Trapezoid rule for two data points at the ends of the interval

  Simpson’s rule for three points (at the ends and in the middle)

€

1 1  1
x1 x2  xn
   

x1
n−1 x2

n−1
 xn

n−1



















w1

w2



wn



















=

b − a
b2 − a2() 2


bn − an() n



















€

M(f) = (b − a) f ((a + b) 2)

€

T(f) = (b − a) 2* (f (a) + f (b))

€

S(f) = (b − a) 6* f (a) + 4 f ((a + b) 2) + f (b)()

© Manfred Huber 2010 10

Accuracy and Stability of Quadrature
  Accuracy of the quadrature rule depends on the spacing

between the data points and the degree of the polynomial
that can be exactly solved for
  From Taylor series:

  Can achieve higher accuracy either by reducing the spacing, h, between
data points or by increasing the degree of the polynomial that can be
correctly integrated

  Absolute condition number is sum of magnitude of weights

  Since sum of weights is b-a, this is well conditioned if all weights are
positive but can increase significantly if there are negative weights

€

f −Qn (f)∫ ≤
1
4
hd +1 f (d)

∞
 , h = max(xi+1 − xi : i =1,...,n −1)

€

cond = wii=1

n
∑

© Manfred Huber 2010 11

Accuracy and Stability of Quadrature
  Equally spaced points for interpolation can lead to erratic

behavior especially near the endpoints
  For quadrature rules this means that weights can become negative,

potentially leading to ill-conditioning
  Newton-Cotes rules become arbitrarily ill-conditioned with increasing

numbers of sample points

  Conditioning can be improved by selecting data points to
form more accurate interpolations
  Clenshaw-Curtis quadrature uses Chebyshev points

  Weights in Clenshaw-Curtis quadrature are always positive and quadrature
thus stays well-conditioned

  Accuracy can be further increased if higher degree
polynomials could be integrated correctly using n data points

© Manfred Huber 2010 12

Gaussian Quadrature
  Increasing the degree of the polynomial that can be

accurately integrated requires a larger number of variables
in the system of equations
  Can be achieved by increasing the number of data points

  Can also be achieved by allowing the solution not only to pick weights
but also to select the locations of the data points without increasing
the number of data points

  Gaussian quadrature uses weights and data point locations
as parameters, resulting in a system of non-linear equations

  Accurately integrates the first 2n base polynomials and therefore all
polynomials of degree up to 2n-1

€

wipk (xi) = pk (x)dx , 1≤ k ≤ 2n
a

b
∫i=1

n
∑

© Manfred Huber 2010 13

Gaussian Quadrature
  Gaussian quadrature can accurately integrate polynomials of

degree 2n-1 using only n data points
  Solution to system of non-linear equations is harder to derive but

always contains a solution that has only positive weights
  Data points locations might be irrational in solution

  For a fixed integration interval the data point locations and the
weights can be pre-computed as they do not depend on the function
to be integrated

  Data point locations can be scaled linearly to address a different
integration interval

  Non-linear system for 2 data points:

€

w1 *1+ w2 *1= 1dx
−1

1
∫ = 2 , w1 * x1 + w2 * x2 = xdx

−1

1
∫ = 0

w1 * x1
2 + w2 * x2

2 = x 2dx
−1

1
∫ = 2 /3 , w1 * x1

3 + w2 * x2
3 = x 3dx

−1

1
∫ = 0

© Manfred Huber 2010 14

Progressive Quadrature Rules
  A sequence of quadrature rules is progressive if sample

points for one n are a subset of the nodes for a larger n
  Progressive quadrature rules allow to increase the number of data

points without having to reevaluate all data points
  Allows to increase the number sample points dynamically

  Gaussian quadrature can accurately integrate polynomials of degree 2n-1 using only
n data points

  Newton-Cotes is progressive only when increasing the number of data
points from n to 2n-1, corresponding to subdividing each interval

  Clenshaw-Curtis is not progressive

  Gaussian Quadrature is not progressive

  Progressive extensions to quadrature rules can save
significant amounts of work when increasing n

© Manfred Huber 2010 15

Kronrod Quadrature Rules
  Kronrad quadrature rules augment Gaussian quadrature

rules by adding a 2n+1 point Kronrod rule to every n point
Gaussian rule
  Selection of Kronrod points as samples leads to a progressive

quadrature rule with a higher degree than the number of data points
  In practice these are computed by adding Kronrod rules to the Gaussian rules,

imposing additional constraints

  Gaussian/Kronrod pairs are progressive, i.e. the data points can be re-
used as n is increased

  Kronrod rules with 2n+1 data points are of degree 3n+1, thus lower
than if using Gaussian rules (which would be of degree 4n+1)

  Not as effective as Gaussian quadrature but progressive and thus more efficient if the
number of data points is to be extended.

© Manfred Huber 2010 16

Composite Quadrature
  As in interpolation, two methods can be used to address

larger numbers of data points
  Quadrature with an increasing number of parameters, i.e.

interpolation with a higher degree polynomial

  Composite quadrature, i.e. piecewise polynomial interpolation and
summing the integrals of all the polynomial pieces

  Composite quadrature has issues like piecewise interpolation
  Composite quadrature is generally simpler to construct for large

numbers of data points

  Composite quadrature is stable if the quadrature rule for each
segment is stable (equally spaced points can be used and be stable)

  Accuracy increases as the width of each interval approaches 0

  Not as accurate at approximating higher-order polynomials

© Manfred Huber 2010 17

Composite Quadrature
  Composite versions of low-degree Newton-Combs can be

used effectively
  Composite midpoint rule: 1 point per segment, k segments

  Composite trapezoid rule: 2 endpoints of each segment, k segments

  Difference in estimate between two different levels of
subdivision (e.g. k, 2k-1 for equally spaced points) can be
used to estimate the accuracy of the estiamte
  Error estimate can make composite quadrature more efficient

€

Mk (f) = (xk+1 − xk) f ((xk + xk+1) 2)i=1

k
∑ = h f ((xk + xk+1) 2)i=1

k
∑

€

Tk (f) = (xk+1 − xk) 2* (f (xk) + f (xk+1)) =
i=1

k
∑

 h * 1 2(f (a) + f (b)) + f (xi)i= 2

k
∑


 




© Manfred Huber 2010 18

Adaptive Quadrature
  Uniform segments are very inefficient for many functions

and leads to the need for a very large number of data points
  Adaptive quadrature uses an error estimate on each segment to

decide which segments to further subdivide
  To estimate the error on a segment, two different quadrature rules are applied to

each segment and their difference is used to estimate the remaining error.

  If error estimate on segment is higher than threshold, the segment is subdivided and
the procedure is repeated

  Adaptive quadrature samples more densely in areas that are harder to
integrate and more sparsely in areas that are easy to integrate

  Quality of adaptive quadrature solution depends on the quality of the
error estimate produced by the difference of the two quadrature rules

  There are functions for which the error estimate will be low despite the actual error
being high due to point selection. Thus the result can be potentially very inaccurate

  Works very well in most situations in practice

© Manfred Huber 2010 19

Numerical Integration
  Multiple methods exist for numeric integration

  Simple Riemann sums are very simple for computing integrals but not
very efficient in terms of the number of function evaluations needed

  Monte Carlo integration using randomly sampled points can be
efficient for high dimensional functions where using equally spaced
data points in all dimensions would be too numerous to compute

  Quadrature rules increase the efficiency of using data points by
effectively computing the precise integral of the polynomial
interpolation of the sample points

  Gives better estimate of the integral by considering higher order terms
  Newton-Cotes: degree n-1 polynomial for n data points

  Clenshaw-Curtis: degree n-1 polynomial for n data points

  Gaussian quadrature: degree 2n-1 polynomial for n data points

  Composite quadrature uses piecewise inetrpolation

© Manfred Huber 2010 20

Numerical Differentiation
  While integration is a well-conditioned problem,

differentiation is inherently sensitive
  Functions with very similar function values will have similar integrals

  Functions with very similar function values can have very different
derivatives

  Most common numerical differentiation rules are derived
from the Taylor series expansion of the function
  Finite difference methods

  Higher order derivatives often computed as derivative of interpolation

  Derivative of interpolation function might not be a good
approximation of the derivative of the function
  Quality of approximation depends heavily on the choice of interpolant

© Manfred Huber 2010 21

Finite Difference Approximations
  For smooth and differentiable functions, the Taylor series

expansion provides a means of estimating the first and
second derivatives from the function values at sample points
  Forward difference approximation of the derivative:

  Provides a first order approximation with an error that is O(h) using two data points

  Backward difference approximation of the derivative:

  Provides a first order approximation with an error that is O(h) using two data points

€

f (x + h) = f (x) + hf '(x) + h2 2 f ' '(x) + ...

⇒ f '(x) =
f (x + h) − f (x)

h
−
h
2
f ' '(x) − ... ≈ f (x + h) − f (x)

h

€

f (x − h) = f (x) − hf '(x) + h2 2 f ' '(x) − ...

⇒ f '(x) =
f (x) − f (x − h)

h
+
h
2
f ' '(x) − ... ≈ f (x) − f (x − h)

h

© Manfred Huber 2010 22

Finite Difference Approximations
  Combining forward and backward equations improves

performance
  Centered difference approximation for derivative:

  Provides a first order approximation with an error that is O(h2) using two data points
  Computes lower error derivative for the point between the two data points

  Centered difference equation for second derivative:
€

f (x + h) − f (x − h) = f (x) + hf '(x) + h2 2 f ' '(x) + ...
 − f (x) + hf '(x) − h2 2 f ' '(x) + ...
 = 2hf '(x) + 2h3 3 f ' ' '(x) + ...

⇒ f '(x) =
f (x + h) − f (x − h)

2h
−
h2

6
f ' ' '(x) − ... ≈ f (x + h) − f (x − h)

2h

€

 f (x + h) + f (x − h) ⇒ f ' '(x) ≈ f (x + h) − 2 f (x) + f (x − h)
h2

© Manfred Huber 2010 23

Richardson Extrapolation
  Difference equations increase in precision with smaller

values of h
  Small values of h can lead to large rounding errors due to the division

by h and calculation of difference approximation is thus not stable for
h0

  Richardson extrapolation computes the value of a function
F(h) h0 by interpolating values for difference values
of h given known results for two finite values of h
  Richardson extrapolation uses information about the behavior of F(h)

to obtain better estimates
  For differentiation and integration the Taylor series expansions provides information

regarding the behavior of the derivative or integral as h is changed

© Manfred Huber 2010 24

Richardson Extrapolation
  Richardson extrapolation for differentiation

  Using forward approximation:

  In this polynomial, a0 is the estimate of the derivative for h=0 and O(h2) is an
estimate of the error in the extrapolation

  Using centered approximation:

  In this polynomial, again, a0 is the estimate of the derivative for h=0 and O(h4) is an
estimate of the error in the extrapolation

  Often Richardson extrapolation estimates F(h) using a two-
term polynomial and two values for h that are multiples

€

Fx (h) =
f (x + h) − f (x)

h
−
h
2
f ' '(x) − ... ≈ a0 + a1h +O(h2)

€

Fx (h) =
f (x + h) − f (x − h)

2h
−
h2

6
f ' ' '(x) − ... ≈ a0 + a1h

2 +O(h4)

€

F(h) = a0 + a1h
p +O(hr) ⇒ a0 = F(h) +

F(h) − F(h k)
k−p −1

© Manfred Huber 2010 25

Romberg Integration
  Richardson extrapolation for composite quadrature

integration with the trapezoid rule is called Romberg
integration:
  Composite quadrature is accurate as the segment width, h,

approaches 0

  Extrapolation for composite trapezoid is derived from observation that
the dominant error term in trapezoid quadrature is O(h2):

  Romberg integration estimates the behavior of the error near 0 from two subdivisions
of the segments into intervals of width h and h/k

  Romberg integration can further increase the accuracy of
composite quadrature without increasing the number of data
points required

€

F(h) = a0 + a1h
2 +O(h4) ⇒ a0 = F(h) +

F(h) − F(h k)
k−p −1

© Manfred Huber 2010 26

Numerical Integration and
Differentiation

  Numerical integration is inherently well-conditioned

  Quadrature provides an efficient means of approximating integrals

  Quadrature weights are pre-computed reducing the cost of integration to the one of
computing n function values for chosen sample points

  Composite quadrature reduces the need for higher order weights

  Less efficient in terms of data points needed but simpler in terms of weights and thus
potentially more stable for high number of data points

  Numerical differentiation is inherently sensitive

  Finite difference approximations provide estimates of derivatives

  Richardson extrapolation can further improve integration and
differentiation by interpolating over different finite difference
or segment lengths, h, and estimating the value for h=0

