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Numerical Analysis /  
Scientific Computing  

  Many problems in Science and Engineering can 
not be solved analytically on a computer 
  Numeric solutions are often required  

  Numeric solutions provide only approximate solutions 

  Numeric solutions are not unique 
  Different numeric algorithms might yield different approximations 

  Numerical Analysis deals with the design and 
analysis of numeric algorithms 
  Deals with continuous quantities 

  Considers / analyzes the effects of approximations  
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Computational Problems and 
Numerical Algorithms  

  Solving of computational problems usually 
involves the following steps: 
  Mathematical modeling 

  Develop a mathematical description for the problem 

  Algorithm design 
  Build an algorithm to solve the mathematical problem 

formulation 

  Analyze the algorithm for its performance 

  Implementation and Evaluation 
  Implement the algorithm 

  Evaluate its performance with real data 
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Computational Problems and 
Numerical Algorithms  

  A problem is well-posed if 
  A solution exists and is unique 

  The solution depends continuously on the data 

  Ill-posed problems are often sensitive to the data 
and solution algorithms are not stable 
  Some ill-posed problems can be approximated by well-

posed similar problems 

  Even solutions to well-posed problems can be 
sensitive to data 
  Computational algorithm should not increase sensitivity 
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Problem Solution Strategies 
  Finding a solution (and subsequently an algorithm) 

for a computational problem often involves 
replacing a difficult problem with a simpler one 
with identical or closely related solution 
  Replace infinite with finite formulations 

  Replace differential equations with algebraic equations 

  Replace non-linear formulations with linear ones 

  Replace complicated functions with simpler ones 

  Replace higher-order systems with lower-order ones 

  Solutions may only approximate the original ones 
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Sources of Approximation 
  Problem formulation and input data 

  Simplifications in the original model of the problem 

  Errors in measurements used as input data  

  Approximations resulting from pre-computations 

  Algorithm and implementation 
  Truncation and discretization as part of the algorithm 

design (usually resulting from simplifications of the 
original mathematical model) 

  Rounding as a result of the use of a finite resolution 
digital computer 
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Approximation and Error 
  The accuracy of the solution produced by a 

numerical algorithm depends on errors introduced 
by the modeling and pre-computation and by the 
computation in the algorithm 
  The first can usually not be addressed but have to be 

considered when analyzing an algorithm  

  The problem and the solution algorithm can have 
major effects on the accuracy of the approximation  
  The problem can amplify input error (sensitivity) 

  The algorithm can amplify computation errors (stability) 
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Approximation and Error 
  The total error is generally a result of errors in the 

data and errors arising through the computation 

  Computational error :  

  Propagated data error:  

  Computational errors arise from simplifications in 
the algorithm and from numeric limitations 
  Truncation error: Caused by the algorithm 

  Rounding error: Caused by limited numeric precision 

  Truncation and Rounding often trade off  

� 

ˆ f ( ˜ x ) − f (x) = ˆ f ( ˜ x ) − f ( ˜ x )  +  f ( ˜ x ) − f (x)

� 

ˆ f ( ˜ x ) − f ( ˜ x )

� 

f ( ˜ x ) − f (x)
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Example: Finite Difference 
  Compute the derivative using finite difference 

approximation: 

  Truncation error is bounded by  

  Rounding error is bounded by  

  Optimal step size:  
� 

f '(x) ≈ f (x + Δx) − f (x)
Δx

� 

M Δx
2

� 

2 ε
Δx

� 

Δx ≈ 2 ε /M

Sin(x) : 
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Absolute and Relative Error 
  Absolute error: 

  Relative error: 

  The true value, y, is generally unknown 

  Relative error is often computed relative to the 
approximate value 

  Error has to be approximated or calculated as a bound 

� 

ˆ y − y

� 

ˆ y − y
y
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Forward and Backward Error 
  Error can be analyzed in the output space or in the 

input space of the algorithm 

  Forward error :  
  error in the output of the algorithm for the same input  

  Backward error:  
  error in the correct input corresponding to the output  � 

Δy = ˆ y − y = ˆ f (x) − f (x)

� 

Δx = ˆ x − x  ; ˆ y = f ( ˆ x )
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Backward Error 
  Backward error can be a useful analysis tool 

  Backward error captures sensitivity 
  Measures how much the original problem has to change to 

result in exactly the approximate solution 

  How much data error would explain the total error 

  Approximate solution is good if it has a small backward 
error 

  Backward error is often easier to estimate than forward 
error 
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Sensitivity and Conditioning 
  A problem is sensitive (ill-conditioned) if a change 

in the input data can cause a much larger change 
in the output data 

  Condition number captures sensitivity: 

  A problem is sensitive if cond >> 1 
  Condition number represents an amplification factor 

between relative backward and relative forward error � 

cond =
relative  output  error
relative  data  error

=
f ( ˆ x ) − f (x)( ) / f (x)

ˆ x − x( ) / x
=
Δy / y
Δx / x
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Stability 
  An algorithm is stable if the result is relatively 

insensitive to perturbations caused by the 
computation 
  Similar to conditioning for problems 

  An algorithm is stable if it results in a small backward 
error (i.e. if its result is the exact solution to a similar 
problem) 

  If an algorithm is stable, the computational error is no 
worse than a small input error  
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Accuracy 
  Accuracy measures the similarity of the true and 

the computed solution 
  Accuracy depends on conditioning of the problem and 

stability of the algorithm 

  Stability or well-conditioning alone do not guarantee 
accuracy 

  A stable algorithm applied to an ill-conditioned problem can yield 
inaccuracy 

  An unstable algorithm applied to a well-conditioned problem can 
yield inaccurate results 

  To achieve accurate solutions a stable algorithm has to 
be applied to a well-conditioned problem 
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Number Representation and 
Rounding Errors 

  Floating point numbers are used to represent 
continuous number 
  Real numbers can not be represented accurately 

  Operations on floating point numbers are not accurate 

  Floating point numbers: 
  Base 

  Precision 

  Exponent range 

� 

β

� 

p

� 

[L,U]

� 

x = ± d0 + d1
β

+ ...+
dp−1
β p−1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ β E
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Floating Point Numbers 
  Multiple floating point standards exist 

  Most floating point systems are normalized so that 
the first bit of the mantissa is 1 
  No digits wasted on leading zeros (saves 1 bit) 



© Manfred Huber 2011 18 

Floating Point Numbers 
  Underflow: smallest positive normalized number 

  Overflow: largest floating point number 

  Machine precision: smallest number larger than 1 
minus 1 

  Machine precision bounds the rounding error: 
  With rounding to nearest:   

� 

UFL = β L

� 

OFL = (1−β−p )βU +1

� 

εmach = β1− p

� 

fl(x) − x
x

≤ 1
2
εmach
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Floating Point Number 
Example 

  Representable numbers for a binary number with 3 
bit mantissa and 2 bit exponent 

  OFL = 3.5 

  UFL = 0.5 

  εmach = 0.125 
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Floating Point Arithmetic 
  Floating point operations introduce rounding errors 

  Addition and subtraction 
  For addition and subtraction the mantissa has to be shifted 

until the exponents of the numbers are equal 
  Potential loss of significant bits in the smaller number 

  Multiplication 
  Mantissas have to be multiplied, yielding theoretically a 

new mantissa with 2p digits which has to be rounded 
  Division 

  Quotient of mantissas can theoretically have an infinite 
number of digits which have to be rounded 
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Floating Point Arithmetic 
  Besides rounding errors, floating point operations 

can result in unrepresentable numbers 
  Overflow 

  Results of an overflow (a number too large to be 
represented) possess no good approximation and can be 
catastrophic. 

  On most computer systems overflow produces an error 
message 

  Underflow 
  Results of an underflow are usually approximated as 0. 

  On many computer systems underflow is handled silently 
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Floating Point Arithmetic 
  Many general arithmetic laws do not strictly hold in 

floating point arithmetic 
  Addition and multiplication are commutative but not 

associative 

� 

1
nn=1

∞∑

  Underflow, overflow, and rounding can lead to 
incorrect results.                                                                                             
 Infinite sum 

  While this sum diverges in reality (and thus has no result) 
numeric calculation of it yields a finite sum 

  Partial sum no longer changes once 1/n is too small compared to 
the value of the partial sum 
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Relative Error and  
Loss of Significance 

  Errors produced by well implemented arithmetic 
floating point operations can be modeled by  

  Relative error bound 

  Error propagation can still lead to high relative 
error through loss of significance (or cancellation) 
  When during subtraction leading digits cancel out the 

result uses fewer than p digits and thus looses precision 

� 

fl(x  op  y)  =  (x  op  y)(1+ δ)  ; δ ≤ εmach

� 

fl(x  op  y) − (x  op  y)
(x  op  y)

 ≤ εmach



© Manfred Huber 2011 24 

Loss of Significance 
  Rounding results in a loss of the least significant 

digits while cancellation leads to a loss of the most 
significant digits 
  It is generally a bad idea to compute a small number by 

subtracting large numbers 
  The propagated rounding error through loss of significance 

might ultimately dominate the actual result 



© Manfred Huber 2011 25 

Loss of Significance 
  To avoid cancellation errors, problems can 

sometimes be reformulated in a way that avoids 
the problem 
  Multiplication with conjugate expressions: 

� 

y − x = ( y − x)( y + x)
y + x

= y − x 2

y + x
 

� 

1− cos x
sin2 x

= 1
1+ cos x

  

� 

x = −b ± b2 − 4ac
2a

= 2c
−b  b2 − 4ac

  Application of identities to restructure the expression: 
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Representation and Error 
  Computations on digital computers produce 

approximations that yield errors  
  Approximation should be taken into account when 

designing and analyzing algorithms 

  Approximations break into multiple types 
  Data errors 

  Computation errors 
  Truncation error due to algorithm 

  Rounding error due to representation limitations 

  Errors can propagate and be amplified 
  Algorithm design should take errors into account 


