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Least Squares 
n  Least squares methods are aimed at finding 

approximate solutions when no precise solution 
exists 
n  Find the solution that minimizes the residual error in the 

system 

n  Least squares can be used to fit a model to noisy 
data points or to fit a simpler model to complex 
data 

n  Amounts to projecting higher dimensional data onto a lower-
dimensional space. 
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Linear Least Squares 
n  Linear least squares attempts to find a least 

squares solution for an overdetermined linear 
system (i.e. a linear system described by an m x n  
matrix A with more equations than parameters).  

n  Least squares minimizes the squared Eucliden norm of 
the residual 

n  For data fitting on m data points using a linear 
combination of basis functions this corresponds to  
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Existence and Uniqueness 
n  Linear least squares problem always has a solution 

n  Solution is unique if and only if A has full rank, i.e.  
rank(A)=n 
n  If  rank(A) < n  then A is rank-deficient and the solution 

of the least squares problem is not unique 

n  If solution is unique the residual vector can be 
expressed through A 

 
n  This is minimized if its derivative is 0 
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Normal Equations 
n  Optimization reduces to a  n x n system of (linear) 

normal equations 

n  Linear least squares can be found by solving this system 
of linear equations 

n  Solution can also be found through the Pseudo Inverse 

n  Condition number with respect to A can be expressed as 
in the case of solving linear equations 
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Data Fitting 
n  A common use for linear least squares solution is to 

fit a given type of function to noisy data points 
n  nth order polynomial fit using monomial basis: 

n  Solving the system of equations provides the best fit in terms of 
the Euclidian norm 
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Condition Number and 
Sensitivity 

n  Sensitivity also depends on b 
n  Influence of b can be expressed in terms of an angle 

between b and y 

n  Bound on the error in the solution due to perturbation in 
b can be expressed as 
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Condition Number and 
Sensitivity 

n  Bound on the error in the solution due to 
perturbation in A can be expressed as 

n  For small residuals the condition number for least squares 
is approximately  cond(A). 

n  For large residuals the condition number can be square of 
worse 
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Condition Number and 
Sensitivity 

n  Conditioning of normal equation solution is 
 
n  For large systems of equation the condition number of 

the formulation using normal equations (or the 
Pseudoinverse) increases rapidly 

n  Much of the increased sensitivity is due to the need for 
multiplying A and AT in order to be able to apply a 
solution algorithm for the system of equations 

n  Conditioning of the normal equations is potentially significantly 
worse than the conditioning of the original system 

n  Algorithm is not very stable for large numbers of equations/data 
points 
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Augmented System Method 
n  Augmented system method transforms least square 

problem into an system of equation solving 
problem by adding equations and can be used to 
improve the conditioning 
n  Increase matrix size to a square (m+n)x(m+n) matrix by 

including the residual equations 

n  Greater freedom to choose pivots and maintain stability 

n  Substentially higher complexity for systems with m>>n due to the 
need to solve a (n+m)x(n+m) system 
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QR Factorization 
n  The Augmented System method addresses stability 

but adds very high cost since it expands the matrix 

n  QR factorization changes the system matrix into 
solvable form without computation of ATA and 
without expanding the matrix 
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QR Factorization 
n  The important part of Q for the solution consists of the 

first n rows since the others are multiplied by 0 

n  QR factorization factors the system matrix A into Q an 
R where R is upper triangular 
n  As in LU Factorization, QT represents a sequence of solution-

preserving transformations 
n  In LU Factorization only identity has to be preserved which can be done 

using elimination matrices 

n  In QR Factorization the least square characteristic has to be preserved 
which requires the use of  orthogonal transformations 

n  R is an upper triangular matrix that can be used for backward 
substitution to compute the solution 
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Orthogonal Transformations 
n  Orthogonal transformations preserve the least square 

solution 

n  For QR factorization we need to find a set of orthogonal 
transformations that can transform A into an upper 
triangular matrix R and that are numerically stable 
n  Householder transforms 

n  Givens rotations 

n  Gram-Schmidt orthogonalization 
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QR Factorization with 
Householder Transformations 

n  Householder transformations allow to zero all entries 
below a chosen point in a vector a 
n  Applying this consecutively for every column of the matrix A, 

choosing the diagonal element as the one below which 
everything is to be zeroed out we can construct R 

n  Householder transformation can be computed from a given 
vector (vector of column values), a, setting all the values that 
are not to be changed (entries above the diagonal) to 0 

n  The sign for β can be chosen to avoid cancellation (loss of 
significance) in the computation of v   

n  H is orthogonal and symmetric:  
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QR Factorization with 
Householder Transformations 

n  In QR factorization with Householder transforms, 
successive columns are adjusted to upper triangular by 
zeroing all entries below the diagonal element. 
n  Householder transform does not affect the entries in the 

columns to the left and the rows above the currently chosen 
diagonal element since it contains only 0s in the rows below 
the chosen diagonal term. 

n  Applying the Householder transform only to the columns to the right saves 
significant processing time 

n  Applying it to individual columns also eliminates the need to compute full 
matrix H  - only                   is needed 
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QR Factorization Example 
n  Quadratic polynomial fit to 5 data points 

n  Design linear system for data fitting 

n  Starting with the first column start eliminating entries below 
the diagonal using appropriate Householder transforms 
choosing the sign on β to avoid cancellation 

! 

Data :   ("1,1),("0.5,0.5),(0,0),(0.5,0.5),(1,2)
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QR Factorization Example 
n  Householder elimination by column 

n  1st column: 

n  Negative sign on β because potentially cancelling term is +1 
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QR Factorization Example 
n  Householder elimination by column 

n  2nd column: 

n  Positive sign on β because possibly cancelling term is -0.191 
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QR Factorization Example 
n  Householder elimination by column 

n  3rd column: 

n  Positive sign on β because possibly cancelling term is -0.725 
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Least Squares Data Fitting

Existence, Uniqueness, and Conditioning

Solving Linear Least Squares Problems

Least Squares

Data Fitting

Example, continued

Resulting curve and original data points are shown in graph

< interactive example >

Michael T. Heath Scientific Computing 9 / 61

© Manfred Huber 2011 20 

QR Factorization Example 
n  Backward substitution with the upper triangular matrix 

yields the parameters and least squares fit second 
order polynomial 
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Other Orthogonal 
Transformations 

n  Other transformations can be used for QR Factorization 
n  Givens rotations 

n  Gram-Schmidt Orthogonalization 

n  Householder Transformations generally achieve the 
best performance and stability tradeoff 
n  Complexity of QR Factorization with Householder 

transformations is approximately  mn2-n3/3 multiplications 
n  Depending on the size of m (data points / equations) this is between the 

same and two times the work of normal equations 

n  Conditioning of QR Factorization with Householder 
transformations is optimal 

! 
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QR Factorization 
n  Transformations for QR Factorization are numerically 

more stable than elimination steps in LU Factorization 
n  Choice of sign in Householder transformations allows to avoid 

cancellation and thus instabilities in individual transforms 
n  Row Pivoting is usually not necessary 

n  Stability leads to QR factorization also frequently being 
used instead of LU Factorization to solve nonsingular 
systems of linear equations 
n  Increased complexity is traded off against stability (and thus 

precision) of the solution 
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Nonlinear Least Squares 
n  As for equation solving, finding solutions for general 

nonlinear systems requires iterative solutions 
n  Goal is to find the approximate solution with the smallest 

square residual, ρ, for the system of functions f(x) 

n  At the minimum, the gradient of the square residual function,  
would be 0   

n  Could use Multivariate Newton method to find the root of the derivative 
which would require second derivative, the Hessian of the square error 
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Gauss-Newton Method 
n  Multivariate Newton method would require solving the 

following linear system in each iteration 

n  Requires frequent computation of the Hessian which is 
expensive and reduces stability  

n  Gauss-Newton avoids this by dropping second order term   

n  This is best solved by converting this into the corresponding 
least squares problem and using QR factorization 

n  Once solved, Gauss-Newton operates like Multivariate Newton 
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Gauss-Newton Method 
n  Gauss-Newton method replaces nonlinear least squares 

problem with a sequence of linear least squares 
problems that converge to solution of nonlinear system 
n  Converges if residual at the solution is not too large 

n  Large residual at solution can lead to large values in Hessian, potentially 
leading to slow convergence or, in extreme cases, non-convergence 

n  If it does not converge (large residual at solution) other 
methods have to be used 

n  Levenberg-Marquardt method which uses an additional scalar parameter 
(and a separate, function-specific strategy to choose it) to modify step size 

n  General optimization using the complete Hessian 
n  Significant increase in computational complexity 
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Gauss-Newton Example 
n  Fit exponential function to data 

n  Residual function for data fitting is given by 

n  Resulting Jacobian is 
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Gauss-Newton Example 
n  First iteration starting at α(0)=(1 0)T 

n  Initial square residual: 

n  Solve for step 

n  Update parameter vector for next iteration 
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Gauss-Newton Example 
n  Second Iteration 

n  Square residual 

n  Solve for next step 

n  Update parameter vector for next iteration 
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Gauss-Newton Example 
n  Third Iteration 

n  Square residual 

n  Solve for next step 

n  Update parameter vector for next iteration 
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Least Squares Approximation 
n  Least Squares approximation is used to determine 

approximate solutions for a system of equation or to fit 
an approximate function to a set of data points 
n  As opposed to interpolation data points are not met precisely 

n  Applicable to noisy data points 

n  Allows less complex function to be fitted to the data points 

n  Least squares for linear functions has direct solution methods 
n  Normal equations method not very stable for large numbers of equations 

n  QR Factorization provides a more stable alternative that can also be used 
for equation solving instead of LU factorization 

n  Least squares for nonlinear systems requires iterative solution 
n  Gauss-Newton provides robust solution for problems with small residual 

n  Otherwise general, more expensive optimization methods have to be used 


