Computational Methods

Eigenvalues and Singular Values
Eigenvalues and Singular Values

- Eigenvalues and singular values describe important aspects of transformations and of data relations
 - Eigenvalues determine the degree to which a linear transformation changes the length of transformed vectors
 - Eigenvectors indicate the directions in which the principal change happen
- Eigenvalues are important for many problems in computer science and engineering, including
 - Dimensionality reduction
 - Compression
Eigenvalues

- Eigenvalues λ and eigenvectors x characterize dimensions that are purely stretched by a given linear transformation

\[Ax = \lambda x \]

- The spectrum of A is the set of its eigenvalues
- The spectral radius of A is the magnitude of the largest of its eigenvalues

- Eigenvalues characterize the degree to which a linear transformation stretches input vectors
 - Also important for sensitivity analysis of linear problems
Eigenvalues

- A linear transformation has as many eigenvalues and eigenvectors as it has dimensions
 - Eigenvectors might be duplicates
 - Eigenvalues might be complex

- Any data point (vector) can be written as a linear combination of eigenvectors
 - Allows efficient decomposition of vectors
Power Iteration

- The eigenvalue equation is related to the fixed point equations (except with scaling)

\[Ax = \lambda x \]

- Simplest solution method to find eigenvectors (and eigenvalues) is power iteration
- Characterize dimensions that are purely stretched by a given linear transformation
- Power iteration converges to a scaled version of the eigenvector with the dominant eigenvalue

\[x_{t+1} = Ax_t \]
Power Iteration

- Power iteration converges except if
 - x_0 has no component of the dominant eigenvector
 - There are more than one eigenvector with the same eigenvalue

- Normalized power iteration renormalizes the result x_{t+1} after each iteration

\[
y_{k+1} = Ax_k, \quad x_{k+1} = \frac{y_{k+1}}{\|y_{k+1}\|_\infty}
\]

- Converges to dominant eigenvector and dominant eigenvalue

\[
\|y_k\|_\infty \rightarrow \lambda_d, \quad x_k \rightarrow \frac{1}{\|v_d\|_\infty} v_d
\]
Inverse Iteration

- Inverse iteration is used to find the smallest eigenvalue
- Converges except if
 \[Ay_{k+1} = x_k , \quad x_{k+1} = \frac{y_{k+1}}{\|y_{k+1}\|_\infty} \]
 - Inverse iteration corresponds to power iteration with the inverse matrix \(A^{-1} \)
 - Inverse iteration and power iteration can only find the smallest and the largest eigenvalues
 - Need to find a way to determine other eigenvalues and eigenvectors
Characteristic Polynomial

- The determination of eigenvectors and eigenvalues can be transformed into a root finding problem

 \[(A - \lambda I)x = 0\]

 - Has a nonzero solution for the eigenvector \(x\) if and only if \((A - \lambda I)\) is not singular
 - Eigenvalues of the nonsingular matrix are the roots of the characteristic polynomial

 \[\text{det}(A - \lambda I) = 0\]

 - The characteristic polynomial is a polynomial of degree \(n\)
 - Complex eigenvalues occur in conjugate pairs

- Computation of the characteristic polynomial is complex
 - Can be accelerated by first performing LU factorization
Characteristic Polynomial

- Computing roots of a polynomial of degree larger than 4 cannot always be computed directly and require an iterative solution
- Computing eigenvalues using the characteristic polynomial is numerically not stable and highly complex
 - Computing coefficients of characteristic polynomial requires computation of the determinant
 - Root finding requires iterative solution process
 - Coefficients of characteristic are very sensitive
- Characteristic polynomial is a powerful theoretical tool but not a practical computational approach
Eigenvalue Problems

- Characteristics of eigenvalue problems influence the choice of algorithm
 - All or only some eigenvalues
 - Only eigenvalues or eigenvalues and eigenvectors
 - Dense or sparse matrix
 - Real or complex values
 - Other properties of matrix A
Problem Transformations

- A number of transformations either preserve or have a predictable effect on the eigenvalues
 - Shift: For any scalar \(\sigma \)
 \[
 Ax = \lambda x \quad \rightarrow \quad (A - \sigma I)x = (\lambda - \sigma)x
 \]
 - Inversion:
 \[
 Ax = \lambda x \quad \rightarrow \quad A^{-1}x = \frac{1}{\lambda}x
 \]
 - Powers:
 \[
 Ax = \lambda x \quad \rightarrow \quad A^kx = \lambda^kx
 \]
 - Polynomial: for any polynomial \(p(t) \)
 \[
 Ax = \lambda x \quad \rightarrow \quad p(A)x = p(\lambda)x
 \]
 - Similarity: for any similar matrix \(B = T^{-1}AT \)
 \[
 Bx = \lambda x \quad \rightarrow \quad ATx = \lambda(Tx)
 \]
Problem Transformations

- Eigenvalues and eigenvectors of diagonal matrices are easy to determine
 - Eigenvalues are the values on the diagonal
 - Eigenvectors are the columns of the identity matrix
- Not all matrices are diagonalizable using similarity transformations
- Eigenvalues of triangular matrices can also be determined easily
 - Eigenvalues are diagonal entries of the matrix
 - Eigenvectors can be computed from \((A - \lambda I)x = 0\)
Convergence of Iterations

- Speed of convergence of power iteration and inverse iteration depends on the ratio of two eigenvalues
 - For power iteration, convergence is faster the larger the ratio of the largest and the second largest eigenvalue is
 - For inverse iteration, convergence is faster the smaller the ratio of the smallest and the second smallest eigenvector is
- Shift transformation allows to change the ratio of eigenvalues
 \[
 \frac{\frac{\lambda_1}{\lambda_2}}{\frac{\lambda_1 - \sigma}{\lambda_2 - \sigma}}
 \]
 - Knowledge of eigenvalue of sought after eigenvector would allow to lower this ratio to 0
 - Allows to increase the convergence rate of inverse iteration
Rayleigh Quotient Iteration

- Rayleigh quotient iteration uses the Rayleigh quotient as a shift parameter
 \[\sigma = \frac{x^T A x}{x^T x}, \quad (A - \sigma I) \]

 - This allows to make the ratio of eigenvalues close to 0 and thus accelerates the convergence of inverse iteration

\[(A - \sigma_k I) y_{k+1} = x_k \]

\[x_{k+1} = \frac{y_{k+1}}{\|y_{k+1}\|_\infty} \]

- This algorithm is usually called Rayleigh quotient iteration

- Rayleigh quotient iteration converges usually very fast
 - Each iteration requires a new matrix factorization and is therefore \(O(n^3) \)
Computing All Eigenvalues

- Power iteration and inverse iteration allow to compute only the largest and the smallest eigenvalues and eigenvectors.
 - To compute the other eigenvalues we need to either
 - Remove the already found eigenvector (and eigenvalue) from the matrix to be able to reapply power or inverse iteration
 - Find a way to find all the eigenvectors simultaneously
 - Removing eigenvectors from the space spanned by a transformation A is called deflation
Deflation

To remove an eigenvalue (and corresponding eigenvector) we have to find a set of transformations that preserves all other eigenvalues

- Householder transforms can be used to derive such a transformation H with
 \[Hx_1 = \alpha e_1 \]

- The similarity transform described by H yields a matrix
 \[HAH^{-1} = \begin{pmatrix} \lambda_1 & b^T \\ 0 & B \end{pmatrix} \]

 - Since similarity transforms were used this matrix has the same eigenvalues
 - B has all the eigenvalues of A with the exception of λ_1

- Power iteration can be applied to this new matrix B
Deflation

- Power iteration with deflation can compute all eigenvalues but requires determining the eigenvector in each iteration
 - Eigenvector in B can be used to compute eigenvector in A
 \[x_3 = H^{-1} \begin{pmatrix} b^T y_2 \\ \lambda_2 - \lambda_1 \\ y_2 \end{pmatrix} \]
 - Alternatively, the eigenvalue could be used directly in A to determine the eigenvector
 - More computationally complex
Simultaneous Iteration

- Simultaneous iteration attempts to simultaneously iterate multiple vectors

\[X_{k+1} = AX_k \]

- \(X \) converges to the space spanned by the \(p \) dominant eigenvectors
 - Subspace iteration

- But \(X \) becomes ill-conditioned since all columns in \(X \) ultimately converge to the dominant eigenvector
 - Need normalization that keeps vectors well conditioned and non-equal
 - Orthogonal iteration using QR factorization
QR Iteration

- As for least squares (and equation solving) QR factorization allows a factorization of the matrix into components that stay well conditioned

\[Q_{k+1} R_{k+1} = X_k \]

\[X_{k+1} = AQ_{k+1} \]

- By using Q (a similarity transform) for the iteration, the eigenvalues are preserved and it converges to block triangular form
 - Triangular form if all eigenvalues are real values and distinct
QR Iteration

To find eigenvalues, QR iteration can be applied directly to A

$$A_k = Q_k^H A_{k-1} Q_k$$

- Converges to triangular or block triangular matrix containing all eigenvalues as diagonal elements of as eigenvalues of diagonal blocks
- Can be computed without explicitly performing the product

$$Q_{k+1} R_{k+1} = A_k$$

$$A_{k+1} = R_{k+1} Q_{k+1} (= Q_{k+1}^H A_k Q_{k+1})$$

- Can be accelerated using shift transformation
Singular Values

- Singular values are related to Eigenvalues and characterize important aspects of the space described by the transformation
 - Nullspace
 - Span
- Singular Value Decomposition divides a transformation A into a sequence of 3 transformations where the second is pure rescaling
 - Scaling parameters are the singular values
 - Columns of the other two transformations are the left and right singular vectors, respectively
Singular Values

- Singular values exist for all transformations A, independent of A being square or not
 - Right singular vectors represent the input vectors that span the orthogonal basis that is being scaled
 - Left singular vectors represent the vectors that the scaled internal basis vectors are transformed into for the output
- Singular values are directly related to the eigenvalues
 - Singular values are the nonnegative square roots of the eigenvalues of AA^T or A^TA
 - Left singular vectors are eigenvectors of AA^T
 - Right singular vectors are eigenvectors of A^TA
Singular Value Decomposition

- Singular value decomposition (SVD) factorizes A

 $$A = U \Sigma V^T$$

 - U is an $m \times m$ orthogonal matrix of left singular vectors
 - V is an $n \times n$ orthogonal matrix of right singular vectors
 - Σ is an $m \times n$ diagonal matrix of singular values
 - Usually Σ is arranged such that the singular values are ordered by magnitude

 - Left and right singular vectors are related through the singular values

 $$Av_{i} = \sigma_i u_{i}$$
 $$A^T u_{i} = \sigma_i v_{i}$$
Singular Value Decomposition

- Singular value decomposition (SVD) can be computed in different ways
 - Using eigenvalue computation on AA^T
 - Compute eigenvalues of AA^T
 - Determine left singular vectors as eigenvectors for AA^T
 - Determine right singular vectors as eigenvectors for A^TA
 - Leads to some conditioning issues due to the need for matrix multiplication
 - Directly from A by performing Householder transformations and givens rotations until a diagonal matrix is reached
 - Perform QR factorization to achieve triangular matrix
 - Use Householder transforms to achieve bidiagonal shape
 - Use Givens rotations to achieve diagonal form
 - This is usually better conditioned
Singular Value Decomposition

- Singular value decomposition (SVD) can be used for a range of applications
 - Compute least squares solution \(Ax \equiv b \quad \rightarrow \quad x = \sum_{\sigma_i \neq 0} \frac{u_i^T b}{\sigma_i} v_i \)
 - Compute pseudoinverse \(A^+ = V\Sigma^+ U^T \)
 - Euclidean matrix norm: \(\|A\|_2 = \sigma_{\text{max}} \)
 - Condition number of a matrix: \(\text{cond}(A) = \sigma_{\text{max}} / \sigma_{\text{min}} \)
 - Matrix rank is equal to the number of non-zero singular values
 - Nullspace of the matrix is spanned by the set of right singular vectors corresponding to singular values of 0
 - Span of a matrix is spanned by the left singular vectors corresponding to non-zero singular values
Singular Value Decomposition

Singular value decomposition (SVD) is useful in a number of applications

- Data compression
 - Right singular values transform data into a basis in which it is only scaled
 - Data dimensions with 0 or very small scaling factors are not important for the overall data
 - Wide range of applications:
 - Image compression
 - Dimensionality reduction for data
 - Dimensionality reduction for matrix operations

- Filtering and noise reduction
 - Most of the time, data has only few important dimensions and noise is most apparent in additional dimensions (with smaller singular values)
 - Ignoring dimensions with small singular values can lead to less noisy data
Compression Example

- Image compression is an area where SVD has been used relatively early on
 - Given an image, can we reduce the amount of data that has to be transmitted without losing too much information
 - Use SVD to find a lower rank approximation of the image that has only limited loss.
In SVD, the magnitude of the singular values often decreases rapidly after the first few singular values. To compress the image, only keep the k largest singular values (and thus singular vectors) to reconstruct the image:

$$A \approx U_p \Sigma_p V_p^T$$
Compression Example

Different compression levels have different loss.
Eigenvalues and Singular Values

- Eigenvalues and Eigenvectors capture important properties about linear transformations A
- Eigenvalues and Singular values indicate the importance of particular dimensions of the space
 - Can be used for compression
- Singular values can capture noise characteristics
 - Can be used for filtering of data
 - Can be used to remove noise from data before transformations are applied
- Singular values are also important to analyze problems such as conditioning and sensitivity