
Rational decisions

Chapter 16

Chapter 16 1



Outline

♦ Rational preferences

♦ Utilities

♦ Money

♦ Multiattribute utilities

♦ Decision networks

♦ Value of information

Chapter 16 2



Preferences

An agent chooses among prizes (A, B, etc.) and lotteries, i.e., situations
with uncertain prizes

Lottery L = [p,A; (1 − p), B]
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Notation:
A # B A preferred to B
A ∼ B indifference between A and B
A #∼ B B not preferred to A
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Rational preferences

Idea: preferences of a rational agent must obey constraints.
Rational preferences ⇒

behavior describable as maximization of expected utility

Constraints:
Orderability

(A # B) ∨ (B # A) ∨ (A ∼ B)
Transitivity

(A # B) ∧ (B # C) ⇒ (A # C)
Continuity

A # B # C ⇒ ∃ p [p,A; 1 − p, C] ∼ B
Substitutability

A ∼ B ⇒ [p,A; 1 − p, C] ∼ [p, B; 1 − p, C]
Monotonicity

A # B ⇒ (p ≥ q ⇔ [p,A; 1 − p,B] #∼ [q,A; 1 − q,B])
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Rational preferences contd.

Violating the constraints leads to self-evident irrationality

For example: an agent with intransitive preferences can be induced to give
away all its money

If B # C, then an agent who has C
would pay (say) 1 cent to get B

If A # B, then an agent who has B
would pay (say) 1 cent to get A

If C # A, then an agent who has A
would pay (say) 1 cent to get C
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Maximizing expected utility

Theorem (Ramsey, 1931; von Neumann and Morgenstern, 1944):
Given preferences satisfying the constraints
there exists a real-valued function U such that

U (A) ≥ U (B) ⇔ A #∼ B
U ([p1, S1; . . . ; pn, Sn]) = Σi piU (Si)

MEU principle:
Choose the action that maximizes expected utility

Note: an agent can be entirely rational (consistent with MEU)
without ever representing or manipulating utilities and probabilities

E.g., a lookup table for perfect tictactoe
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Utilities

Utilities map states to real numbers. Which numbers?

Standard approach to assessment of human utilities:
compare a given state A to a standard lottery Lp that has

“best possible prize” u! with probability p
“worst possible catastrophe” u⊥ with probability (1 − p)

adjust lottery probability p until A ∼ Lp

L

0.999999

0.000001

continue as before

instant death

pay $30 ~
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Utility scales

Normalized utilities: u! = 1.0, u⊥ = 0.0

Micromorts: one-millionth chance of death
useful for Russian roulette, paying to reduce product risks, etc.

QALYs: quality-adjusted life years
useful for medical decisions involving substantial risk

Note: behavior is invariant w.r.t. +ve linear transformation

U ′(x) = k1U (x) + k2 where k1 > 0

With deterministic prizes only (no lottery choices), only
ordinal utility can be determined, i.e., total order on prizes
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Money

Money does not behave as a utility function

Given a lottery L with expected monetary value EMV (L),
usually U (L) < U (EMV (L)), i.e., people are risk-averse

Utility curve: for what probability p am I indifferent between a prize x and
a lottery [p, $M ; (1 − p), $0] for large M?

Typical empirical data, extrapolated with risk-prone behavior:
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Student group utility

For each x, adjust p until half the class votes for lottery (M=10,000)

p

$x
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 500 3000 4000 5000 6000 7000 8000 9000 100001000 2000

Chapter 16 10



Decision networks

Add action nodes and utility nodes to belief networks
to enable rational decision making

U

Airport Site

Deaths

Noise

Cost

Litigation

Construction

Air Traffic

Algorithm:
For each value of action node

compute expected value of utility node given action, evidence
Return MEU action
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Multiattribute utility

How can we handle utility functions of many variables X1 . . . Xn?
E.g., what is U (Deaths,Noise, Cost)?

How can complex utility functions be assessed from
preference behaviour?

Idea 1: identify conditions under which decisions can be made without com-
plete identification of U (x1, . . . , xn)

Idea 2: identify various types of independence in preferences
and derive consequent canonical forms for U (x1, . . . , xn)
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Strict dominance

Typically define attributes such that U is monotonic in each

Strict dominance: choice B strictly dominates choice A iff
∀ i Xi(B) ≥ Xi(A) (and hence U (B) ≥ U (A))
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Strict dominance seldom holds in practice
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Stochastic dominance
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Distribution p1 stochastically dominates distribution p2 iff
∀ t

∫ t
−∞ p1(x)dx ≤

∫ t
−∞ p2(t)dt

If U is monotonic in x, then A1 with outcome distribution p1

stochastically dominates A2 with outcome distribution p2:∫ ∞
−∞ p1(x)U (x)dx ≥

∫ ∞
−∞ p2(x)U (x)dx

Multiattribute case: stochastic dominance on all attributes ⇒ optimal
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