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Eigenvalues and Singular Values 
n  Eigenvalues and singular values describe important 

aspects of transformations and of data relations 
n  Eigenvalues determine the important the degree to which 

a linear transformation changes the length of 
transformed vectors 

n  Eigenvectors indicate the  directions in which the 
principal change happen 

n  Eigenvalues are important for many problems in 
computer science and engineering, including 
n  Dimensionality reduction 

n  Compression 
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Eigenvalues 
n  Eigenvalues λ and eigenvectors x  characterize 

dimensions that are purely stretched by a given linear 
transformation 

n  The spectrum of A is the set of its eigenvalues 

n  The spectral radius of A is the magnitude of the larges of 
its eigenvalues 

n  Eigenvalues characterize the degree to which a 
linear transformation stretches input vectors 
n  Also important for sensitivity analysis of linear problems 

! 

Ax = "x
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Eigenvalues 
n  A linear transformation has as many eigenvalues and 

eigenvectors as it has dimensions 
n  Eigenvectors might be duplicates 

n  Eigenvalues might be complex 

n  Any data point (vector) can be written as a linear 
combination of eigenvectors 
n  Allows efficient decomposition of vectors 
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Power Iteration 
n  The eigenvalue equation is related to the fixed point 

equations (except with scaling) 

n  Simplest solution method to find eigenvectors (and 
eigenvalues) is power iteration 

n  characterize dimensions that are purely stretched by a given 
linear transformation 

n  Power iteration converges to a scaled version of the 
eigenvector with the dominant eigenvalue 
! 

Ax = "x

! 

xt+1 = Axt
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Power Iteration 
n  Power iteration converges except if 

n  x0 has no component of the dominant eigenvector 

n  There are more than one eigenvector with the same eigenvalue 

n  Normalized power iteration renormalizes the result xt+1 
after each iteration 

n  Converges to dominant eigenvector and dominant eigenvalue 

! 

yk+1 = Axk     ,    xk+1 =
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Inverse Iteration 
n  Inverse iteration is used to find the smallest eigenvalue 

n  converges except if 

n  Inverse iteration corresponds to power iteration with the 
inverse matrix A-1 

n  Inverse iteration and power iteration can only find the 
smallest and the largest eigenvalues 
n  Need to find a way to determine other eigenvalues and 

eigenvectors 

! 

Ayk+1 = xk     ,    xk+1 =
yk+1

yk+1 "
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Characteristic Polynomial 
n  The determination of eigenvectors and eigenvalues can 

be transformed into a root finding problem 
 

n  Has a nonzero solution for the eigenvector x if and only if      
(A-λI) is not singular 

n  Eigenvalues of the nonsingular matrix are the roots of the 
characteristic polynomial 

n  The characteristic polynomial is a polynomial of degree n 

n  Complex eigenvalues occur in conjugate pairs 

n  Computation of the characteristic polynomial is complex 
n  Can be accelerated by first performing LU factorization 

! 

(A " #I)x = 0

! 

det(A " #I) = 0
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Characteristic Polynomial 
n  Computing roots of a polynomial of degree larger than 

4 cannot always be computed directly and require an 
iterative solution 

n  Computing eigenvalues using the characteristic 
polynomial is numerically not stable and highly complex 
n  Computing coefficients of characteristic polynomial requires 

computation of the determinant 

n  Root finding requires iterative solution process 

n  Coefficients of characteristic are very sensitive  

n  Characteristic polynomial is a powerful theoretical tool 
but not a practical computational approach 
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Eigenvalue Problems 
n  Characteristics of eigenvalue problems influence the 

choice of algorithm 
n  All or only some eigenvalues 

n  Only eigenvalues or eigenvalues and eigenvectors  

n  Dense or sparse matrix 

n  Real of complex values 

n  Other properties of matrix A 
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Problem Transformations 
n  A number of transformations either preserve or have a 

predictable effect on the eigenvalues 
n  Shift: For any scalar σ 

n  Inversion: 

n  Powers: 

n  Polynomial: for any polynomial p(t) 

n  Similarity: for any similar matrix B = T-1AT 

 

! 

Ax = "x     #    (A $%I)x = (" $% )x

! 

Ax = "x     #    A$1x =
1
"
x

! 

Ax = "x     #    Akx = "k x

! 

Ax = "x     #    p(A)x = p(")x

! 

Bx = "x     #    ATx = "(Tx)
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Problem Transformations 
n  Eigenvalues and eigenvectors of diagonal matrices are 

easy to determine 
n  Eigenvalues are the values on the diagonal 

n  Eigenvectors are the columns of the identity matrix 

n  Not all matrices are diagonalizable using similarity 
transformations 

n  Eigenvalues of triangular matrices can also be 
determined easily 
n  Eigenvalues are diagonal entries of the matrix 

n  Eigenvectors can be computed from 

 

! 

(A " #I)x = 0
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Convergence of Iterations 
n  Speed of convergence of power iteration and inverse 

iteration depends on the ratio of two eigenvalues 
n  For power iteration, convergence is faster the larger the ratio 

of the largest and the second largest eigenvalue is 

n  For inverse iteration, convergence is faster the smaller the ratio 
of the smallest and the second smallest eigenvector is 

n  Shift transformation allows to change the ratio of 
eigenvalues 

n  Knowledge of eigenvalue of sought after eigenvector would 
allow to lower this ratio to 0 

n  Allows to increase the convergence rate of inverse iteration 
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Rayleigh Quotient Iteration 
n  Rayleigh quotient iteration uses the Rayleigh quotient 

as a shift parameter 

n  This allows to make the ratio of eigenvalues close to 0 and thus 
accelerates the convergence of inverse iteration 

n  This algorithm is usually called Rayleigh quotient iteration 

n  Rayleigh quotient iteration converges usually very fast 
n  Each iteration requires a new matrix factorization and is therefore O(n3) F 

! 

" =
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Computing All Eigenvalues 
n  Power iteration and inverse iteration allow to compute 

only the largest and the smallest eigenvalues and 
eigenvectors. 
n  To compute the other eigenvalues we need to either 

n  Remove the already found eigenvector (and eigenvalue) from the matrix to 
be able to reapply power or inverse iteration 

n  Find a way to find all the eigenvectors simultaneously 

n  Removing eigenvectors from the space spanned by a 
transformation A is called deflation 
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Deflation 
n  To remove an eigenvalue (and corresponding 

eigenvector) we have to find a set of transformations 
that preserves all other eigenvalues 
n  Householder transforms can be used to derive such a 

transformation H with 

n  The similarity transform described by H yields a matrix 

n  Since similarity transforms were used this matrix has the same eigenvalues  

n  B has all the eigenvalues of A with the exception of λ1 

n  Power iteration can be applied to this new matrix B 
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Deflation 
n  Power iteration with deflation can compute all 

eigenvalues but requires determining the eigenvector in 
each iteration 
n  Eigenvector in B can be used to compute eigenvector in A 

n  Alternatively, the eigenvalue could be used directly in A to 
determine the eigenvector 

n  More computationally complex ! 
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Simultaneous Iteration 
n  Simultaneous iteration attempts to simultaneously 

iterate multiple vectors 

 
n  X converges to the space spanned by the p dominant 

eigenvectors 
n  Subspace iteration 

n  But X becomes ill-conditioned since all columns in X ultimately 
converge to the dominant eigenvector 

n  Need normalization that keeps vectors well conditioned and 
non-equal 

n  Orthogonal iteration using QR factorization 

! 

Xk+1 = AXk
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QR Iteration 
n  As for least squares (and equation solving) QR 

factorization allows a factorization of the matrix into 
components that stay well conditioned 

 
n  By using Q (a similarity transform) for the iteration, the 

eigenvalues are preserved and it converges to block triangular 
form 

n  Triangular form if all eigenvalues are real values and distinct ! 

Qk+1Rk+1 = Xk

Xk+1 = AQk+1
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QR Iteration 
n  To find eigenvalues, QR iteration can be applied directly 

to A 

n  Converges to triangular or block triangular matrix containing all 
eigenvalues as diagonal elements of as eigenvalues of diagonal 
blocks 

n  Can be computed without explicitly performing the product 

 
n  Can be accelerated using shift transformation 

! 

Ak =Qk
H Ak"1Qk

! 

Qk+1Rk+1 = Ak

Ak+1 = Rk+1Qk+1(=Qk+1
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Singular Values 
n  Singular values are related to Eigenvalues and 

characterize important aspects of the space described 
by the transformation 
n  Nullspace 

n  Span 

n  Singular Value Decomposition divides a transformation 
A into a sequence of 3 transformations where the 
second is pure rescaling 
n  Scaling parameters are the singular values 

n  Columns of the other two transformations are the left and right 
singular vectors, respectively 
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Singular Values 
n  Singular values exist for all transformations A, 

independent of A being square or not 
n  Right singular vectors represent the input vectors that span the 

orthogonal basis that is being  scaled 

n  Left singular vectors represent the vectors that the scaled 
internal basis vectors are transformed into for the output 

n  Sinuglar values are directly related to the eigenvalues 
n  Singular values are the nonnegative square roots of the 

eigenvalues of AAT or ATA  
n  Left singular vectors are eigenvectors of AAT 
n  Right singular vectors are eigenvectors of ATA 
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Singular Value Decomposition 
n  Singular value decomposition (SVD) factorizes A 

n  U is an mxm orthogonal matrix of left singular vectors 

n  V is an nxn orthogonal matrix of right singular vectors 

n  Σis an mxn diagonal matrix of singular values 
n  Usually Σ is arranged such that the singular values are ordered by 

magnitude 

n  Left and right singular vectors are related through the 
singular values 

! 

A =U"VT

! 

Av,i =" iu,i
AT u,i =" iv,i
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Singular Value Decomposition 
n  Singular value decomposition (SVD) can be computed 

in different ways 
n  Using eigenvalue computation on  AAT 

n  Compute eigenvalues of AAT  

n  Determine left singular vectors as eigenvectors for AAT 

n  Determine right singular vectors as eigenvectors for ATA 

n  Leads to some conditioning issues due to the need for matrix multiplication 

n  Directly from A by performing Householder transformations and 
givens rotations until a diagonal matrix is reached 

n  Perform QR factorization to achieve triangular matrix 
n  Use Householder transforms to achieve bidiagonal shape 

n  Use Givens rotations to achieve diagonal form 

n  This is usually better conditioned 
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Singular Value Decomposition 
n  Singular value decomposition (SVD) can be used for a 

range of applications 
n  Compute least squares solution 

n  Compute pseudoinverse 

n  Euclidean matrix norm: 

n  Condition number of a matrix: 

n  Matrix rank is equal to the number of non-zero singular values 

n  Nullspace of the matrix is spanned by the set of right singular 
vectors corresponding to singular values of 0 

n  Span of a matrix is spanned by the left singular vectors 
corresponding to non-zero singular values 
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Singular Value Decomposition 
n  Singular value decomposition (SVD) is useful in a 

number of applications 
n  Data compression 

n  Right singular values transform data into a basis in which it is only scaled 

n  Data dimensions with 0 or very small scaling factors are not important for 
the overall data 

n  Wide range of applications: 
n  Image compression 

n  Dimensionality reduction for data 

n  Dimensionality reduction for matrix operations 

n  Filtering and noise reduction 
n  Most of the time, data has only few important dimensions and noise is 

most apparent in additional dimensions (with smaller singular values) 

n  Ignoring dimensions with small singular values can lead to less noisy data  
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Compression Example 
n  Image compression is an area where SVD has been 

used relatively early on 
n  Given an image, can we reduce the amount of data that has to 

be transmitted without loosing too much information 
n  Use SVD to find a lower rank approximation of the image that has only 

limited loss. 
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Compression Example 
n  In SVD, the magnitude of the singular values often 

decreases rapidly after the first few singular values 

n  To compress the image, only keep the k largest singular 
values (and thus singular vectors) to reconstruct the 
image 

! 

A "Up#pVp
T
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Compression Example 
n  Different compression levels have different loss 
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Eigenvalues and Singular Values 
n  Eigenvalues and Eigenvectors capture important properties 

about linear transformations A 

n  Eigenvalues and Singular values indicate the importance of 
particular dimensions of the space 

n  Can be used for compression 

n  Singular values can capture noise characteristics  

n  Can be used for filtering of data  

n  Can be used to remove noise from data before transformations are 
applied 

n  Singular values are also important to analyze problems such as 
conditioning and sensitivity 


