Artificial Intelligence

Chapter 1

Outline

- \diamondsuit What is Al?
- \diamondsuit A brief history
- \diamondsuit The state of the art

What is AI?

Systems that think like humans	Systems that think rationally
Systems that act like humans	Systems that act rationally

Acting humanly: The Turing test

Turing (1950) "Computing machinery and intelligence":

- \diamond "Can machines think?" \longrightarrow "Can machines behave intelligently?"
- \diamondsuit Operational test for intelligent behavior: the Imitation Game

- Predicted that by 2000, a machine might have a 30% chance of fooling a lay person for 5 minutes
- \diamondsuit Anticipated all major arguments against AI in following 50 years
- Suggested major components of AI: knowledge, reasoning, language understanding, learning

Problem: Turing test is not reproducible, constructive, or amenable to mathematical analysis

Thinking humanly: Cognitive Science

1960s "cognitive revolution": information-processing psychology replaced prevailing orthodoxy of behaviorism

Requires scientific theories of internal activities of the brain

- What level of abstraction? "Knowledge" or "circuits"?
- How to validate? Requires
 - 1) Predicting and testing behavior of human subjects (top-down)
 - or 2) Direct identification from neurological data (bottom-up)

Both approaches (roughly, Cognitive Science and Cognitive Neuroscience) are now distinct from AI

Both share with AI the following characteristic:

the available theories do not explain (or engender) anything resembling human-level general intelligence

Hence, all three fields share one principal direction!

Thinking rationally: Laws of Thought

Normative (or prescriptive) rather than descriptive

Aristotle: what are correct arguments/thought processes?

Several Greek schools developed various forms of logic: **notation** and **rules of derivation** for thoughts; may or may not have proceeded to the idea of mechanization

Direct line through mathematics and philosophy to modern AI

Problems:

- 1) Not all intelligent behavior is mediated by logical deliberation
- 2) What is the purpose of thinking? What thoughts **should** I have out of all the thoughts (logical or otherwise) that I **could** have?

Acting rationally

Rational behavior: doing the right thing

The right thing: that which is expected to maximize goal achievement, given the available information

Doesn't necessarily involve thinking—e.g., blinking reflex—but thinking should be in the service of rational action

Aristotle (Nicomachean Ethics):

Every art and every inquiry, and similarly every action and pursuit, is thought to aim at some good

Rational agents

An agent is an entity that perceives and acts

This course is about designing rational agents

Abstractly, an agent is a function from percept histories to actions:

 $f: \mathcal{P}^* \to \mathcal{A}$

For any given class of environments and tasks, we seek the agent (or class of agents) with the best performance

AI prehistory

Philosophy	logic, methods of reasoning mind as physical system
	foundations of learning, language, rationality
Mathematics	formal representation and proof
	algorithms, computation, (un)decidability, (in)tractability
	probability
Psychology	adaptation
	phenomena of perception and motor control
	experimental techniques (psychophysics, etc.)
Economics	formal theory of rational decisions
Linguistics	knowledge representation
	grammar
Neuroscience	plastic physical substrate for mental activity
Control theory	homeostatic systems, stability
	simple optimal agent designs

Potted history of AI

- 1943 McCulloch & Pitts: Boolean circuit model of brain
- 1950 Turing's "Computing Machinery and Intelligence"
- 1952–69 Look, Ma, no hands!
- 1950s Early AI programs, including Samuel's checkers program, Newell & Simon's Logic Theorist, Gelernter's Geometry Engine
- 1956 Dartmouth meeting: "Artificial Intelligence" adopted
- 1965 Robinson's complete algorithm for logical reasoning
- 1966–74 AI discovers computational complexity Neural network research almost disappears
- 1969–79 Early development of knowledge-based systems
- 1980–88 Expert systems industry booms
- 1988-93 Expert systems industry busts: "AI Winter"
- 1985–95 Neural networks return to popularity
- 1988– Resurgence of probability; general increase in technical depth "Nouvelle Al": ALife, GAs, soft computing
- 1995– Agents, agents, everywhere . . .
- 2003– Human-level AI back on the agenda

Which of the following can be done at present?

 $\diamondsuit\,$ Play a decent game of table tennis

- \diamondsuit Play a decent game of table tennis
- \diamondsuit Drive safely along a curving mountain road

- \diamondsuit Play a decent game of table tennis
- \diamondsuit Drive safely along a curving mountain road
- \Diamond Drive safely along Telegraph Avenue

- \diamondsuit Play a decent game of table tennis
- \diamondsuit Drive safely along a curving mountain road
- \diamondsuit Drive safely along Telegraph Avenue
- \diamondsuit Buy a week's worth of groceries on the web

- \diamondsuit Play a decent game of table tennis
- \diamondsuit Drive safely along a curving mountain road
- \diamondsuit Drive safely along Telegraph Avenue
- \diamondsuit Buy a week's worth of groceries on the web
- \diamondsuit Buy a week's worth of groceries at Berkeley Bowl

- \diamondsuit Play a decent game of table tennis
- \diamondsuit Drive safely along a curving mountain road
- \diamondsuit Drive safely along Telegraph Avenue
- \diamondsuit Buy a week's worth of groceries on the web
- \diamondsuit Buy a week's worth of groceries at Berkeley Bowl
- \diamond Play a decent game of bridge

- \diamondsuit Play a decent game of table tennis
- \diamondsuit Drive safely along a curving mountain road
- \diamondsuit Drive safely along Telegraph Avenue
- \diamondsuit Buy a week's worth of groceries on the web
- \diamondsuit Buy a week's worth of groceries at Berkeley Bowl
- \diamond Play a decent game of bridge
- \diamondsuit Discover and prove a new mathematical theorem

- \diamondsuit Play a decent game of table tennis
- \diamondsuit Drive safely along a curving mountain road
- \diamondsuit Drive safely along Telegraph Avenue
- \diamondsuit Buy a week's worth of groceries on the web
- \diamondsuit Buy a week's worth of groceries at Berkeley Bowl
- \diamond Play a decent game of bridge
- \diamondsuit Discover and prove a new mathematical theorem
- \diamondsuit Design and execute a research program in molecular biology

- \diamondsuit Play a decent game of table tennis
- \diamondsuit Drive safely along a curving mountain road
- ♦ Drive safely along Telegraph Avenue
- \diamondsuit Buy a week's worth of groceries on the web
- \diamondsuit Buy a week's worth of groceries at Berkeley Bowl
- \diamond Play a decent game of bridge
- ♦ Discover and prove a new mathematical theorem
- \diamondsuit Design and execute a research program in molecular biology
- \diamondsuit Write an intentionally funny story

- \diamondsuit Play a decent game of table tennis
- \diamondsuit Drive safely along a curving mountain road
- ♦ Drive safely along Telegraph Avenue
- \diamondsuit Buy a week's worth of groceries on the web
- \diamondsuit Buy a week's worth of groceries at Berkeley Bowl
- \diamond Play a decent game of bridge
- \diamondsuit Discover and prove a new mathematical theorem
- \diamond Design and execute a research program in molecular biology
- \diamondsuit Write an intentionally funny story
- \diamondsuit Give competent legal advice in a specialized area of law

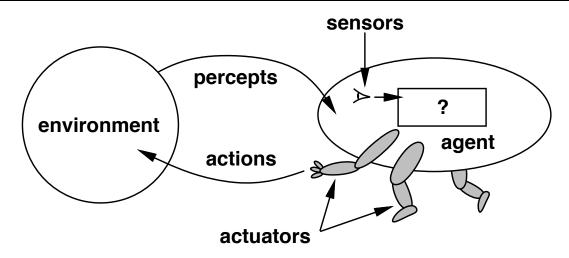
- \diamondsuit Play a decent game of table tennis
- \diamondsuit Drive safely along a curving mountain road
- ♦ Drive safely along Telegraph Avenue
- \diamondsuit Buy a week's worth of groceries on the web
- \diamondsuit Buy a week's worth of groceries at Berkeley Bowl
- \diamond Play a decent game of bridge
- \diamondsuit Discover and prove a new mathematical theorem
- \diamond Design and execute a research program in molecular biology
- \diamondsuit Write an intentionally funny story
- \diamondsuit Give competent legal advice in a specialized area of law
- \diamondsuit Translate spoken English into spoken Swedish in real time

- \diamondsuit Play a decent game of table tennis
- \diamondsuit Drive safely along a curving mountain road
- ♦ Drive safely along Telegraph Avenue
- \diamondsuit Buy a week's worth of groceries on the web
- \diamondsuit Buy a week's worth of groceries at Berkeley Bowl
- \diamond Play a decent game of bridge
- \diamondsuit Discover and prove a new mathematical theorem
- ♦ Design and execute a research program in molecular biology
- \diamondsuit Write an intentionally funny story
- \diamondsuit Give competent legal advice in a specialized area of law
- \diamondsuit Translate spoken English into spoken Swedish in real time
- \diamondsuit Converse successfully with another person for an hour

- \diamondsuit Play a decent game of table tennis
- \diamondsuit Drive safely along a curving mountain road
- ♦ Drive safely along Telegraph Avenue
- \diamondsuit Buy a week's worth of groceries on the web
- \diamondsuit Buy a week's worth of groceries at Berkeley Bowl
- \diamond Play a decent game of bridge
- \diamondsuit Discover and prove a new mathematical theorem
- \diamond Design and execute a research program in molecular biology
- \diamondsuit Write an intentionally funny story
- \diamondsuit Give competent legal advice in a specialized area of law
- \diamondsuit Translate spoken English into spoken Swedish in real time
- \diamondsuit Converse successfully with another person for an hour
- \diamond Perform a complex surgical operation

- \diamondsuit Play a decent game of table tennis
- \diamondsuit Drive safely along a curving mountain road
- ♦ Drive safely along Telegraph Avenue
- \diamondsuit Buy a week's worth of groceries on the web
- \diamondsuit Buy a week's worth of groceries at Berkeley Bowl
- \diamond Play a decent game of bridge
- \diamondsuit Discover and prove a new mathematical theorem
- \diamond Design and execute a research program in molecular biology
- \diamondsuit Write an intentionally funny story
- \diamondsuit Give competent legal advice in a specialized area of law
- \diamond Translate spoken English into spoken Swedish in real time
- \diamondsuit Converse successfully with another person for an hour
- \diamond Perform a complex surgical operation
- \diamondsuit Unload any dishwasher and put everything away

- \diamondsuit Play a decent game of table tennis
- \diamondsuit Drive safely along a curving mountain road
- ♦ Drive safely along Telegraph Avenue
- \diamondsuit Buy a week's worth of groceries on the web
- \diamondsuit Buy a week's worth of groceries at Berkeley Bowl
- \diamond Play a decent game of bridge
- \diamondsuit Discover and prove a new mathematical theorem
- \diamond Design and execute a research program in molecular biology
- \diamondsuit Write an intentionally funny story
- \diamondsuit Give competent legal advice in a specialized area of law
- \diamond Translate spoken English into spoken Swedish in real time
- \diamondsuit Converse successfully with another person for an hour
- \diamondsuit Perform a complex surgical operation
- \diamondsuit Unload any dishwasher and put everything away

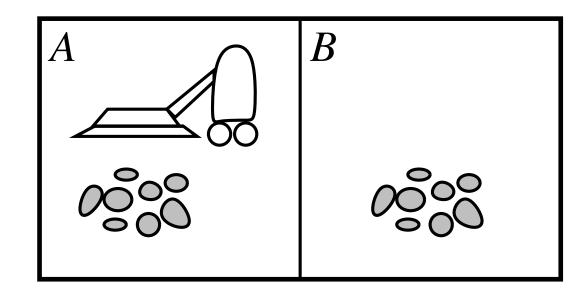

INTELLIGENT AGENTS

Chapter 2

Outline

- \diamond Agents and environments
- \Diamond Rationality
- ♦ PEAS (Performance measure, Environment, Actuators, Sensors)
- \diamondsuit Environment types
- \diamondsuit Agent types

Agents and environments


Agents include humans, robots, softbots, thermostats, etc.

The agent function maps from percept histories to actions:

$$f: \mathcal{P}^* \to \mathcal{A}$$

The agent program runs on the physical architecture to produce \boldsymbol{f}

Vacuum-cleaner world

Percepts: location and contents, e.g., [A, Dirty] Actions: Left, Right, Suck, NoOp

A vacuum-cleaner agent

Percept sequence	Action
[A, Clean]	Right
[A, Dirty]	Suck
[B, Clean]	Left
[B, Dirty]	Suck
[A, Clean], $[A, Clean]$	Right
[A, Clean], [A, Dirty]	Suck
	:

function REFLEX-VACUUM-AGENT([location,status]) returns an action

if status = Dirty then return Suck
else if location = A then return Right
else if location = B then return Left

What is the **right** function?

Can it be implemented in a small agent program?

Rationality

Fixed performance measure evaluates the environment sequence

- one point per square cleaned up in time T?
- one point per clean square per time step, minus one per move?
- penalize for > k dirty squares?

A rational agent chooses whichever action maximizes the expected value of the performance measure given the percept sequence to date

 $\mathsf{Rational} \neq \mathsf{omniscient}$

– percepts may not supply all relevant information Rational \neq clairvoyant

– action outcomes may not be as expected Hence, rational \neq successful

Rational \Rightarrow exploration, learning, autonomy

PEAS

To design a rational agent, we must specify the task environment

Consider, e.g., the task of designing an automated taxi:

Performance measure??

Environment??

Actuators??

Sensors??

PEAS

To design a rational agent, we must specify the task environment

Consider, e.g., the task of designing an automated taxi:

<u>Performance measure</u>?? safety, destination, profits, legality, comfort, ...

Environment ?? US streets/freeways, traffic, pedestrians, weather, ...

<u>Actuators</u>?? steering, accelerator, brake, horn, speaker/display, ...

<u>Sensors</u>?? video, accelerometers, gauges, engine sensors, keyboard, GPS, ...

Internet shopping agent

Performance measure??

Environment??

Actuators??

Sensors??

Internet shopping agent

<u>Performance measure</u>?? price, quality, appropriateness, efficiency

<u>Environment</u>?? current and future WWW sites, vendors, shippers

<u>Actuators</u>?? display to user, follow URL, fill in form

<u>Sensors</u>?? HTML pages (text, graphics, scripts)

Environment types

	Solitaire	Backgammon	Internet shopping	Taxi
Observable??				
Deterministic??				
Episodic??				
Static??				
Discrete??				
Single-agent??				

	Solitaire	Backgammon	Internet shopping	Taxi
Observable??	Yes	Yes	No	No
Deterministic??				
Episodic??				
Static??				
Discrete??				
Single-agent??				

	Solitaire	Backgammon	Internet shopping	Taxi
Observable??	Yes	Yes	No	No
Deterministic??	Yes	No	Partly	No
Episodic??				
Static??				
Discrete??				
Single-agent??				

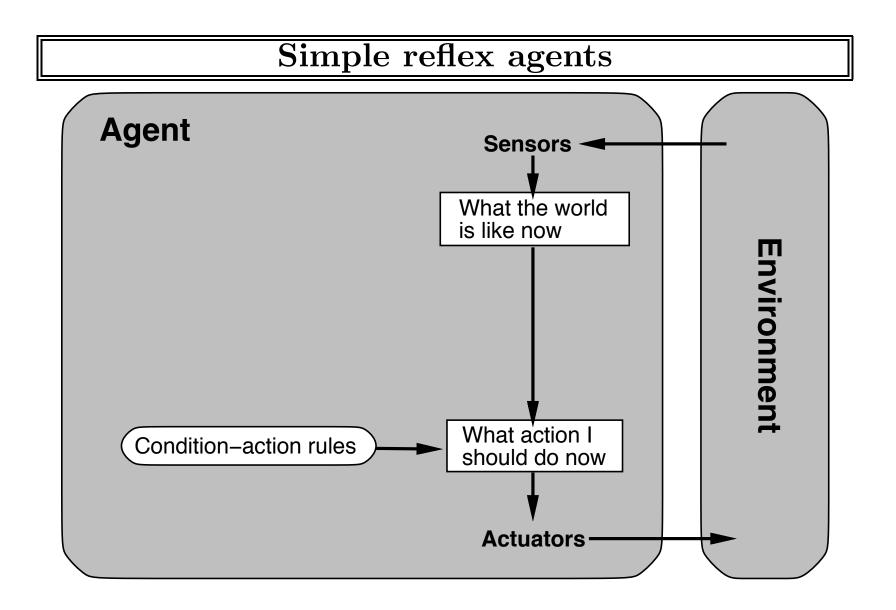
	Solitaire	Backgammon	Internet shopping	Taxi
Observable??	Yes	Yes	No	No
Deterministic??	Yes	No	Partly	No
Episodic??	No	No	No	No
Static??				
Discrete??				
Single-agent??				

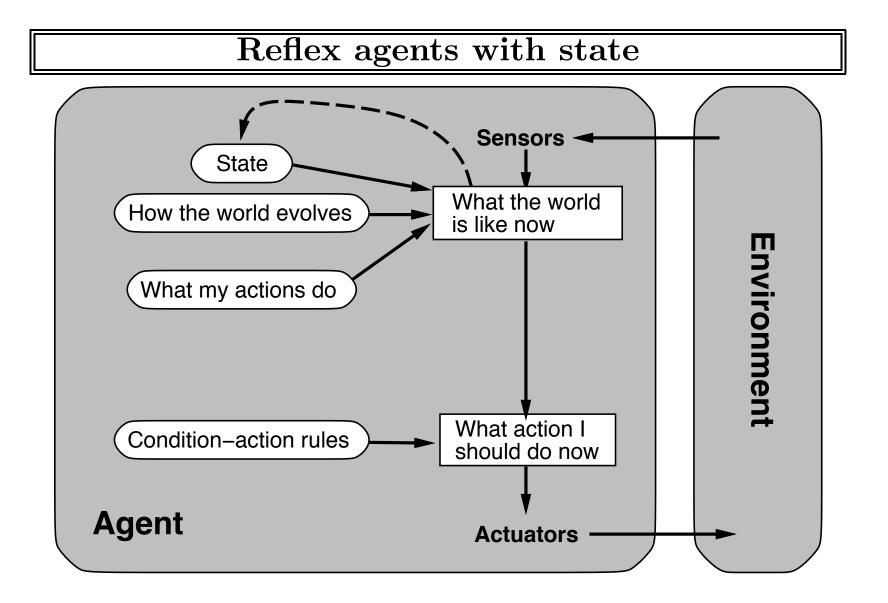
	Solitaire	Backgammon	Internet shopping	Taxi
Observable??	Yes	Yes	No	No
Deterministic??	Yes	No	Partly	No
Episodic??	No	No	No	No
Static??	Yes	Semi	Semi	No
Discrete??				
Single-agent??				

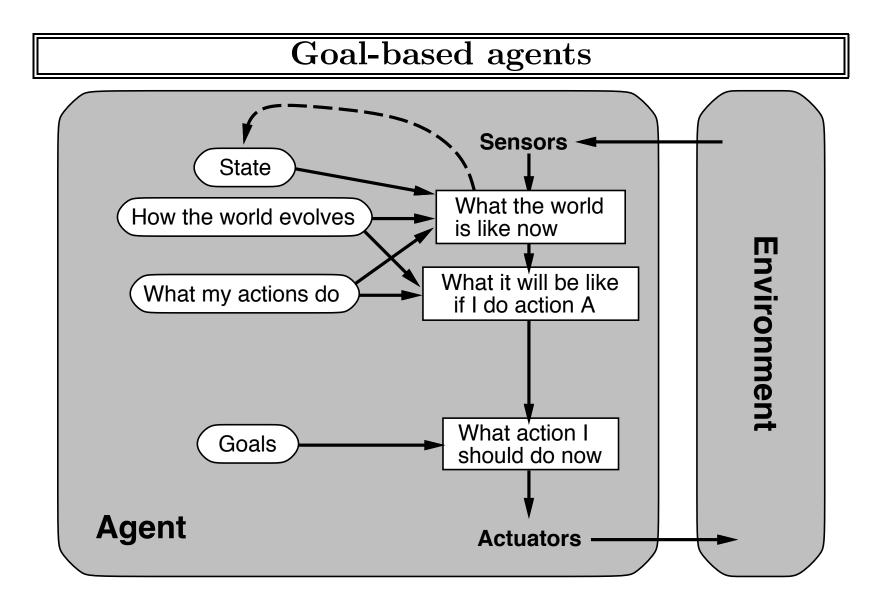
	Solitaire	Backgammon	Internet shopping	Taxi
Observable??	Yes	Yes	No	No
Deterministic??	Yes	No	Partly	No
Episodic??	No	No	No	No
Static??	Yes	Semi	Semi	No
Discrete??	Yes	Yes	Yes	No
Single-agent??				

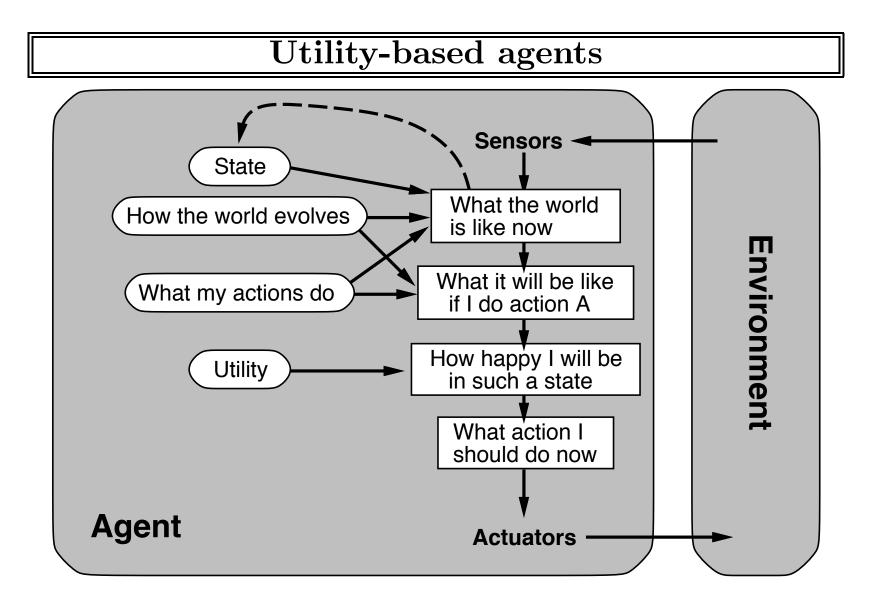
	Solitaire	Backgammon	Internet shopping	Taxi
Observable??	Yes	Yes	No	No
Deterministic??	Yes	No	Partly	No
Episodic??	No	No	No	No
Static??	Yes	Semi	Semi	No
Discrete??	Yes	Yes	Yes	No
Single-agent??	Yes	No	Yes (except auctions)	No

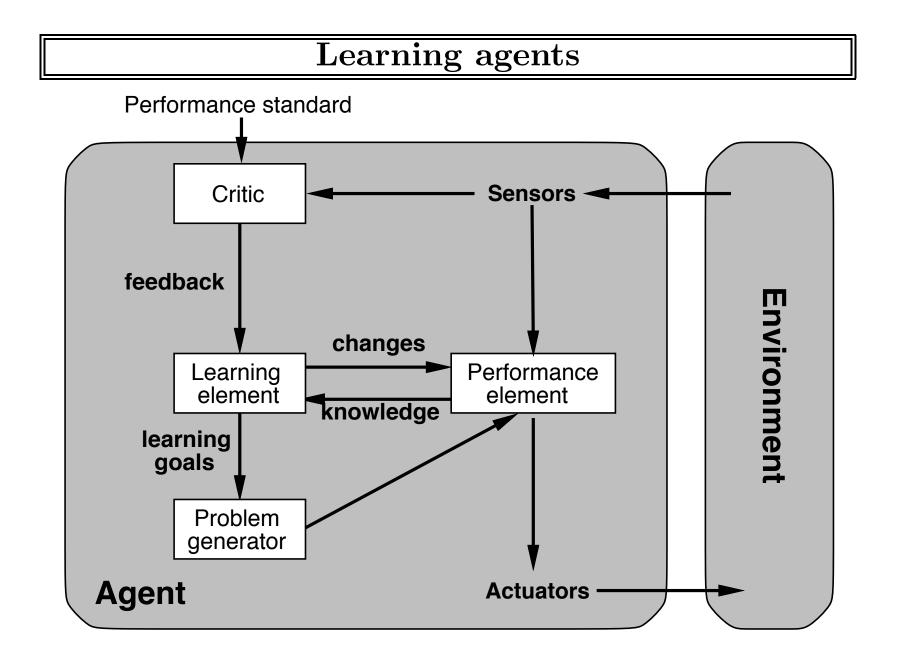
The environment type largely determines the agent design


The real world is (of course) partially observable, stochastic, sequential, dynamic, continuous, multi-agent


Agent types


Four basic types in order of increasing generality:


- simple reflex agents
- reflex agents with state
- goal-based agents
- utility-based agents


All these can be turned into learning agents

Summary

Agents interact with environments through actuators and sensors

The agent function describes what the agent does in all circumstances

The performance measure evaluates the environment sequence

A perfectly rational agent maximizes expected performance

Agent programs implement (some) agent functions

PEAS descriptions define task environments

Environments are categorized along several dimensions: observable? deterministic? episodic? static? discrete? single-agent?

Several basic agent architectures exist:

reflex, reflex with state, goal-based, utility-based