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Integration and Differentiation  

  Integration and differentiation of functions can be 
performed in two ways 
  Symbolic integration and differentiation 

  If the function is given, the derivative and integral can often be derived as 
closed form functions 

  Numeric integration and differentiation 
  If a symbolic integration or differentiation is not possible, it can be solved 

numerically 

  If the function is unknown, numeric integration can be used to 
approximate the integral or derivative from a set of sample function values  

  Numeric integration and differentiation techniques compute 
the integral or derivative value for a particular interval or 
point, not the functional form of the integral or derivative 



© Manfred Huber 2010 3 

Numeric Integration and Riemann Sums  
  Integration can be approximated by summation of 

normalized function values  
  Riemann sums approximate the integral by estimating it as the sum of 

the area of rectangles covering the interval with height  equal to the 
function value at some point within the interval 

  Riemann sums approach the true value of the integral as n 
approaches infinity for continuous bounded functions independent of 
the particular choice of ξ 

  Absolute condition number of integration is equal to the 
width of the interval, b-a. 
  Integration is well-conditioned because it is effectively an averaging 

(or smoothing) operation which reduces the effect of errors. 

€ 

f (x)dx ≈ (xi+1 − xi) f (ξ i)    ,   xi ≤ ξ i ≤ xi+1i=1

n
∑a

b
∫
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Integration using Riemann Sums 
  Riemann sums with even-spaced data points 

  The simplest form of numeric integration uses evenly spaced data 
points and the interval between them for the Riemann sum 

  Can use value of one of the interval’s end points as value for Riemann sum 

  Can use the average of the end-point values of the interval  

  Evenly spaced points and use of sample point values for Riemann 
sums require a large number of samples to achieve good results 

  Does not take advantage of the characteristics of the function 

  Intractable very for high-dimensional functions 

  Monte-Carlo Integration with randomly distributed points can 
lead to better performance in high-dimensional cases 

  Random sampling ensures convergence characteristics 

€ 

f (x)dx ≈ b − a
n

xii=1

n
∑a

b
∫
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Numerical Quadrature 

  Numerical quadrature is an extension of Riemann sums 
representing the integral as a weighted sum of a finite 
number of sample values  

  As opposed to Riemann sums the weight does not have to be related 
to the width of a sub-interval 

  Many quadrature rules are possible, determining how to choose the 
data points and how to compute the corresponding weights 

  To achieve efficient results, numerical quadrature rules 
are based on polynomial interpolation 
  Takes advantage of the shape of the function by integrating the 

interpolating polynomial  

€ 

f (x)dx ≈Qn ( f ) = wi f (xi)   
i=1

n
∑a

b
∫
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Numerical Quadrature 
  Numerical quadrature rules use samples at a finite number 

of points and computes the approximate integral as the 
integral of a polynomial interpolation function of these points 
  Rather than explicitly computing the interpolant, quadrature 

rules explicitly computes weights such that the the weighted 
sum of function values is equal to the integral of the 
interpolating polynomial 

  Since the integral of a weighted sum of basis polynomials is the sum of the 
integral of the weighted basis functions, the quadrature weights can be 
determined independently of the actual function values 

  Function values weigh the basis polynomial contributions in the quadrature sum 

  For Lagrange interpolation, the weights can be determined as 

€ 

wi = li(x)dxa

b
∫
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Method of Undetermined Coefficients 

  Method of undetermined coefficients uses a more 
general way to determine the quadrature weights 
  Consider weights as unknown parameters that have to be 

determined given the n sample locations (not their values) 

  To constrain coefficients, force them to correctly integrate the 
first n basis polynomials 

  If they correctly integrate base polynomials then they correctly integrate 
any sum of the base polynomials, i.e. any polynomial of degree n-1 

  Resulting system of equations are called moment equations 

€ 

wipk (xi) = pk (x)dx    ,   1≤ k ≤ n
a

b
∫i=1

n
∑
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Undetermined Coefficients 

  Common choice for quadrature rules use monomial 
basis and evenly spaced points with a sample point at 
each end of the integration interval 
  For n=3 results in 

  Leading to linear system 

€ 

w1 *1+ w2 *1+ w3 *1= 1dx
a

b
∫ = b − a

w1 * a + w2 * (b + a) 2 + w3 *b = xdx
a

b
∫ = b2 − a2( ) 2

w1 * a
2 + w2 * b + a( ) 2( )2 + w3 *b

2 = x 2dx
a

b
∫ = b3 − a3( ) 3
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Undetermined Coefficients 

  Generally, monomial basis polynomials result in 
Vandermonde system for determining weights 

  For equally spaced points yields Newton-Cotes quadrature rules 
  Midpoint rule for one data point in the middle of the interval 

  Trapezoid rule for two data points at the ends of the interval 

  Simpson’s rule for three points (at the ends and in the middle) 
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€ 

M( f ) = (b − a) f ((a + b) 2)

€ 

T( f ) = (b − a) 2* ( f (a) + f (b))

€ 

S( f ) = (b − a) 6* f (a) + 4 f ((a + b) 2) + f (b)( )
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Accuracy and Stability of Quadrature 
  Accuracy of the quadrature rule depends on the spacing 

between the data points and the degree of the polynomial 
that can be exactly solved for 
  From Taylor series: 

  Can achieve higher accuracy either by reducing the spacing, h, between 
data points or by increasing the degree of the polynomial that can be 
correctly integrated  

  Absolute condition number is sum of magnitude of weights 

  Since sum of weights is b-a, this is well conditioned if all weights are 
positive but can increase significantly if there are negative weights 

€ 

f −Qn ( f )∫ ≤
1
4
hd +1 f (d )

∞
   ,    h = max(xi+1 − xi : i =1,...,n −1)

€ 

cond = wii=1

n
∑
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Accuracy and Stability of Quadrature 
  Equally spaced points for interpolation can lead to erratic 

behavior especially near the endpoints 
  For quadrature rules this means that weights can become negative, 

potentially leading to ill-conditioning 
  Newton-Cotes rules become arbitrarily ill-conditioned with increasing 

numbers of sample points 

  Conditioning can be improved by selecting data points to 
form more accurate interpolations 
  Clenshaw-Curtis quadrature uses Chebyshev points 

  Weights in Clenshaw-Curtis quadrature are always positive and quadrature 
thus stays well-conditioned 

  Accuracy can be further increased if higher degree 
polynomials could be integrated correctly using n data points 
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Gaussian Quadrature 
  Increasing the degree of the polynomial that can be 

accurately integrated requires a larger number of variables 
in the system of equations 
  Can be achieved by increasing the number of data points 

  Can also be achieved by allowing the solution not only to pick weights 
but also to select the locations of the data points without increasing 
the number of data points 

  Gaussian quadrature uses weights and data point locations 
as parameters, resulting in a system of non-linear equations 

  Accurately integrates the first 2n base polynomials and therefore all 
polynomials of degree up to 2n-1 

€ 

wipk (xi) = pk (x)dx    ,   1≤ k ≤ 2n
a

b
∫i=1

n
∑
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Gaussian Quadrature 
  Gaussian quadrature can accurately integrate polynomials of 

degree 2n-1 using only n data points 
  Solution to system of non-linear equations is harder to derive but 

always contains a solution that has only positive weights 
  Data points locations might be irrational in solution  

  For a fixed integration interval the data point locations and the 
weights can be pre-computed as they do not depend on the function 
to be integrated 

  Data point locations can be scaled linearly to address a different 
integration interval 

  Non-linear system for 2 data points: 

€ 

w1 *1+ w2 *1= 1dx
−1

1
∫ = 2               ,     w1 * x1 + w2 * x2 = xdx

−1

1
∫ = 0

w1 * x1
2 + w2 * x2

2 = x 2dx
−1

1
∫ = 2 /3   ,     w1 * x1

3 + w2 * x2
3 = x 3dx

−1

1
∫ = 0
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Progressive Quadrature Rules 
  A sequence of quadrature rules is progressive if sample 

points for one n are a subset of the nodes for a larger n 
  Progressive quadrature rules allow to increase the number of data 

points without having to reevaluate all data points  
  Allows to increase the number sample points dynamically 

  Gaussian quadrature can accurately integrate polynomials of degree 2n-1 using only 
n data points 

  Newton-Cotes is progressive only when increasing the number of data 
points from n to 2n-1, corresponding to subdividing each interval 

  Clenshaw-Curtis is not progressive 

  Gaussian Quadrature is not progressive 

  Progressive extensions to quadrature rules can save 
significant amounts of work when increasing n 
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Kronrod Quadrature Rules 
  Kronrad quadrature rules augment Gaussian quadrature 

rules by adding a 2n+1 point Kronrod rule to every n point 
Gaussian rule 
  Selection of Kronrod points as samples leads to a progressive 

quadrature rule with a higher degree than the number of data points 
  In practice these are computed by adding Kronrod rules to the Gaussian rules, 

imposing additional constraints  

  Gaussian/Kronrod pairs are progressive, i.e. the data points can be re-
used as n is increased 

  Kronrod rules with 2n+1 data points are of degree 3n+1, thus lower 
than if using Gaussian rules (which would be of degree 4n+1) 

  Not as effective as Gaussian quadrature but progressive and thus more efficient if the 
number of data points is to be extended. 
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Composite Quadrature 
  As in interpolation, two methods can be used to address 

larger numbers of data points 
  Quadrature with an increasing number of parameters, i.e. 

interpolation with a higher degree polynomial 

  Composite quadrature, i.e. piecewise polynomial interpolation and 
summing the integrals of all the polynomial pieces 

  Composite quadrature has issues like piecewise interpolation 
  Composite quadrature is generally simpler to construct for large 

numbers of data points 

  Composite quadrature is stable if the quadrature rule for each 
segment is stable (equally spaced points can be used and be stable) 

  Accuracy increases as the width of each interval approaches 0 

  Not as accurate at approximating higher-order polynomials 
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Composite Quadrature 
  Composite versions of low-degree Newton-Combs can be 

used effectively 
  Composite midpoint rule: 1 point per segment, k segments 

  Composite trapezoid rule: 2 endpoints of each segment, k segments  

  Difference in estimate between two different levels of 
subdivision (e.g. k, 2k-1 for equally spaced points) can be 
used to estimate the accuracy of the estiamte 
  Error estimate can make composite quadrature more efficient 

€ 

Mk ( f ) = (xk+1 − xk ) f ((xk + xk+1) 2)i=1

k
∑ = h f ((xk + xk+1) 2)i=1

k
∑

€ 

Tk ( f ) = (xk+1 − xk ) 2* ( f (xk ) + f (xk+1)) =
i=1

k
∑

            h * 1 2( f (a) + f (b)) + f (xi)i= 2

k
∑ 

 
  

 
 
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Adaptive Quadrature 
  Uniform segments are very inefficient for many functions 

and leads to the need for a very large number of data points 
  Adaptive quadrature uses an error estimate on each segment to 

decide which segments to further subdivide 
  To estimate the error on a segment, two different quadrature rules are applied to 

each segment and their difference is used to estimate the remaining error. 

  If error estimate on segment is higher than threshold, the segment is subdivided and 
the procedure is repeated 

  Adaptive quadrature samples more densely in areas that are harder to 
integrate and more sparsely in areas that are easy to integrate 

  Quality of adaptive quadrature solution depends on the quality of the 
error estimate produced by the difference of the two quadrature rules 

  There are functions for which the error estimate will be low despite the actual error 
being high due to point selection. Thus the result can be potentially very inaccurate 

  Works very well in most situations in practice 



© Manfred Huber 2010 19 

Numerical Integration 
  Multiple methods exist for numeric integration 

  Simple Riemann sums are very simple for computing integrals but not 
very efficient in terms of the number of function evaluations needed 

  Monte Carlo integration using randomly sampled points can be 
efficient for high dimensional functions where using equally spaced  
data points in all dimensions would be too numerous to compute  

  Quadrature rules increase the efficiency of using data points by 
effectively computing the precise integral of the polynomial 
interpolation of the sample points 

  Gives better estimate of the integral by considering higher order terms 
  Newton-Cotes: degree n-1 polynomial for n data points 

  Clenshaw-Curtis: degree n-1 polynomial for n data points 

  Gaussian quadrature: degree 2n-1 polynomial for n data points 

  Composite quadrature uses piecewise inetrpolation 



© Manfred Huber 2010 20 

Numerical Differentiation 
  While integration is a well-conditioned problem, 

differentiation is inherently sensitive 
  Functions with very similar function values will have similar integrals 

  Functions with very similar function values can have very different 
derivatives 

  Most common numerical differentiation rules are derived 
from the Taylor series expansion of the function  
  Finite difference methods 

  Higher order derivatives often computed as derivative of interpolation  

  Derivative of interpolation function might not be a good 
approximation of the derivative of the function 
  Quality of approximation depends heavily on the choice of interpolant 
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Finite Difference Approximations 
  For smooth and differentiable functions, the Taylor series 

expansion provides a means of estimating the first and 
second derivatives from the function values at sample points 
  Forward difference approximation of the derivative: 

  Provides a first order approximation with an error that is O(h) using two data points 

  Backward difference approximation of the derivative: 

  Provides a first order approximation with an error that is O(h) using two data points 

€ 

f (x + h) = f (x) + hf '(x) + h2 2 f ' '(x) + ...

⇒  f '(x) =
f (x + h) − f (x)

h
−
h
2
f ' '(x) − ... ≈ f (x + h) − f (x)

h

€ 

f (x − h) = f (x) − hf '(x) + h2 2 f ' '(x) − ...

⇒  f '(x) =
f (x) − f (x − h)

h
+
h
2
f ' '(x) − ... ≈ f (x) − f (x − h)

h
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Finite Difference Approximations 
  Combining forward and backward equations improves 

performance 
  Centered difference approximation for derivative: 

  Provides a first order approximation with an error that is O(h2) using two data points 
  Computes lower error derivative for the point between the two data points 

  Centered difference equation for second derivative: 
€ 

f (x + h) − f (x − h) =   f (x) + hf '(x) + h2 2 f ' '(x) + ...
                                  − f (x) + hf '(x) − h2 2 f ' '(x) + ...
                               = 2hf '(x) + 2h3 3 f ' ' '(x) + ...

⇒  f '(x) =
f (x + h) − f (x − h)

2h
−
h2

6
f ' ' '(x) − ... ≈ f (x + h) − f (x − h)

2h

€ 

 f (x + h) + f (x − h)    ⇒   f ' '(x) ≈ f (x + h) − 2 f (x) + f (x − h)
h2
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Richardson Extrapolation 
  Difference equations increase in precision with smaller 

values of h 
  Small values of h can lead to large rounding errors due to the division 

by h and calculation of difference approximation is thus not stable for 
h0   

  Richardson extrapolation computes the value of a function 
F(h) h0 by interpolating values for difference values 
of h given known results for two finite values of h 
  Richardson extrapolation uses information about the behavior of F(h) 

to obtain better estimates 
  For differentiation and integration the Taylor series expansions provides information 

regarding the behavior of the derivative or integral as h is changed 
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Richardson Extrapolation 
  Richardson extrapolation for differentiation 

  Using forward approximation: 

  In this polynomial, a0 is the estimate of the derivative for h=0 and O(h2) is an 
estimate of the error in the extrapolation 

  Using centered approximation: 

  In this polynomial, again, a0 is the estimate of the derivative for h=0 and O(h4) is an 
estimate of the error in the extrapolation 

  Often Richardson extrapolation estimates F(h) using a two-
term polynomial and two values for h that are multiples 

€ 

Fx (h) =
f (x + h) − f (x)

h
−
h
2
f ' '(x) − ... ≈ a0 + a1h +O(h2)

€ 

Fx (h) =
f (x + h) − f (x − h)

2h
−
h2

6
f ' ' '(x) − ... ≈ a0 + a1h

2 +O(h4 )

€ 

F(h) = a0 + a1h
p +O(hr )    ⇒   a0 = F(h) +

F(h) − F(h k)
k−p −1
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Romberg Integration 
  Richardson extrapolation for composite quadrature 

integration with the trapezoid rule is called Romberg 
integration: 
  Composite quadrature is accurate as the segment width, h, 

approaches 0 

  Extrapolation for composite trapezoid is derived from observation that 
the dominant error term in trapezoid quadrature is O(h2): 

  Romberg integration estimates the behavior of the error near 0 from two subdivisions 
of the segments into intervals of width h and h/k 

  Romberg integration can further increase the accuracy of 
composite quadrature without increasing the number of data 
points required 

€ 

F(h) = a0 + a1h
2 +O(h4 )    ⇒   a0 = F(h) +

F(h) − F(h k)
k−p −1
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Numerical Integration and 
Differentiation 

  Numerical integration is inherently well-conditioned 

  Quadrature provides an efficient means of approximating integrals 

  Quadrature weights are pre-computed reducing the cost of integration to the one of 
computing n function values for chosen sample points 

  Composite quadrature reduces the need for higher order weights 

  Less efficient in terms of data points needed but simpler in terms of weights and thus 
potentially more stable for high number of data points 

  Numerical differentiation is inherently sensitive 

  Finite difference approximations provide estimates of derivatives 

  Richardson extrapolation can further improve integration and 
differentiation by interpolating over different finite difference 
or segment lengths, h, and estimating the value for h=0 


