
1

Computational Methods

Sources of Errors

© Manfred Huber 2011

© Manfred Huber 2011 2

Numerical Analysis /
Scientific Computing

  Many problems in Science and Engineering can
not be solved analytically on a computer
  Numeric solutions are often required

  Numeric solutions provide only approximate solutions

  Numeric solutions are not unique
  Different numeric algorithms might yield different approximations

  Numerical Analysis deals with the design and
analysis of numeric algorithms
  Deals with continuous quantities

  Considers / analyzes the effects of approximations

© Manfred Huber 2011 3

Computational Problems and
Numerical Algorithms

  Solving of computational problems usually
involves the following steps:
  Mathematical modeling

  Develop a mathematical description for the problem

  Algorithm design
  Build an algorithm to solve the mathematical problem

formulation

  Analyze the algorithm for its performance

  Implementation and Evaluation
  Implement the algorithm

  Evaluate its performance with real data

© Manfred Huber 2011 4

Computational Problems and
Numerical Algorithms

  A problem is well-posed if
  A solution exists and is unique

  The solution depends continuously on the data

  Ill-posed problems are often sensitive to the data
and solution algorithms are not stable
  Some ill-posed problems can be approximated by well-

posed similar problems

  Even solutions to well-posed problems can be
sensitive to data
  Computational algorithm should not increase sensitivity

© Manfred Huber 2011 5

Problem Solution Strategies
  Finding a solution (and subsequently an algorithm)

for a computational problem often involves
replacing a difficult problem with a simpler one
with identical or closely related solution
  Replace infinite with finite formulations

  Replace differential equations with algebraic equations

  Replace non-linear formulations with linear ones

  Replace complicated functions with simpler ones

  Replace higher-order systems with lower-order ones

  Solutions may only approximate the original ones

© Manfred Huber 2011 6

Sources of Approximation
  Problem formulation and input data

  Simplifications in the original model of the problem

  Errors in measurements used as input data

  Approximations resulting from pre-computations

  Algorithm and implementation
  Truncation and discretization as part of the algorithm

design (usually resulting from simplifications of the
original mathematical model)

  Rounding as a result of the use of a finite resolution
digital computer

© Manfred Huber 2011 7

Approximation and Error
  The accuracy of the solution produced by a

numerical algorithm depends on errors introduced
by the modeling and pre-computation and by the
computation in the algorithm
  The first can usually not be addressed but have to be

considered when analyzing an algorithm

  The problem and the solution algorithm can have
major effects on the accuracy of the approximation
  The problem can amplify input error (sensitivity)

  The algorithm can amplify computation errors (stability)

© Manfred Huber 2011 8

Approximation and Error
  The total error is generally a result of errors in the

data and errors arising through the computation

  Computational error :

  Propagated data error:

  Computational errors arise from simplifications in
the algorithm and from numeric limitations
  Truncation error: Caused by the algorithm

  Rounding error: Caused by limited numeric precision

  Truncation and Rounding often trade off

�

ˆ f (˜ x) − f (x) = ˆ f (˜ x) − f (˜ x) + f (˜ x) − f (x)

�

ˆ f (˜ x) − f (˜ x)

�

f (˜ x) − f (x)

© Manfred Huber 2011 9

Example: Finite Difference
  Compute the derivative using finite difference

approximation:

  Truncation error is bounded by

  Rounding error is bounded by

  Optimal step size:
�

f '(x) ≈ f (x + Δx) − f (x)
Δx

�

M Δx
2

�

2 ε
Δx

�

Δx ≈ 2 ε /M

Sin(x) :

© Manfred Huber 2011 10

Absolute and Relative Error
  Absolute error:

  Relative error:

  The true value, y, is generally unknown

  Relative error is often computed relative to the
approximate value

  Error has to be approximated or calculated as a bound

�

ˆ y − y

�

ˆ y − y
y

© Manfred Huber 2011 11

Forward and Backward Error
  Error can be analyzed in the output space or in the

input space of the algorithm

  Forward error :
  error in the output of the algorithm for the same input

  Backward error:
  error in the correct input corresponding to the output �

Δy = ˆ y − y = ˆ f (x) − f (x)

�

Δx = ˆ x − x ; ˆ y = f (ˆ x)

© Manfred Huber 2011 12

Backward Error
  Backward error can be a useful analysis tool

  Backward error captures sensitivity
  Measures how much the original problem has to change to

result in exactly the approximate solution

  How much data error would explain the total error

  Approximate solution is good if it has a small backward
error

  Backward error is often easier to estimate than forward
error

© Manfred Huber 2011 13

Sensitivity and Conditioning
  A problem is sensitive (ill-conditioned) if a change

in the input data can cause a much larger change
in the output data

  Condition number captures sensitivity:

  A problem is sensitive if cond >> 1
  Condition number represents an amplification factor

between relative backward and relative forward error �

cond =
relative output error
relative data error

=
f (ˆ x) − f (x)() / f (x)

ˆ x − x() / x
=
Δy / y
Δx / x

© Manfred Huber 2011 14

Stability
  An algorithm is stable if the result is relatively

insensitive to perturbations caused by the
computation
  Similar to conditioning for problems

  An algorithm is stable if it results in a small backward
error (i.e. if its result is the exact solution to a similar
problem)

  If an algorithm is stable, the computational error is no
worse than a small input error

© Manfred Huber 2011 15

Accuracy
  Accuracy measures the similarity of the true and

the computed solution
  Accuracy depends on conditioning of the problem and

stability of the algorithm

  Stability or well-conditioning alone do not guarantee
accuracy

  A stable algorithm applied to an ill-conditioned problem can yield
inaccuracy

  An unstable algorithm applied to a well-conditioned problem can
yield inaccurate results

  To achieve accurate solutions a stable algorithm has to
be applied to a well-conditioned problem

© Manfred Huber 2011 16

Number Representation and
Rounding Errors

  Floating point numbers are used to represent
continuous number
  Real numbers can not be represented accurately

  Operations on floating point numbers are not accurate

  Floating point numbers:
  Base

  Precision

  Exponent range

�

β

�

p

�

[L,U]

�

x = ± d0 + d1
β

+ ...+
dp−1
β p−1

⎛

⎝
⎜

⎞

⎠
⎟ β E

© Manfred Huber 2011 17

Floating Point Numbers
  Multiple floating point standards exist

  Most floating point systems are normalized so that
the first bit of the mantissa is 1
  No digits wasted on leading zeros (saves 1 bit)

© Manfred Huber 2011 18

Floating Point Numbers
  Underflow: smallest positive normalized number

  Overflow: largest floating point number

  Machine precision: smallest number larger than 1
minus 1

  Machine precision bounds the rounding error:
  With rounding to nearest:

�

UFL = β L

�

OFL = (1−β−p)βU +1

�

εmach = β1− p

�

fl(x) − x
x

≤ 1
2
εmach

© Manfred Huber 2011 19

Floating Point Number
Example

  Representable numbers for a binary number with 3
bit mantissa and 2 bit exponent

  OFL = 3.5

  UFL = 0.5

  εmach = 0.125

© Manfred Huber 2011 20

Floating Point Arithmetic
  Floating point operations introduce rounding errors

  Addition and subtraction
  For addition and subtraction the mantissa has to be shifted

until the exponents of the numbers are equal
  Potential loss of significant bits in the smaller number

  Multiplication
  Mantissas have to be multiplied, yielding theoretically a

new mantissa with 2p digits which has to be rounded
  Division

  Quotient of mantissas can theoretically have an infinite
number of digits which have to be rounded

© Manfred Huber 2011 21

Floating Point Arithmetic
  Besides rounding errors, floating point operations

can result in unrepresentable numbers
  Overflow

  Results of an overflow (a number too large to be
represented) possess no good approximation and can be
catastrophic.

  On most computer systems overflow produces an error
message

  Underflow
  Results of an underflow are usually approximated as 0.

  On many computer systems underflow is handled silently

© Manfred Huber 2011 22

Floating Point Arithmetic
  Many general arithmetic laws do not strictly hold in

floating point arithmetic
  Addition and multiplication are commutative but not

associative

�

1
nn=1

∞∑

  Underflow, overflow, and rounding can lead to
incorrect results.
 Infinite sum

  While this sum diverges in reality (and thus has no result)
numeric calculation of it yields a finite sum

  Partial sum no longer changes once 1/n is too small compared to
the value of the partial sum

© Manfred Huber 2011 23

Relative Error and
Loss of Significance

  Errors produced by well implemented arithmetic
floating point operations can be modeled by

  Relative error bound

  Error propagation can still lead to high relative
error through loss of significance (or cancellation)
  When during subtraction leading digits cancel out the

result uses fewer than p digits and thus looses precision

�

fl(x op y) = (x op y)(1+ δ) ; δ ≤ εmach

�

fl(x op y) − (x op y)
(x op y)

 ≤ εmach

© Manfred Huber 2011 24

Loss of Significance
  Rounding results in a loss of the least significant

digits while cancellation leads to a loss of the most
significant digits
  It is generally a bad idea to compute a small number by

subtracting large numbers
  The propagated rounding error through loss of significance

might ultimately dominate the actual result

© Manfred Huber 2011 25

Loss of Significance
  To avoid cancellation errors, problems can

sometimes be reformulated in a way that avoids
the problem
  Multiplication with conjugate expressions:

�

y − x = (y − x)(y + x)
y + x

= y − x 2

y + x

�

1− cos x
sin2 x

= 1
1+ cos x

�

x = −b ± b2 − 4ac
2a

= 2c
−b  b2 − 4ac

  Application of identities to restructure the expression:

© Manfred Huber 2011 26

Representation and Error
  Computations on digital computers produce

approximations that yield errors
  Approximation should be taken into account when

designing and analyzing algorithms

  Approximations break into multiple types
  Data errors

  Computation errors
  Truncation error due to algorithm

  Rounding error due to representation limitations

  Errors can propagate and be amplified
  Algorithm design should take errors into account

