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Systems of Equations 
  Often a system model contains multiple variables 

(parameters) and contains multiple equations 

  Multiple equations arise because problems have multiple 
outputs and multiple parameters 

  Multiple equations can also arise from multiple 
measurements  

  This might lead to equations that are not solvable 

  Many iterative solutions to equation solving do not 
easily extend to solving systems of equations or 
equations in multiple variables 
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Systems of Linear Equations 
  Linear equations are a special type which is easier 

to solve and has analytic solution methods 
  Single linear equation with n variables corresponds to a 

hyperplane in n+1 dimensional space 

  Finding one analytic solution requires only one division 

  Has usually an infinite number of solutions if n is larger than 1 

  Systems of linear equations consist of multiple LEs 
  Solution to a sytem of linear equations corresponds to 

the intersection of multiple hyperplanes 

  

� 

a1x1 + ...+ an xn = b
 a T  x = b
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Systems of Linear Equations 
  A system of linear equations can be written as a 

matrix multiplication 

  Systems of linear equations do not always have a 
unique solution 
  If there are too many equations there might be no solution 

  If there are too few equations then the system might have 
multiple solutions 

  

� 

a1,1x1 + ...+ a1,n xn = b1

                                            ⇒  A x =
 
b 

am,1x1 + ...+ am,n xn = bm



© Manfred Huber 2011 5 

Solving Linear Systems 
  To solve a linear system analytically it is typically 

transformed into a system for which a solution can 
be easily computed 
  Diagonal system 

  Triangular systems    
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Solving Linear Systems 
  To transform a linear system into a different linear 

system a number of legal operations can be applied 
  Transformations correspond to premultiplying both sides 

of the linear system by a nonsingular matrix  

  Useful transformations: 
  Permutation: Swaps 2 rows (equations)  

  Row scaling: Scales each row by a scalar 

  Row addition: Subtracts a row from another row 

  

� 

A x =
 
b     ⇔   MA x = M

 
b    if M is not singular
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Solving Linear Systems 
  The most important transformation matrix for 

transforming a system into triangular form is the 
elimination matrix which combines row scaling and 
row subtraction 
  Elementary elimination matrix with pivot ak 
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Solving Linear Systems 
  Elementary elimination matrices can be combined 

into one elimination matrix 

  Elimination matrices are lower triangular and 
nonsingular 

  The inverse of an elimination matrix simply swaps 
the sign for the off-diagonal terms 
  Inverse is lower triangular 

� 

MkMl = I −mkek
T −mlel

T

� 

Lk = Mk
−1 = I + mkek

T
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Naïve Gaussian Elimination 
  For systems of n linear equations in n variables, a 

number of analytic solution methods exist 
  Matrix Inversion 

  Naïve Gaussian elimination 
  Reduce system of equations to upper diagonal form and 

back substitute to compute the values 

  Transformation of the system occurs through elimination 
  Add or subtract one equation from another 

  Multiply equations with a non-zero constant 

  

� 

 x = A−1
 
b 

  

� 

MA x = M
 
b  ,  MA = U
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Naïve Gaussian Elimination 
  Elimination step 

  For every variable xi , starting with i=1 
  Subtract aj,i/ai,i times equation i from every equation j, j>i  

  Back substitution step 
  Once the elimination is complete back substitution 

computes the values 

  For every variable xi , starting with i=n 
  Compute xi  by solving the ith equation using the previously 

computed values for xj , j>I 

  Naïve Gaussian elimination fails if any ai,i is 0 
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Gaussian Elimination 
  Complexity of naïve Gaussian elimination (in terms 

of multiplications and additions) 
  Elimination step: 

  Back substitution step: 

  Computation has to be repeated for every b 
  To address the problem with a 0 on the diagonal 

we have to use additional operations 
  Swap equations (rows) and variables (columns) 

� 

(n − i)(1+ (n − i +1)) = n3
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2
− 5 n
6i=1

n−1

∑

� 

((n − i) +1) = n2
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∑
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LU Factorization 
  Gaussian elimination has to be recomputed every time 

A or b change 
  Often in practical problems we have to solve the same 

linear system for different result values 

  LU factorization resolves this by explicitly decomposing 
A into the upper triangular matrix and the inverse of 
the elimination matrix 
  Only A is transformed through elimination 

  Solving for b, forward and backward substitution are used 
  Forward substitution with L 
  Backward substitution with U 

� 

A = LU

  

� 

L y =
 
b 

  

� 

U x =  y 
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LU Factorization 
  Complexity of LU factorization is approximately the 

same as for Gaussian Elimination 
  Elimination step: 

  Forward and back substitution step: 

  Only the forward and back substitution step has to 
be repeated for a new b 

  Both methods (Gaussian Elimination and LU 
Factorization) are approximately 3 times faster 
than matrix inversion 
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Existence and Uniqueness 
  Existence and uniqueness of solution depends on 

the equations and the target result value 
  In systems with n equations and n variables: 

  There exists a unique solution iff A is not singular  

  There are infinitely many solutions iff A is singular and b is in the 
span of  

  There is no solution iff A is singular and b is not in the span of A  

  A is not singular if the following equivalent 
conditions apply: 
  There are n equations that are not linearly dependent  

  A is invertible, rank(A)=n, det(A)≠0 
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Error Measures and Norms 
  To measure errors in multi-dimensional spaces, 

error vectors have to be reduced to scalars 
  Vector and matrix norms allow to do this 

  Properties of vector norms 
  Positive 

  Scalar multiplication 

  Triangle inequality 
� 

x > 0  if  x ≠ 0

� 

αx = α  x  for  any  scalar  α

� 

x + y ≤ x + y  

x − y ≥  x − y  
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Vector Norms 
  Common vector norms: p-norms 

  1-norm: 

  2-norm: 

  ∞-norm: 

  P-norms are related 

� 

x p = xii=1

n∑
p

p

� 

x 1 = xii=1

n∑

� 

x 2 = xii=1

n∑
2

� 

x ∞ =maxi xi

� 

x 1 ≥ x 2 ≥ x ∞  for  all  x ∈ Rn



© Manfred Huber 2011 17 

Matrix Norms 
  Matrix norms can be defined in terms of a number 

of properties similar to the vector norm 
  Positive 

  Scalar multiplication 

  Triangle inequality 

  For each vector norm there is a special matrix 
norm that can be derived from it and has all the 
properties 
  Induced Matrix norm 

� 

A > 0  if  A ≠ 0

� 

αA = α  A  for  any  scalar  α

� 

A + B ≤ A + B  

� 

A =maxx≠0
Ax
x
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Induced Matrix Norms 
  Induced vector norms (operator norms) correspond 

to the maximum scaling the matrix applies to the 
vector in terms of the specific vector norm 
  For vector p-norms: 

  1-norm: 

  ∞-norm: 

  Induced matrix norms have additional properties � 

A 1 =max j ai, j
i=1

n

∑

� 

A ∞ =maxi ai, j
j=1

n

∑

� 

AB ≤ A  B  

� 

Ax ≤ A  x  
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Sensitivity and Conditioning 
  To estimate the sensitivity of solving a system of 

linear equations we have to calculate the forward 
and backward errors 
  Forward error: 

  Backward error (residual):  

  (Relative) Condition number: � 

x − ˆ x = Δx

� 

Δx x
res b

=
Δx
x

b
res

=
Ax A−1res
res x

≤
A x A−1 res

x res
= A A−1

cond(A) = A A−1 � 

Aˆ x − b = A(x + Δx) − Ax

            = AΔx
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Sensitivity and Conditioning 
  Properties of condition number 

  cond(A) = ∞ for singular A 

  Condition measures the ratio of maximum stretching to 
maximum shrinking 

  cond(A) ≥ 1 

  cond(αA) = cond(A)  

  To compute condition number the norm of the 
inverse is often approximated as the maximum 
ratio of a set of solutions   

� 

A A−1 =maxx≠0
Ax
x

minx≠0
Ax
x

� 

A−1 ≥
x
Ax
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Sensitivity and Conditioning 
  Parameter sensitivity: 

  Conditioning depends on the relation of the 
hyperplanes 

� 

Δx
x

≤ cond(A)
ΔA
A
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Stability 
  Naïve Gaussian Elimination and LU Factorization fail 

when a pivot is 0 

  While Gaussian elimination and LU Factorization 
have no truncation error, they introduce rounding 
error during the elimination and substitution steps 
  Using small pivots (and thus large multiplication factors) 

can lead to swamping where the the equation being 
subtracted overwhelms the equation it is subtracted from 

  Non-singular matrix becomes close to singular 

  Algorithms are more stable if they use larger pivots 
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Partial Pivoting 
  To improve stability, partial pivoting uses row 

swaps (permutation matrices) to ensure that 
always the largest remaining entry in a column is 
used as the pivot 
  For Gaussian Elimination this is directly implemented by 

applying permutations between elimination steps 

  For LU-Factorization this causes problems 
  P-1 is not lower triangular 

  Row permutations have to be handled separately 

  

� 

A x =
 
b     ⇔   PA x = P

 
b    

� 

PA = LU    
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PA=LU Factorization 
  Permutations are tracked separately from 

eliminations leading to a factorization of PA 

  The solution step is extended to address row 
permutations 

  Permute the elements in b using P 

  Forward substitution using L 

  Back substitution using U 

� 

PA = LU    

  

� 

PA x = LU x = P
 
b    

  

� 

 z = P
 
b    

  

� 

L y =  z    

  

� 

U x =  y    
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Complete Pivoting 
  Stability can be further improved by ordering the 

pivots from largest to smallest through column 
swaps 
  Always use the largest element in the remaining sub-

matrix below row k as the pivot 
  Column swaps correspond to reordering the variables x 

  For Gaussian Elimination this is directly implemented by 
applying permutations between elimination steps 

  For LU-Factorization row and column swaps have to be 
tracked separately 

  

� 

A x =
 
b     ⇔   AP x =

 
b    

� 

PAQ = LU    
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Scaling and Iterative 
Refinement 

  Scaling of rows and columns can be used to reduce 
rounding error and thus to improve stability 
  Large differences in coefficients can decrease stability 

  Sometimes scaling can improve the stability 

  Iterative refinement allows to iteratively break 
down the residual to improve precision 

  Can sometimes lead to improved precision 
  However, residual calculation is sensitive to cancellation 

� 

Ax = b   ⇒   x0   ⇒  r0 = b − Ax0

Az = r0   ⇒   z0,x1 = x0 + z0   ⇒   r1 = r0 − Az0
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Direct Solution Methods 
  LU Factorization and Gaussian Elimination return a 

result without truncation error in O(n3) 
multiplications. 
  Fixed calculation complexity 

  Guaranteed solution for nonsingular matrix A 

  For very large n or for very sparse matrices the 
complexity of O(n3) can be very high 
  Iterative methods can be used 

  Lower cost per iteration 

  Convergence has to be analyzed  
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Iterative Solution Methods 
  Fixed point methods allowed for iterative solutions 

in single equations  

  Iteration in systems of equations is more difficult 
  Convergence properties are more complex 

  Complexity of iterative methods consists of 
evaluating the system of equations in each 
iteration, thus O(n2) 
  If approximate solution is known the number of iterations 

required can be low 

  If A is sparse the complexity per iteration can drop further 
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Jacobi Method 
  The Jacobi Method defines a fixed point system by 

rewriting each equation fi(x) to compute xi 

  Starting with an initial vector x(0), the next value is 
calculated by evaluating the equations using the 
previous iteration’s value x(t-1) 

  Is ensured to converge if A is strictly diagonally dominant 
(i.e. the coefficients on the diagonal are strictly larger 
than all other coefficients in the corresponding row 

  

� 

fi(
 x ) = ai, j x j = bi   ⇒   xi =

bi − ai, j x jj∈[1..n ], j≠ i
∑

ai,ij=1

n

∑
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Jacobi Method 
  Jacobi Method can be rewritten as strict fixed point 

iteration 

  Number of iterations required depends on the starting 
point 

  For sparse matrices the function form is more efficient 
than the matrix form 

  

� 

A x =
 
b 

(D + L + U) x =
 
b 

D x = (
 
b − (L + U) x )

 x = D−1(
 
b − (L + U)  x )
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Gauss-Seidel Method 
  The Gauss-Seidel method is variation of the Jacobi 

method in which for each equation the most recent 
estimate (from the current iteration) is used rather 
than the result form the previous iteration 

  Has the same convergence conditions as the Jacobi 
method 

  Usually converges faster than Jacobi method 

  

� 

A x =
 
b 

(D + L) x ( t ) =
 
b −U x t−1

 x (t ) = D−1(
 
b −U x (t−1) − L x (t ))



© Manfred Huber 2011 32 

Successive Over-Relaxation  
  Successive Over-Relaxation (SOR) further increases 

convergence speed by anticipating future changes 
and “overshooting” the iteration point of the Gauss-
Seidel method by a relaxation parameter ω>1 

  For ω=1 SOR is equal to Gauss-Seidel 

  Usually converges faster than Gauss-Seidel for 
appropriate relaxation parameters � 

xi
t = (1−ω)xi

t−1 + ω
bi − ai, j x j

t − ai, j x j
t−1

j= i+1

n∑
j=1

i−1∑
ai,i
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Systems of Linear Equations 
  Systems of linear equations can be solved using 

either direct or iterative methods 

  Direct methods have fixed computation costs (O(n3)) 
and incur no truncation error 

  Iterative methods are variants of fixed point 
methods and have a smaller per iteration complexity 
(O(n2)) 
  Less complex for large systems in which a good starting point is 

known 

  Less complex for sparse matrices (i.e. systems of equations where 
each equation only depends on a subset of the variables 


