
1

Computational Methods

Solving Equations

© Manfred Huber 2011

© Manfred Huber 2011 2

Solving Equations
  Solving scalar equations is an elemental task that

arises in a wide range of applications
  Corresponds to finding parameters that will achieve a

particular outcome

  Solving an equation is equivalent to root (or zero)
finding for a related function

  Can be solved by division for linear functions

  Not analytically solvable in general since many non-linear
functions are not easily invertible

�

f (x) = b

�

˜ f (x) = f (x) − b

© Manfred Huber 2011 3

Root Finding
  Numeric root finding algorithms are generally

iterative algorithms
  Each iteration attempts to find a value for x that is closer

to the root of the system

  Numeric algorithms consider and often rely on the
basic properties of the root and of the function
  Continuity

  Differentiability

  Existence of root

  Uniqueness or multiplicity of root

© Manfred Huber 2011 4

Existence
  Determining existence and uniqueness of solutions

to the root finding problem can be complex

  Existence of a solution
  A bracket is an interval [a,b] for which f(a)f(b)<0

  If a bracket exists for a continuous function f(x) then the
function has at least one root x*.

  Number of solutions for a function is often difficult
to determine
  For polynomials the number of solutions is equal to the

order of the polynomial

© Manfred Huber 2011 5

Uniqueness and Multiplicity
  Whether a function has a unique root can influence

the solution approach taken
  Linear functions mostly have a unique root (if it exists)

  Non-linear function frequently have multiple roots
  “local uniqueness” can be evaluated

  Multiplicity captures local non-uniqueness of a root
  At non-simple roots (roots with multiplicity > 1) multiple

roots coincide

  The multiplicity of a root is the order of the lowest
derivative that does not vanishes at x*

�

m : f x*() = f ' x*() = f (m−1) x*() = 0 ; f (m) x*() ≠ 0

© Manfred Huber 2011 6

Sensitivity and Conditioning
  Sensitivity of the root finding problem can be

measured in terms of the condition number
  Condition number for the root finding problem is the

opposite of the one for the evaluation problem
Absolute condition number (since f(x*)=0):

  Root finding for a root is ill-conditioned if derivative is ≈0

  Root finding at a multiple root is ill conditioned

  Approximation in backward or forward error
  corresponds to small residual

  represents closeness of solution

�

cond = 1
f ' x*()

�

f (ˆ x) ≈ 0

�

ˆ x − x* ≈ 0

© Manfred Huber 2011 7

Convergence
  For iterative methods it is generally important to

evaluate convergence rate to estimate
performance and complexity
  Iteration error

  In interval methods, iteration error can be bounded by
the width of the interval

  Iterations converge with rate r if for constant C

  r=1 linear convergence

  r>1 superlinear

�

ek = xk − x
*

�

limk→∞
ek+1

ek
r = C

© Manfred Huber 2011
8

Interval Bisection Method
  Bisection starts with an initial bracket

  Determine function value in the middle of the bracket

  Construct new bracket including the new point and one of
the previous bracket end points

  Repeat until the bracket has reached the termination
width (corresponding to the remaining error bound)

© Manfred Huber 2011 9

Interval Bisection Method
  Requirements and Applicability

  Bisection has only limited requirements for f
  Function has to be continuous (but not differentiable)

  Uses only the sign of the function value

  Convergence
  Error can be measured by the width of the bracket

  Halving of bracket yields linear convergence (r=1, C=0.5)

  Accuracy and Complexity
  Iteration number is independent of function

  Accuracy is a function of the number of iterations

  Complexity of each iteration equals one evaluation of the function
�

log2
b − a

tolerance
⎛
⎝
⎜

⎞
⎠
⎟

⎡
⎢ ⎢

⎤
⎥ ⎥

�

x − x* ≤ b − a
2n+1

© Manfred Huber 2011 10

Fixed Point Iteration
  Fixed point iteration for root finding is an example

of a redefinition of the problem
  Fixed-point iteration uses a second, related function to

compute the point for the next iteration

  Fixed point of this function is the root of the original function

  There can be many fixed-point problems for a given
function f

  Point for next iteration is computed using this function

  Fixed point iteration also called functional iteration

�

f (x) = 0 ⇔ x = g(x)

�

xk+1 = g xk()

© Manfred Huber 2011 11

Fixed Point Iteration
f(x)=x2-x-2

© Manfred Huber 2011 12

Fixed Point Iteration
f(x)=x2-x-2

© Manfred Huber 2011 13

Fixed Point Iteration
  Requirements and Applicability

  Requires construction of function g for the function f
  Function g has to be continuous and differentiable

  Convergence
  Convergence is only guaranteed if |g’(x*)|<1

  Fixed point iteration is often only locally convergent

  If |g’(x*)|<1 then the error converges at least linearly

  Accuracy and Complexity
  Accuracy is no longer tied strictly to iteration number

  Need termination criterion

  Each iteration requires one evaluation of g

�

xk − xk−1 ≤ tolerance

© Manfred Huber 2011 14

Newton’s Method
  Newton’s method uses a locally linear

approximation of the function f

  Interpretation 1:
  Iterate over root finding of the approximation function fx(h)

  Interpretation 2:
  Approximation leads to a fixed point function

  Iterate over fixed point steps for this function g

�

fx (h) = f (x + h) ≈ f (x) + hf '(x)

�

g(x) = x − f (x)
f '(x)

© Manfred Huber 2011 15

Newton’s Method
  Requirements and Applicability

  Requires continuous and twice differentiable f
  Both f and f’ have to be known

  Convergence
  Locally convergent

  Converges quadratically for simple roots (i.e. multiplicity 1)

  Converges linearly or sublinearly for a multiple root

  Accuracy and Complexity
  Accuracy is not strictly tied to iteration number

  Need termination criterion

  Each iteration requires one evaluation of f and of f’

© Manfred Huber 2011 16

Modified Newton Method
  Newton’s method can be modified to generally

yield quadratic convergence by modifying g for a
root with multiplicity m

  Modified formulation changes the step size for multiple
roots to avoid the drop in convergence rate

  Modified Newton method converges quadratically for all roots

  Requires knowledge about the multiplicity of a root (and thus the
calculation of higher derivatives

�

g(x) = x − mf (x)
f '(x)

© Manfred Huber 2011 17

Secant Method
  To avoid the need to know the derivative of f,

Newton’s method can be modified to replace it with
a local approximation using the secant through the
last two iterated points

�

xk+1 = xx − f (xk)
xk − xk−1

f (xk) − f (xk−1)

© Manfred Huber 2011 18

Secant Method
  Requirements and Applicability

  Requires continuous and differentiable f
  Only f has to be known

  Convergence
  Locally convergent

  Converges superlinear (~1.62) for simple roots (i.e. multiplicity 1)

  Accuracy and Complexity
  Accuracy is not strictly tied to iteration number

  Need termination criterion

  Each iteration requires one evaluation of f (first requires 2
evaluations)

© Manfred Huber 2011 19

Muller’s Method
  To accelerate convergence it is possible to use

higher order interpolations
  Muller’s method uses quadratic interpolation

  Using the last 3 points, fit a second order polynomial (parabula)

  Use the closes root as the next point (use alternative if no
intersection point exists

  Usually converges locally with superlinear rate (~1.84)
  Interpolation might not have an intersection which requires an

alternate option

  Each iteration requires a second order polynomial fit
operation

© Manfred Huber 2011 20

Inverse Interpolation
  To avoid lacking roots of the approximate function

use an inverse interpolation function

  Inverse Quadratic Interpolation (IQI)
  Using the last 3 points, fit a second order polynomial (parabula)

  Use the root as the next point
�

x ≈ p(f (x))

�

p(y) = xk−2
y − f (xk−1)() y − f (xk)()

f (xk−2) − f (xk−1)() f (xk−2) − f (xk)()
+ xk−1

y − f (xk−2)() y − f (xk)()
f (xk−1) − f (xk−2)() f (xk−1) − f (xk)()

+ xk
y − f (xk−2)() y − f (xk−1)()

f (xk) − f (xk−2)() f (xk) − f (xk−1)()

© Manfred Huber 2011 21

Hybrid Methods
  Hybrid methods combine features of others to

accelerate root finding while preserving useful
properties
  Brent’s Method

  Guaranteed convergence from Bisection method

  Fast convergence from Inverse quadratic interpolation and secant
methods

  Basic operation occurs using an initial bracket and a point within it
  IQI is used first and if backward error decreases and new point cuts

bracket in less than half, it is used to modify bracket.

  If not, secant method is used

  If none reduces the bracket sufficiently, the bisection method is
applied.

© Manfred Huber 2011 22

Solving Equations
  Finding a set of parameters that leads to a

particular solution for an equation is a common
problem in science and engineering applications
  Determining numeric solution for inverse kinematic problems

  Specifying network requirements for a specific layout

  Computing specification parameters for a circuit

  Iterative solutions can be used to efficiently find
solutions fro arbitrary equations
  Increasing convergence rates often reduce the ability to

guarantee convergence

  Problem reformulations can increase accuracy of the solution

© Manfred Huber 2011 23

Example Applications
  Robotics: Compute forward kinematics for a 2D

closed kinematic chain

  Vision: Compute distance from the vergence angle
of a symmetric stereo system

  Networks: Compute number of nodes for a
particular bandwidth

  Systems: Compute the buffer size for a network
interface card to limit dropped packets

