
1

Computational Methods

Solving Equations

© Manfred Huber 2011

© Manfred Huber 2011 2

Solving Equations
  Solving scalar equations is an elemental task that

arises in a wide range of applications
  Corresponds to finding parameters that will achieve a

particular outcome

  Solving an equation is equivalent to root (or zero)
finding for a related function

  Can be solved by division for linear functions

  Not analytically solvable in general since many non-linear
functions are not easily invertible

�

f (x) = b

�

˜ f (x) = f (x) − b

© Manfred Huber 2011 3

Root Finding
  Numeric root finding algorithms are generally

iterative algorithms
  Each iteration attempts to find a value for x that is closer

to the root of the system

  Numeric algorithms consider and often rely on the
basic properties of the root and of the function
  Continuity

  Differentiability

  Existence of root

  Uniqueness or multiplicity of root

© Manfred Huber 2011 4

Existence
  Determining existence and uniqueness of solutions

to the root finding problem can be complex

  Existence of a solution
  A bracket is an interval [a,b] for which f(a)f(b)<0

  If a bracket exists for a continuous function f(x) then the
function has at least one root x*.

  Number of solutions for a function is often difficult
to determine
  For polynomials the number of solutions is equal to the

order of the polynomial

© Manfred Huber 2011 5

Uniqueness and Multiplicity
  Whether a function has a unique root can influence

the solution approach taken
  Linear functions mostly have a unique root (if it exists)

  Non-linear function frequently have multiple roots
  “local uniqueness” can be evaluated

  Multiplicity captures local non-uniqueness of a root
  At non-simple roots (roots with multiplicity > 1) multiple

roots coincide

  The multiplicity of a root is the order of the lowest
derivative that does not vanishes at x*

�

m : f x*() = f ' x*() = f (m−1) x*() = 0 ; f (m) x*() ≠ 0

© Manfred Huber 2011 6

Sensitivity and Conditioning
  Sensitivity of the root finding problem can be

measured in terms of the condition number
  Condition number for the root finding problem is the

opposite of the one for the evaluation problem
Absolute condition number (since f(x*)=0):

  Root finding for a root is ill-conditioned if derivative is ≈0

  Root finding at a multiple root is ill conditioned

  Approximation in backward or forward error
  corresponds to small residual

  represents closeness of solution

�

cond = 1
f ' x*()

�

f (ˆ x) ≈ 0

�

ˆ x − x* ≈ 0

© Manfred Huber 2011 7

Convergence
  For iterative methods it is generally important to

evaluate convergence rate to estimate
performance and complexity
  Iteration error

  In interval methods, iteration error can be bounded by
the width of the interval

  Iterations converge with rate r if for constant C

  r=1 linear convergence

  r>1 superlinear

�

ek = xk − x
*

�

limk→∞
ek+1

ek
r = C

© Manfred Huber 2011
8

Interval Bisection Method
  Bisection starts with an initial bracket

  Determine function value in the middle of the bracket

  Construct new bracket including the new point and one of
the previous bracket end points

  Repeat until the bracket has reached the termination
width (corresponding to the remaining error bound)

© Manfred Huber 2011 9

Interval Bisection Method
  Requirements and Applicability

  Bisection has only limited requirements for f
  Function has to be continuous (but not differentiable)

  Uses only the sign of the function value

  Convergence
  Error can be measured by the width of the bracket

  Halving of bracket yields linear convergence (r=1, C=0.5)

  Accuracy and Complexity
  Iteration number is independent of function

  Accuracy is a function of the number of iterations

  Complexity of each iteration equals one evaluation of the function
�

log2
b − a

tolerance
⎛
⎝
⎜

⎞
⎠
⎟

⎡
⎢ ⎢

⎤
⎥ ⎥

�

x − x* ≤ b − a
2n+1

© Manfred Huber 2011 10

Fixed Point Iteration
  Fixed point iteration for root finding is an example

of a redefinition of the problem
  Fixed-point iteration uses a second, related function to

compute the point for the next iteration

  Fixed point of this function is the root of the original function

  There can be many fixed-point problems for a given
function f

  Point for next iteration is computed using this function

  Fixed point iteration also called functional iteration

�

f (x) = 0 ⇔ x = g(x)

�

xk+1 = g xk()

© Manfred Huber 2011 11

Fixed Point Iteration
f(x)=x2-x-2

© Manfred Huber 2011 12

Fixed Point Iteration
f(x)=x2-x-2

© Manfred Huber 2011 13

Fixed Point Iteration
  Requirements and Applicability

  Requires construction of function g for the function f
  Function g has to be continuous and differentiable

  Convergence
  Convergence is only guaranteed if |g’(x*)|<1

  Fixed point iteration is often only locally convergent

  If |g’(x*)|<1 then the error converges at least linearly

  Accuracy and Complexity
  Accuracy is no longer tied strictly to iteration number

  Need termination criterion

  Each iteration requires one evaluation of g

�

xk − xk−1 ≤ tolerance

© Manfred Huber 2011 14

Newton’s Method
  Newton’s method uses a locally linear

approximation of the function f

  Interpretation 1:
  Iterate over root finding of the approximation function fx(h)

  Interpretation 2:
  Approximation leads to a fixed point function

  Iterate over fixed point steps for this function g

�

fx (h) = f (x + h) ≈ f (x) + hf '(x)

�

g(x) = x − f (x)
f '(x)

© Manfred Huber 2011 15

Newton’s Method
  Requirements and Applicability

  Requires continuous and twice differentiable f
  Both f and f’ have to be known

  Convergence
  Locally convergent

  Converges quadratically for simple roots (i.e. multiplicity 1)

  Converges linearly or sublinearly for a multiple root

  Accuracy and Complexity
  Accuracy is not strictly tied to iteration number

  Need termination criterion

  Each iteration requires one evaluation of f and of f’

© Manfred Huber 2011 16

Modified Newton Method
  Newton’s method can be modified to generally

yield quadratic convergence by modifying g for a
root with multiplicity m

  Modified formulation changes the step size for multiple
roots to avoid the drop in convergence rate

  Modified Newton method converges quadratically for all roots

  Requires knowledge about the multiplicity of a root (and thus the
calculation of higher derivatives

�

g(x) = x − mf (x)
f '(x)

© Manfred Huber 2011 17

Secant Method
  To avoid the need to know the derivative of f,

Newton’s method can be modified to replace it with
a local approximation using the secant through the
last two iterated points

�

xk+1 = xx − f (xk)
xk − xk−1

f (xk) − f (xk−1)

© Manfred Huber 2011 18

Secant Method
  Requirements and Applicability

  Requires continuous and differentiable f
  Only f has to be known

  Convergence
  Locally convergent

  Converges superlinear (~1.62) for simple roots (i.e. multiplicity 1)

  Accuracy and Complexity
  Accuracy is not strictly tied to iteration number

  Need termination criterion

  Each iteration requires one evaluation of f (first requires 2
evaluations)

© Manfred Huber 2011 19

Muller’s Method
  To accelerate convergence it is possible to use

higher order interpolations
  Muller’s method uses quadratic interpolation

  Using the last 3 points, fit a second order polynomial (parabula)

  Use the closes root as the next point (use alternative if no
intersection point exists

  Usually converges locally with superlinear rate (~1.84)
  Interpolation might not have an intersection which requires an

alternate option

  Each iteration requires a second order polynomial fit
operation

© Manfred Huber 2011 20

Inverse Interpolation
  To avoid lacking roots of the approximate function

use an inverse interpolation function

  Inverse Quadratic Interpolation (IQI)
  Using the last 3 points, fit a second order polynomial (parabula)

  Use the root as the next point
�

x ≈ p(f (x))

�

p(y) = xk−2
y − f (xk−1)() y − f (xk)()

f (xk−2) − f (xk−1)() f (xk−2) − f (xk)()
+ xk−1

y − f (xk−2)() y − f (xk)()
f (xk−1) − f (xk−2)() f (xk−1) − f (xk)()

+ xk
y − f (xk−2)() y − f (xk−1)()

f (xk) − f (xk−2)() f (xk) − f (xk−1)()

© Manfred Huber 2011 21

Hybrid Methods
  Hybrid methods combine features of others to

accelerate root finding while preserving useful
properties
  Brent’s Method

  Guaranteed convergence from Bisection method

  Fast convergence from Inverse quadratic interpolation and secant
methods

  Basic operation occurs using an initial bracket and a point within it
  IQI is used first and if backward error decreases and new point cuts

bracket in less than half, it is used to modify bracket.

  If not, secant method is used

  If none reduces the bracket sufficiently, the bisection method is
applied.

© Manfred Huber 2011 22

Solving Equations
  Finding a set of parameters that leads to a

particular solution for an equation is a common
problem in science and engineering applications
  Determining numeric solution for inverse kinematic problems

  Specifying network requirements for a specific layout

  Computing specification parameters for a circuit

  Iterative solutions can be used to efficiently find
solutions fro arbitrary equations
  Increasing convergence rates often reduce the ability to

guarantee convergence

  Problem reformulations can increase accuracy of the solution

© Manfred Huber 2011 23

Example Applications
  Robotics: Compute forward kinematics for a 2D

closed kinematic chain

  Vision: Compute distance from the vergence angle
of a symmetric stereo system

  Networks: Compute number of nodes for a
particular bandwidth

  Systems: Compute the buffer size for a network
interface card to limit dropped packets

