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Solving Equations 
  Solving scalar equations is an elemental task that 

arises in a wide range of applications 
  Corresponds to finding parameters that will achieve a 

particular outcome 

  Solving an equation is equivalent to root (or zero) 
finding for a related function 

  Can be solved by division for linear functions 

  Not analytically solvable in general since many non-linear 
functions are not easily invertible 

� 

f (x) = b

� 

˜ f (x) = f (x) − b
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Root Finding 
  Numeric root finding algorithms are generally 

iterative algorithms 
  Each iteration attempts to find a value for x that is closer 

to the root of the system 

  Numeric algorithms consider and often rely on the 
basic properties of the root and of the function 
  Continuity 

  Differentiability 

  Existence of root 

  Uniqueness or multiplicity of root 
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Existence 
  Determining existence and uniqueness of solutions 

to the root finding problem can be complex 

  Existence of a solution 
  A bracket is an interval [a,b] for which f(a)f(b)<0 

  If a bracket exists for a continuous function f(x) then the 
function has at least one root x*. 

  Number of solutions for a function is often difficult 
to determine 
  For polynomials the number of solutions is equal to the 

order of the polynomial 
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Uniqueness and Multiplicity 
  Whether a function has a unique root can influence 

the solution approach taken 
  Linear functions mostly have a unique root (if it exists) 

  Non-linear function frequently have multiple roots 
  “local uniqueness” can be evaluated 

  Multiplicity captures local non-uniqueness of a root 
  At non-simple roots (roots with multiplicity > 1) multiple 

roots coincide 

  The multiplicity of a root is the order of the lowest 
derivative that does not vanishes at x* 

� 

m : f x*( ) = f ' x*( ) = f (m−1) x*( ) = 0  ; f (m ) x*( ) ≠ 0
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Sensitivity and Conditioning 
  Sensitivity of the root finding problem can be 

measured in terms of the condition number 
  Condition number for the root finding problem is the 

opposite of the one for the evaluation problem 
Absolute condition number (since f(x*)=0):   

  Root finding for a root is ill-conditioned if derivative is ≈0 

  Root finding at a multiple root is ill conditioned 

  Approximation in backward or forward error 
                corresponds to small residual 

                 represents closeness of solution 

� 

cond = 1
f ' x*( )

� 

f ( ˆ x ) ≈ 0

� 

ˆ x − x* ≈ 0
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Convergence 
  For iterative methods it is generally important to 

evaluate convergence rate to estimate 
performance and complexity 
  Iteration error 

  In interval methods, iteration error can be bounded by 
the width of the interval 

  Iterations converge with rate r if for constant C 

  r=1 linear convergence 

  r>1 superlinear 

� 

ek = xk − x
*

� 

limk→∞
ek+1

ek
r = C
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Interval Bisection Method 
  Bisection starts with an initial bracket 

  Determine function value in the middle of the bracket 

  Construct new bracket including the new point and one of 
the previous bracket end points 

  Repeat until the bracket has reached the termination 
width (corresponding to the remaining error bound) 
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Interval Bisection Method 
  Requirements and Applicability 

  Bisection has only limited requirements for f 
  Function has to be continuous (but not differentiable) 

  Uses only the sign of the function value 

  Convergence 
  Error can be measured by the width of the bracket 

  Halving of bracket yields linear convergence (r=1, C=0.5) 

  Accuracy and Complexity 
  Iteration number is independent of function 

  Accuracy is a function of the number of iterations 

  Complexity of each iteration equals one evaluation of the function 
� 

log2
b − a

tolerance
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

⎡ 
⎢ ⎢ 

⎤ 
⎥ ⎥ 

� 

x − x* ≤ b − a
2n+1
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Fixed Point Iteration 
  Fixed point iteration for root finding is an example 

of a redefinition of the problem 
  Fixed-point iteration uses a second, related function to 

compute the point for the next iteration 

  Fixed point of this function is the root of the original function 

  There can be many fixed-point problems for a given 
function f 

   Point for next iteration is computed using this function 

  Fixed point iteration also called functional iteration 

� 

f (x) = 0  ⇔  x = g(x)

� 

xk+1 = g xk( )
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Fixed Point Iteration 
f(x)=x2-x-2 
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Fixed Point Iteration 
f(x)=x2-x-2 
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Fixed Point Iteration 
  Requirements and Applicability 

  Requires construction of function g for the function f 
  Function g has to be continuous and differentiable  

  Convergence 
  Convergence is only guaranteed if  |g’(x*)|<1 

  Fixed point iteration is often only locally convergent 

  If |g’(x*)|<1 then the error converges at least linearly 

  Accuracy and Complexity 
  Accuracy is no longer tied strictly to iteration number 

  Need termination criterion 

  Each iteration requires one evaluation of g 

� 

xk − xk−1 ≤ tolerance
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Newton’s Method 
  Newton’s method uses a locally linear 

approximation of the function f 

  Interpretation 1: 
  Iterate over root finding of the approximation function fx(h) 

  Interpretation 2: 
  Approximation leads to a fixed point function 

  Iterate over fixed point steps for this function g 

� 

fx (h) = f (x + h) ≈ f (x) + hf '(x)

� 

g(x) = x − f (x)
f '(x)
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Newton’s Method 
  Requirements and Applicability 

  Requires continuous and twice differentiable f 
  Both f and f’ have to be known 

  Convergence 
  Locally convergent 

  Converges quadratically for simple roots (i.e. multiplicity 1) 

  Converges linearly or sublinearly for a multiple root 

  Accuracy and Complexity 
  Accuracy is not strictly tied to iteration number 

  Need termination criterion 

  Each iteration requires one evaluation of f and of f’ 
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Modified Newton Method 
  Newton’s method can be modified to generally 

yield quadratic convergence by modifying g for a 
root with multiplicity m 

  Modified formulation changes the step size for multiple 
roots to avoid the drop in convergence rate 

  Modified Newton method converges quadratically for all roots 

  Requires knowledge about the multiplicity of a root (and thus the 
calculation of higher derivatives 

� 

g(x) = x − mf (x)
f '(x)
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Secant Method 
  To avoid the need to know the derivative of f, 

Newton’s method can be modified to replace it with 
a local approximation using the secant through the 
last two iterated points  

� 

xk+1 = xx − f (xk )
xk − xk−1

f (xk ) − f (xk−1)
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Secant Method 
  Requirements and Applicability 

  Requires continuous and differentiable f 
  Only f has to be known 

  Convergence 
  Locally convergent 

  Converges superlinear (~1.62) for simple roots (i.e. multiplicity 1) 

  Accuracy and Complexity 
  Accuracy is not strictly tied to iteration number 

  Need termination criterion 

  Each iteration requires one evaluation of f (first requires 2 
evaluations) 
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Muller’s Method 
  To accelerate convergence it is possible to use 

higher order interpolations 
  Muller’s method uses  quadratic interpolation 

  Using the last 3 points, fit a second order polynomial (parabula) 

  Use the closes root as the next point (use alternative if no 
intersection point exists 

  Usually converges locally with superlinear rate (~1.84) 
  Interpolation might not have an intersection which requires an 

alternate option 

  Each iteration requires a second order polynomial fit 
operation 
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Inverse Interpolation 
  To avoid lacking roots of the approximate function 

use an inverse interpolation function 

  Inverse Quadratic Interpolation (IQI) 
  Using the last 3 points, fit a second order polynomial (parabula) 

  Use the root as the next point 
� 

x ≈ p( f (x))

� 

p(y) = xk−2
y − f (xk−1)( ) y − f (xk )( )

f (xk−2) − f (xk−1)( ) f (xk−2) − f (xk )( )
+ xk−1

y − f (xk−2)( ) y − f (xk )( )
f (xk−1) − f (xk−2)( ) f (xk−1) − f (xk )( )

+ xk
y − f (xk−2)( ) y − f (xk−1)( )

f (xk ) − f (xk−2)( ) f (xk ) − f (xk−1)( )
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Hybrid Methods 
  Hybrid methods combine features of others to 

accelerate root finding while preserving useful 
properties 
  Brent’s Method 

  Guaranteed convergence from Bisection method 

  Fast convergence from Inverse quadratic interpolation and secant 
methods 

  Basic operation occurs using an initial bracket and a point within it 
  IQI is used first and if backward error decreases and new point cuts 

bracket in less than half, it is used to modify bracket. 

  If not, secant method is used 

  If none reduces the bracket sufficiently, the bisection method is 
applied. 
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Solving Equations 
  Finding a set of parameters that leads to a 

particular solution for an equation is a common 
problem in science and engineering applications 
  Determining numeric solution for inverse kinematic problems 

  Specifying network requirements for a specific layout 

  Computing specification parameters for a circuit 

  Iterative solutions can be used to efficiently find 
solutions fro arbitrary equations 
  Increasing convergence rates often reduce the ability to 

guarantee convergence 

  Problem reformulations can increase accuracy of the solution 
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Example Applications 
  Robotics: Compute forward kinematics for a 2D 

closed kinematic chain 

  Vision: Compute distance from the vergence angle 
of a symmetric stereo system 

  Networks: Compute number of nodes for a 
particular bandwidth 

  Systems: Compute the buffer size for a network 
interface card to limit dropped packets 


