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Solving Equations 
  Solving scalar equations is an elemental task that 

arises in a wide range of applications 
  Corresponds to finding parameters that will achieve a 

particular outcome 

  Solving an equation is equivalent to root (or zero) 
finding for a related function 

  Can be solved by division for linear functions 

  Not analytically solvable in general since many non-linear 
functions are not easily invertible 

� 

f (x) = b

� 

˜ f (x) = f (x) − b
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Root Finding 
  Numeric root finding algorithms are generally 

iterative algorithms 
  Each iteration attempts to find a value for x that is closer 

to the root of the system 

  Numeric algorithms consider and often rely on the 
basic properties of the root and of the function 
  Continuity 

  Differentiability 

  Existence of root 

  Uniqueness or multiplicity of root 
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Existence 
  Determining existence and uniqueness of solutions 

to the root finding problem can be complex 

  Existence of a solution 
  A bracket is an interval [a,b] for which f(a)f(b)<0 

  If a bracket exists for a continuous function f(x) then the 
function has at least one root x*. 

  Number of solutions for a function is often difficult 
to determine 
  For polynomials the number of solutions is equal to the 

order of the polynomial 
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Uniqueness and Multiplicity 
  Whether a function has a unique root can influence 

the solution approach taken 
  Linear functions mostly have a unique root (if it exists) 

  Non-linear function frequently have multiple roots 
  “local uniqueness” can be evaluated 

  Multiplicity captures local non-uniqueness of a root 
  At non-simple roots (roots with multiplicity > 1) multiple 

roots coincide 

  The multiplicity of a root is the order of the lowest 
derivative that does not vanishes at x* 

� 

m : f x*( ) = f ' x*( ) = f (m−1) x*( ) = 0  ; f (m ) x*( ) ≠ 0
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Sensitivity and Conditioning 
  Sensitivity of the root finding problem can be 

measured in terms of the condition number 
  Condition number for the root finding problem is the 

opposite of the one for the evaluation problem 
Absolute condition number (since f(x*)=0):   

  Root finding for a root is ill-conditioned if derivative is ≈0 

  Root finding at a multiple root is ill conditioned 

  Approximation in backward or forward error 
                corresponds to small residual 

                 represents closeness of solution 

� 

cond = 1
f ' x*( )

� 

f ( ˆ x ) ≈ 0

� 

ˆ x − x* ≈ 0
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Convergence 
  For iterative methods it is generally important to 

evaluate convergence rate to estimate 
performance and complexity 
  Iteration error 

  In interval methods, iteration error can be bounded by 
the width of the interval 

  Iterations converge with rate r if for constant C 

  r=1 linear convergence 

  r>1 superlinear 

� 

ek = xk − x
*

� 

limk→∞
ek+1

ek
r = C
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Interval Bisection Method 
  Bisection starts with an initial bracket 

  Determine function value in the middle of the bracket 

  Construct new bracket including the new point and one of 
the previous bracket end points 

  Repeat until the bracket has reached the termination 
width (corresponding to the remaining error bound) 
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Interval Bisection Method 
  Requirements and Applicability 

  Bisection has only limited requirements for f 
  Function has to be continuous (but not differentiable) 

  Uses only the sign of the function value 

  Convergence 
  Error can be measured by the width of the bracket 

  Halving of bracket yields linear convergence (r=1, C=0.5) 

  Accuracy and Complexity 
  Iteration number is independent of function 

  Accuracy is a function of the number of iterations 

  Complexity of each iteration equals one evaluation of the function 
� 

log2
b − a

tolerance
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

⎡ 
⎢ ⎢ 

⎤ 
⎥ ⎥ 

� 

x − x* ≤ b − a
2n+1
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Fixed Point Iteration 
  Fixed point iteration for root finding is an example 

of a redefinition of the problem 
  Fixed-point iteration uses a second, related function to 

compute the point for the next iteration 

  Fixed point of this function is the root of the original function 

  There can be many fixed-point problems for a given 
function f 

   Point for next iteration is computed using this function 

  Fixed point iteration also called functional iteration 

� 

f (x) = 0  ⇔  x = g(x)

� 

xk+1 = g xk( )
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Fixed Point Iteration 
f(x)=x2-x-2 
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Fixed Point Iteration 
f(x)=x2-x-2 
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Fixed Point Iteration 
  Requirements and Applicability 

  Requires construction of function g for the function f 
  Function g has to be continuous and differentiable  

  Convergence 
  Convergence is only guaranteed if  |g’(x*)|<1 

  Fixed point iteration is often only locally convergent 

  If |g’(x*)|<1 then the error converges at least linearly 

  Accuracy and Complexity 
  Accuracy is no longer tied strictly to iteration number 

  Need termination criterion 

  Each iteration requires one evaluation of g 

� 

xk − xk−1 ≤ tolerance
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Newton’s Method 
  Newton’s method uses a locally linear 

approximation of the function f 

  Interpretation 1: 
  Iterate over root finding of the approximation function fx(h) 

  Interpretation 2: 
  Approximation leads to a fixed point function 

  Iterate over fixed point steps for this function g 

� 

fx (h) = f (x + h) ≈ f (x) + hf '(x)

� 

g(x) = x − f (x)
f '(x)
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Newton’s Method 
  Requirements and Applicability 

  Requires continuous and twice differentiable f 
  Both f and f’ have to be known 

  Convergence 
  Locally convergent 

  Converges quadratically for simple roots (i.e. multiplicity 1) 

  Converges linearly or sublinearly for a multiple root 

  Accuracy and Complexity 
  Accuracy is not strictly tied to iteration number 

  Need termination criterion 

  Each iteration requires one evaluation of f and of f’ 
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Modified Newton Method 
  Newton’s method can be modified to generally 

yield quadratic convergence by modifying g for a 
root with multiplicity m 

  Modified formulation changes the step size for multiple 
roots to avoid the drop in convergence rate 

  Modified Newton method converges quadratically for all roots 

  Requires knowledge about the multiplicity of a root (and thus the 
calculation of higher derivatives 

� 

g(x) = x − mf (x)
f '(x)
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Secant Method 
  To avoid the need to know the derivative of f, 

Newton’s method can be modified to replace it with 
a local approximation using the secant through the 
last two iterated points  

� 

xk+1 = xx − f (xk )
xk − xk−1

f (xk ) − f (xk−1)
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Secant Method 
  Requirements and Applicability 

  Requires continuous and differentiable f 
  Only f has to be known 

  Convergence 
  Locally convergent 

  Converges superlinear (~1.62) for simple roots (i.e. multiplicity 1) 

  Accuracy and Complexity 
  Accuracy is not strictly tied to iteration number 

  Need termination criterion 

  Each iteration requires one evaluation of f (first requires 2 
evaluations) 
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Muller’s Method 
  To accelerate convergence it is possible to use 

higher order interpolations 
  Muller’s method uses  quadratic interpolation 

  Using the last 3 points, fit a second order polynomial (parabula) 

  Use the closes root as the next point (use alternative if no 
intersection point exists 

  Usually converges locally with superlinear rate (~1.84) 
  Interpolation might not have an intersection which requires an 

alternate option 

  Each iteration requires a second order polynomial fit 
operation 
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Inverse Interpolation 
  To avoid lacking roots of the approximate function 

use an inverse interpolation function 

  Inverse Quadratic Interpolation (IQI) 
  Using the last 3 points, fit a second order polynomial (parabula) 

  Use the root as the next point 
� 

x ≈ p( f (x))

� 

p(y) = xk−2
y − f (xk−1)( ) y − f (xk )( )

f (xk−2) − f (xk−1)( ) f (xk−2) − f (xk )( )
+ xk−1

y − f (xk−2)( ) y − f (xk )( )
f (xk−1) − f (xk−2)( ) f (xk−1) − f (xk )( )

+ xk
y − f (xk−2)( ) y − f (xk−1)( )

f (xk ) − f (xk−2)( ) f (xk ) − f (xk−1)( )
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Hybrid Methods 
  Hybrid methods combine features of others to 

accelerate root finding while preserving useful 
properties 
  Brent’s Method 

  Guaranteed convergence from Bisection method 

  Fast convergence from Inverse quadratic interpolation and secant 
methods 

  Basic operation occurs using an initial bracket and a point within it 
  IQI is used first and if backward error decreases and new point cuts 

bracket in less than half, it is used to modify bracket. 

  If not, secant method is used 

  If none reduces the bracket sufficiently, the bisection method is 
applied. 
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Solving Equations 
  Finding a set of parameters that leads to a 

particular solution for an equation is a common 
problem in science and engineering applications 
  Determining numeric solution for inverse kinematic problems 

  Specifying network requirements for a specific layout 

  Computing specification parameters for a circuit 

  Iterative solutions can be used to efficiently find 
solutions fro arbitrary equations 
  Increasing convergence rates often reduce the ability to 

guarantee convergence 

  Problem reformulations can increase accuracy of the solution 
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Example Applications 
  Robotics: Compute forward kinematics for a 2D 

closed kinematic chain 

  Vision: Compute distance from the vergence angle 
of a symmetric stereo system 

  Networks: Compute number of nodes for a 
particular bandwidth 

  Systems: Compute the buffer size for a network 
interface card to limit dropped packets 


