Computational Methods

Systems of Linear Equations
Systems of Equations

- Often a system model contains multiple variables (parameters) and contains multiple equations
 - Multiple equations arise because problems have multiple outputs and multiple parameters
 - Multiple equations can also arise from multiple measurements
 - This might lead to equations that are not solvable
- Many iterative solutions to equation solving do not easily extend to solving systems of equations or equations in multiple variables
Systems of Linear Equations

- Linear equations are a special type which is easier to solve and has analytic solution methods
 - Single linear equation with n variables corresponds to a hyperplane in $n+1$ dimensional space
 \[a_1 x_1 + \ldots + a_n x_n = b \]
 \[\vec{a}^T \vec{x} = b \]
 - Finding one analytic solution requires only one division
 - Has usually an infinite number of solutions if n is larger than 1

- Systems of linear equations consist of multiple LEs
 - Solution to a system of linear equations corresponds to the intersection of multiple hyperplanes
Systems of Linear Equations

- A system of linear equations can be written as a matrix multiplication

\[a_{1,1}x_1 + ... + a_{1,n}x_n = b_1 \]
\[\vdots \]
\[a_{m,1}x_1 + ... + a_{m,n}x_n = b_m \]

\[\Rightarrow A\vec{x} = \vec{b} \]

- Systems of linear equations do not always have a unique solution
 - If there are too many equations there might be no solution
 - If there are too few equations then the system might have multiple solutions
Solving Linear Systems

To solve a linear system analytically it is typically transformed into a system for which a solution can be easily computed

- **Diagonal system**
 \[
 \begin{pmatrix}
 a_{1,1} & 0 & \cdots & 0 \\
 \vdots & \ddots & \ddots & \vdots \\
 0 & \cdots & 0 & a_{n,n}
 \end{pmatrix}
 \begin{pmatrix}
 x_1 \\
 \vdots \\
 x_n
 \end{pmatrix}
 =
 \begin{pmatrix}
 b_1 \\
 \vdots \\
 b_n
 \end{pmatrix}
 \Rightarrow
 x_1 = \frac{b_1}{a_{1,1}},
 \quad
 x_n = \frac{b_n}{a_{n,n}},
 \quad
 x_{n-1} = \frac{b_{n-1} - a_{n-1,n}x_n}{a_{n-1,n-1}}
 \]

- **Triangular systems**
 \[
 \begin{pmatrix}
 a_{1,1} & \cdots & a_{1,n} \\
 \vdots & \ddots & \vdots \\
 0 & \cdots & 0
 \end{pmatrix}
 \begin{pmatrix}
 x_1 \\
 \vdots \\
 x_n
 \end{pmatrix}
 =
 \begin{pmatrix}
 b_1 \\
 \vdots \\
 b_n
 \end{pmatrix}
 \Rightarrow
 x_1 = \frac{b_1}{a_{1,1}},
 \quad
 x_n = \frac{b_n}{a_{n,n}},
 \quad
 x_{n-1} = \frac{b_{n-1} - a_{n-1,n}x_n}{a_{n-1,n-1}}
 \]

© Manfred Huber 2011
Solving Linear Systems

To transform a linear system into a different linear system a number of legal operations can be applied

- Transformations correspond to premultiplying both sides of the linear system by a nonsingular matrix
 \[A\tilde{x} = \tilde{b} \iff MA\tilde{x} = M\tilde{b} \quad \text{if } M \text{ is not singular} \]

- Useful transformations:
 - Permutation: Swaps 2 rows (equations)
 - Row scaling: Scales each row by a scalar
 - Row addition: Subtracts a row from another row
Solving Linear Systems

The most important transformation matrix for transforming a system into triangular form is the elimination matrix which combines row scaling and row subtraction.

- Elementary elimination matrix with pivot a_k

$$ M_k = I - m_k e_k^T = I - \begin{pmatrix} 0 \\ \vdots \\ 0 \\ \frac{a_{k+1}}{a_k} \\ \frac{a_{k}}{a_k} \\ \vdots \\ \frac{a_{n}}{a_k} \end{pmatrix} (0 \quad \cdots \quad 0 \quad 1 \quad 0 \quad \cdots \quad 0) $$
Solving Linear Systems

- Elementary elimination matrices can be combined into one elimination matrix
 \[M_k M_l = I - m_k e_k^T - m_l e_l^T \]

- Elimination matrices are lower triangular and nonsingular

- The inverse of an elimination matrix simply swaps the sign for the off-diagonal terms
 - Inverse is lower triangular
 \[L_k = M_k^{-1} = I + m_k e_k^T \]
Naïve Gaussian Elimination

- For systems of n linear equations in n variables, a number of analytic solution methods exist
 - Matrix Inversion
 \[\tilde{x} = A^{-1}\tilde{b} \]
 - Naïve Gaussian elimination
 - Reduce system of equations to upper diagonal form and back substitute to compute the values
 \[MA\tilde{x} = Mb, \quad MA = U \]
 - Transformation of the system occurs through elimination
 - Add or subtract one equation from another
 - Multiply equations with a non-zero constant
Naïve Gaussian Elimination

- **Elimination step**
 - For every variable x_i, starting with $i=1$
 - Subtract $a_{j,i}/a_{i,i}$ times equation i from every equation $j, j>i$

- **Back substitution step**
 - Once the elimination is complete back substitution computes the values
 - For every variable x_i, starting with $i=n$
 - Compute x_i by solving the i^{th} equation using the previously computed values for $x_j, j>i$

- Naïve Gaussian elimination fails if any $a_{i,i}$ is 0
Gaussian Elimination

- Complexity of naïve Gaussian elimination (in terms of multiplications and additions)
 - Elimination step: \[\sum_{i=1}^{n-1} (n-i)(1+(n-i+1)) = \frac{n^3}{3} + \frac{n^2}{2} - 5 \frac{n}{6} \]
 - Back substitution step: \[\sum_{i=n}^{1} ((n-i) + 1) = \frac{n^2}{2} + \frac{n}{2} \]
- Computation has to be repeated for every \(b \)
- To address the problem with a 0 on the diagonal we have to use additional operations
 - Swap equations (rows) and variables (columns)
LU Factorization

- Gaussian elimination has to be recomputed every time \(A \) or \(b \) change
 - Often in practical problems we have to solve the same linear system for different result values
- LU factorization resolves this by explicitly decomposing \(A \) into the upper triangular matrix and the inverse of the elimination matrix
 - Only \(A \) is transformed through elimination \(A = LU \)
 - Solving for \(b \), forward and backward substitution are used
 - Forward substitution with \(L \) \(L\vec{y} = \vec{b} \)
 - Backward substitution with \(U \) \(U\vec{x} = \vec{y} \)
LU Factorization

- Complexity of LU factorization is approximately the same as for Gaussian Elimination
 - Elimination step: $\approx \frac{n^3}{3}$
 - Forward and back substitution step: $\approx \frac{n^2}{2}$

- Only the forward and back substitution step has to be repeated for a new b

- Both methods (Gaussian Elimination and LU Factorization) are approximately 3 times faster than matrix inversion $\approx n^3$
Existence and Uniqueness

Existence and uniqueness of solution depends on the equations and the target result value

- In systems with \(n \) equations and \(n \) variables:
 - There exists a unique solution iff \(A \) is not singular
 - There are infinitely many solutions iff \(A \) is singular and \(b \) is in the span of
 - There is no solution iff \(A \) is singular and \(b \) is not in the span of \(A \)

- \(A \) is not singular if the following equivalent conditions apply:
 - There are \(n \) equations that are not linearly dependent
 - \(A \) is invertible, \(\text{rank}(A)=n, \text{det}(A)\neq0 \)
Error Measures and Norms

- To measure errors in multi-dimensional spaces, error vectors have to be reduced to scalars.
 - Vector and matrix norms allow to do this.

- Properties of vector norms
 - Positive: $\|x\| > 0$ if $x \neq 0$
 - Scalar multiplication: $\|\alpha x\| = |\alpha| \|x\|$ for any scalar α
 - Triangle inequality: $\|x + y\| \leq \|x\| + \|y\|$
 $\|x - y\| \geq |\|x\| - \|y\||$
Vector Norms

- Common vector norms: p-norms

 \[\|x\|_p = \sqrt[p]{\sum_{i=1}^{n} |x_i|^p} \]

 - 1-norm: \[\|x\|_1 = \sum_{i=1}^{n} |x_i| \]

 - 2-norm: \[\|x\|_2 = \sqrt{\sum_{i=1}^{n} |x_i|^2} \]

 - \(\infty\)-norm: \[\|x\|_\infty = \max_i |x_i| \]

- P-norms are related

 \[\|x\|_1 \geq \|x\|_2 \geq \|x\|_\infty \text{ for all } x \in \mathbb{R}^n \]
Matrix Norms

- Matrix norms can be defined in terms of a number of properties similar to the vector norm
 - Positive: \(\|A\| > 0 \) if \(A \neq 0 \)
 - Scalar multiplication: \(\|\alpha A\| = |\alpha| \|A\| \) for any scalar \(\alpha \)
 - Triangle inequality: \(\|A + B\| \leq \|A\| + \|B\| \)
- For each vector norm there is a special matrix norm that can be derived from it and has all the properties
 - Induced Matrix norm: \(\|A\| = \max_{x \neq 0} \frac{\|Ax\|}{\|x\|} \)
Induced Matrix Norms

- Induced vector norms (operator norms) correspond to the maximum scaling the matrix applies to the vector in terms of the specific vector norm.
 - For vector p-norms:
 - 1-norm: \(\|A\|_1 = \max_j \sum_{i=1}^n |a_{i,j}| \)
 - \(\infty \)-norm: \(\|A\|_\infty = \max_i \sum_{j=1}^n |a_{i,j}| \)
 - Induced matrix norms have additional properties:
 \[
 \|AB\| \leq \|A\| \|B\| \\
 \|Ax\| \leq \|A\| \|x\|
 \]
Sensitivity and Conditioning

To estimate the sensitivity of solving a system of linear equations we have to calculate the forward and backward errors

- Forward error: \(\| x - \hat{x} \| = \| \Delta x \| \)
- Backward error (residual): \(\| A\hat{x} - b \| = \| A(x + \Delta x) - Ax \| = \| A\Delta x \| \)

- (Relative) Condition number:

\[
\frac{\| \Delta x \|}{\| x \|} = \frac{\| \Delta x \|}{\| b \|} = \frac{\| Ax \| A^{-1} \text{res} \|}{\| x \| \| x \| A^{-1} \text{res} \|} \leq \frac{\| A \| x \| A^{-1} \| \text{res} \|}{\| x \| \| res \|} = \| A \| \| A^{-1} \|
\]

\[cond(A) = \| A \| \| A^{-1} \| \]
Sensitivity and Conditioning

- Properties of condition number
 - $\text{cond}(A) = \infty$ for singular A
 - Condition measures the ratio of maximum stretching to maximum shrinking
 \[
 \|A\|\|A^{-1}\| = \max_{x \neq 0} \frac{\|Ax\|}{\|x\|} / \min_{x \neq 0} \frac{\|Ax\|}{\|x\|}
 \]
 - $\text{cond}(A) \geq 1$
 - $\text{cond}(\alpha A) = \text{cond}(A)$
 - To compute condition number the norm of the inverse is often approximated as the maximum ratio of a set of solutions
 \[
 \|A^{-1}\| \geq \frac{\|x\|}{\|Ax\|}
 \]
Sensitivity and Conditioning

- Parameter sensitivity:
 \[
 \frac{\|\Delta x\|}{\|x\|} \leq \text{cond}(A) \frac{\|\Delta A\|}{\|A\|}
 \]

- Conditioning depends on the relation of the hyperplanes

- In two dimensions, uncertainty in intersection point of two lines depends on whether lines are nearly parallel
Stability

- Naïve Gaussian Elimination and LU Factorization fail when a pivot is 0
- While Gaussian elimination and LU Factorization have no truncation error, they introduce rounding error during the elimination and substitution steps
 - Using small pivots (and thus large multiplication factors) can lead to swamping where the equation being subtracted overwhelms the equation it is subtracted from
 - Non-singular matrix becomes close to singular
 - Algorithms are more stable if they use larger pivots
Partial Pivoting

- To improve stability, partial pivoting uses row swaps (permutation matrices) to ensure that always the largest remaining entry in a column is used as the pivot
 - For Gaussian Elimination this is directly implemented by applying permutations between elimination steps
 \[A\tilde{x} = \tilde{b} \iff PA\tilde{x} = Pb \]
 - For LU-Factorization this causes problems
 - \(P^{-1} \) is not lower triangular
 - Row permutations have to be handled separately
 \[PA = LU \]
PA=LU Factorization

- Permutations are tracked separately from eliminations leading to a factorization of PA
 $PA = LU$
- The solution step is extended to address row permutations
 $$PA\tilde{x} = LU\tilde{x} = P\tilde{b}$$
 - Permute the elements in b using P
 $$\tilde{z} = Pb$$
 - Forward substitution using L
 $$L\tilde{y} = \tilde{z}$$
 - Back substitution using U
 $$U\tilde{x} = \tilde{y}$$
Complete Pivoting

- Stability can be further improved by ordering the pivots from largest to smallest through column swaps.
 - Always use the largest element in the remaining sub-matrix below row k as the pivot.
 - Column swaps correspond to reordering the variables x.
 - For Gaussian Elimination this is directly implemented by applying permutations between elimination steps:
 \[A\tilde{x} = \tilde{b} \iff AP\tilde{x} = b \]
 - For LU-Factorization row and column swaps have to be tracked separately:
 \[PAQ = LU \]
Scaling and Iterative Refinement

- Scaling of rows and columns can be used to reduce rounding error and thus to improve stability
 - Large differences in coefficients can decrease stability
 - Sometimes scaling can improve the stability
- Iterative refinement allows to iteratively break down the residual to improve precision
 \[Ax = b \quad \Rightarrow \quad x_0 \quad \Rightarrow \quad r_0 = b - Ax_0 \]
 \[Az = r_0 \quad \Rightarrow \quad z_0, x_1 = x_0 + z_0 \quad \Rightarrow \quad r_1 = r_0 - Az_0 \]
 - Can sometimes lead to improved precision
 - However, residual calculation is sensitive to cancellation
Direct Solution Methods

- LU Factorization and Gaussian Elimination return a result without truncation error in $O(n^3)$ multiplications.
 - Fixed calculation complexity
 - Guaranteed solution for nonsingular matrix A
- For very large n or for very sparse matrices the complexity of $O(n^3)$ can be very high
 - Iterative methods can be used
 - Lower cost per iteration
 - Convergence has to be analyzed
Iterative Solution Methods

- Fixed point methods allowed for iterative solutions in single equations
- Iteration in systems of equations is more difficult
 - Convergence properties are more complex
- Complexity of iterative methods consists of evaluating the system of equations in each iteration, thus $O(n^2)$
 - If approximate solution is known the number of iterations required can be low
 - If A is sparse the complexity per iteration can drop further
Jacobi Method

- The Jacobi Method defines a fixed point system by rewriting each equation $f_i(x)$ to compute x_i

$$f_i(\bar{x}) = \sum_{j=1}^{n} a_{i,j} x_j = b_i \quad \Rightarrow \quad x_i = \frac{b_i - \sum_{j \in [1..n], j \neq i} a_{i,j} x_j}{a_{i,i}}$$

- Starting with an initial vector $x^{(0)}$, the next value is calculated by evaluating the equations using the previous iteration’s value $x^{(t-1)}$
 - Is ensured to converge if A is strictly diagonally dominant (i.e. the coefficients on the diagonal are strictly larger than all other coefficients in the corresponding row)
Jacobi Method

- Jacobi Method can be rewritten as strict fixed point iteration

\[A\tilde{x} = \tilde{b} \]

\[(D + L + U)\tilde{x} = \tilde{b} \]

\[D\tilde{x} = (\tilde{b} - (L + U)\tilde{x}) \]

\[\tilde{x} = D^{-1}(\tilde{b} - (L + U)\tilde{x}) \]

- Number of iterations required depends on the starting point

- For sparse matrices the function form is more efficient than the matrix form
Gauss-Seidel Method

- The Gauss-Seidel method is a variation of the Jacobi method in which for each equation the most recent estimate (from the current iteration) is used rather than the result from the previous iteration.

\[A\vec{x} = \vec{b} \]

\[(D + L)\vec{x}^{(t)} = \vec{b} - U\vec{x}^{t-1} \]

\[\vec{x}^{(t)} = D^{-1}(\vec{b} - U\vec{x}^{(t-1)} - L\vec{x}^{(t)}) \]

- Has the same convergence conditions as the Jacobi method.
- Usually converges faster than the Jacobi method.
Successive Over-Relaxation

- Successive Over-Relaxation (SOR) further increases convergence speed by anticipating future changes and “overshooting” the iteration point of the Gauss-Seidel method by a relaxation parameter $\omega > 1$.

\[
x_i^t = (1 - \omega)x_i^{t-1} + \omega \left(b_i - \sum_{j=1}^{i-1} a_{i,j} x_j^t - \sum_{j=i+1}^{n} a_{i,j} x_j^{t-1} \right) / a_{i,i}
\]

- For $\omega = 1$ SOR is equal to Gauss-Seidel.
- Usually converges faster than Gauss-Seidel for appropriate relaxation parameters.
Systems of Linear Equations

- Systems of linear equations can be solved using either direct or iterative methods.
- Direct methods have fixed computation costs ($O(n^3)$) and incur no truncation error.
- Iterative methods are variants of fixed point methods and have a smaller per iteration complexity ($O(n^2)$).
 - Less complex for large systems in which a good starting point is known.
 - Less complex for sparse matrices (i.e. systems of equations where each equation only depends on a subset of the variables).