

Optimization Unconstrained Optimization

© Manfred Huber 2011

Optimization

- Optimization problems are concerned with finding the minimum or maximum of an objective function
 - Find x^* such that $f(x^*) \le f(x)$ for all x in S
 - Maximization of f(x) is the same as minimization of -f(x)
 - Least squares problem is a special case where the function to be minimized is the residual
- Optimization problems can also include a set of constraints that limit the set of feasible points, S
 - Unconstrained optimization does not have any constraints
 - Equality constraints are of the form g(x) = 0
 - Inequality constraints are of the form $h(x) \le 0$

Optimization

 General continuous optimization problem is defined by the objective function and the constraints

Find *min f(x)*

Subject to $g_i(x) = 0$ and $h_j(x) \le 0$

 $f:\mathfrak{R}^n \to \mathfrak{R}$, $g:\mathfrak{R}^n \to \mathfrak{R}^m$, $h:\mathfrak{R}^n \to \mathfrak{R}^l$

- Linear programming characterizes optimization problems where the objective function and the constraints are linear
- Nonlinear programming characterizes optimization problems where at least one of the constraints or the objective function are nonlinear

Global vs. Local Optimization

- A global optimum is a point that is an optimum for all feasible points (points matching the constraints)
- A local optimum is a point that is an optimum only for the feasible points in some neighborhood around the point

© Manfred Huber 2011

Global vs. Local Optimization

- Global optimization is in general a very difficult problem and existing methods for global optimality are limited to specific function types
 - Even verifying that an optimum is a global optimum is very difficult in general
- Most optimization methods are designed to find local optima
 - To increase the chance of finding global optima, local optimization methods can be run multiple times from different starting points

Existence of Solution

Not every function has an optimum

- E.g. Polynomials of odd order do not have global optima since they they tend to ±∞ for x towards ±∞
- Some conditions exist under which the existence of a global minimum can be ensured
 - If objective function f(x) is continuous on a closed and bounded set S of feasible points, then f(x) has a global minimum on S
 - If f(x) is coercive on a closed, unbounded set S of feasible points, then it has a global minimum on S

Coercive:
$$\lim_{\|x\| \to \infty} f(x) = \infty$$

Uniqueness of Solution

- If function *f(x)* is convex on the set of feasible points, *S*, then any minimum on S is a global minimum on *S*
 - In a convex function every minimum must have the same function value (all minima form a "plateau")
- If function *f(x)* is strictly convex on the set of feasible points, *S*, then it has a unique global minimum on *S*
 - A strictly convex function can only have one minimum

Optimality Conditions

First-Order optimality condition

Any extremum of a continuous, differentiable function *f* (*x*) has to be either on the boundary of the feasible set or a critical point, i.e. a solution to the nonlinear system $\nabla f(x) = 0$

• Not every critical point is an extrema (e.g. saddle points)

- Second-Order optimality condition
 - If *f(x)* is twice differentiable, the Hessian matrix (matrix of partial second derivatives) permits to identify extrema
 - Critical point x^* is a minimum if $H_f(x^*)$ is positive definite
 - Critical point x^* is a maximum if $H_f(x^*)$ is negative definite

Sensitivity and Conditioning

- Sensitivity analysis for the scalar case using Taylor series expansion
 - Absolute forward error: $\Delta x = \hat{x} x^*$
 - Absolute backward error:

$$f(x^* + \Delta x) = f(x^*) + f'(x^*)\Delta x + \frac{1}{2}f''(x^*)\Delta x^2 + O(\Delta x^3) \approx f(x^*) + \frac{1}{2}f''(x^*)\Delta x^2$$
$$f(\hat{x}) - f(x^*) \approx \frac{1}{2}f''(x^*)\Delta x^2$$

Sensitivity of optimization:

$$\left|\Delta x\right| \approx \sqrt{2\left|f(\hat{x}) - f(x^*)\right|} / \left|f''(x^*)\right|$$

Unconstrained Optimization

- Unconstrained optimization has many similarities to the problem of solving equations and solution methods are similar
 - Direct search methods iteratively narrow down the neighborhood of the solution (like bisection method for equation solving
 - Iterated approximation methods use a fixed-point formulation and the derivative (or an approximation of it) to achieve the solution

Direct Search Methods for One-Dimensional Optimization

- Golden Section search iteratively narrows down the interval within which the solution has to exist
 - To ensure existence of the solution within the interval, the function is assumed to be unimodal in the interval
 - f(x) is unimodal in an interval if it has a minimum, x*, in the interval and is strictly increasing in both directions from this point
 - Any continuous, twice differentiable function has a (potenitally small) interval around each minimum for which the function is unimodal
 - To divide the interval two points, x₁, x₂, within the interval are used and their function values indicate which end of the interval can be discarded

• The side of the point with the higher function value is discarded

Golden Section Search

Golden Section achieves a reduction of the interval by a constant factor and requires only one function evaluation in each iteration by carefully choosing the locations of the interior points

Interior points in interval [a,b] are chosen at

$$x_1 = a + \frac{3 - \sqrt{5}}{2}(b - a)$$
, $x_2 = a + \frac{\sqrt{5} - 1}{2}(b - a)$

If one side of the interval is discarded the other point stays at a correct location in the new interval. E.g. if left is discarded:

$$\begin{aligned} x_2 &= a + \frac{\sqrt{5} - 1}{2}(b - a) = x_1 + \frac{2\sqrt{5} - 4}{2}\frac{1}{1 - (3 - \sqrt{5})/2}(b - x_1) = x_1 + \frac{(2\sqrt{5} - 4)2}{2(-1 + \sqrt{5})}(b - x_1) \\ &= x_1 + \frac{-3 + 4\sqrt{5} - 5}{2(-1 + \sqrt{5})}(b - x_1) = x_1 + \frac{(3 - \sqrt{5})(-1 + \sqrt{5})}{2(-1 + \sqrt{5})}(b - x_1) = x_1 + \frac{3 - \sqrt{5}}{2}(b - x_1) \end{aligned}$$

© Manfred Huber 2011

Example

Golden Section search on f(x) = 0.5 - xe^{-x²} and initial interval [0,2]

 $\ensuremath{\textcircled{C}}$ Manfred Huber 2011

Successive Parabolic Interpolation

- Golden Section search is safe but converges only at a linear rate with constant 0.618
- Successive parabolic interpolation uses only one point in the interval, calculating the next (and which interval point to remove)
 - Take 3 points and their function values and interpolate them using a parabola
 - Minimum of parabola is added as a new point
 - Oldest of the points is dropped
 - Achieves superlinear convergence with $r \approx 1.324$

Newton's Method

 As in the case of solving nonlinear equations, a better convergence rate can be achieved using information about the function

$$f(x + \Delta x) \approx f(x) + f'(x)\Delta x + \frac{f''(x)}{2}\Delta x^2$$

- Necessary first-order condition yields $\frac{\partial f(x + \Delta x)}{\partial \Delta x} = f'(x) + f''(x)\Delta x = 0 \implies \Delta x = -\frac{f'(x)}{f''(x)}$
- Yields Newton's method for f'(x)=0

$$x_{t+1} = x_t - \frac{f'(x_t)}{f''(x_t)}$$

 Has quadratic convergence rate and converges if started close enough to the solution

© Manfred Huber 2011

Safeguard Methods

- As in nonlinear equation solving there are interval search methods that are guaranteed to converge slowly and methods with higher convergence rates but without guarantees that they will convergence
- Safeguard methods combine multiple methods to achieve both guaranteed convergence and a good convergence rate
 - Golden selection search and successive parabolic interpolation can be combined if no derivatives are available
 - Golden selection search and Newton's method can be combined if derivatives are available

Multi-Dimensional Optimization

- As for the one-dimensional case, two basic methods for optimization of multi-dimensional functions exist
 - Direct search methods
 - Iterative descent methods
- Direct search methods for multi-dimensional data introduce additional problems
 - Definition of an equivalent to a bracket is not easily possible in the multi-dimensional case

- Nelder-Mead is a direct search method for the multi-variate case
 - Does not use a "bracket" but a simplex with n+1 points for a function with n variables
 - Points of the simplex form the points of interest defining a region
 - No guarantee that the solution lies within this region
 - Next search volume can lie partially outside the previous one
 - Next simplex is created by replacing the worst point of the existing simplex with a new point
 - New point is improved point on the line connecting the old point and the centroid of the remaining points in the simplex
 - If no better point is found, simplex is shrunk towards best point

- Nelder-Mead does not require any information about the function to be minimized
 - Only evaluation of the function is necessary
 - Convergence is only guaranteed if the function within the simplex region has a unique minimum
- Operations change location and shape of simplex
 - Reflection: mirrors simplex away from worst point
 - Expansion: expands simplex in direction of new point
 - Contraction: contracts simplex away from worst point
 - Reduction: shrinks simplex around best point

- Variations of the algorithm exists which apply slightly different rules to select operation
- A common set of rules is:
 - Precomputation:
 - Sort the vertices of the simplex by function value $f(x_i)$
 - Compute centroid *x_c* of the best *n* vertices
 - Start by applying reflection to worst vertex to get reflected vertex x_r

$$x_r = x_c + \alpha (x_c - x_{n+1})$$
, often $\alpha = 1$

 If reflected vertex is not the worst of the remaining and not the best vertex, replace previously worst vertex with reflected vertex

- Else, if reflected vertex is the best vertex apply expansion $x_e = x_c + \beta(x_c x_{n+1})$, often $\beta = 2$
 - If expansion point is better than the reflected point, replace the worst point with the expanded point
 - Else replace the worst point with the reflected point
- Else, if reflected point is the worst point apply contraction $x_0 = x_c \gamma(x_c x_{n+1})$, often $\gamma = 1/2$
 - If contraction point is better than the original worst point, replace the worst point with the contraction point
 - Else, if the contraction point is no better than the original worst point apply reduction by shrinking all points towards the best point

$$x_i = x_1 + \eta(x_i - x_1)$$
 , often $\eta = 1/2$

 $\ensuremath{\textcircled{C}}$ Manfred Huber 2011

- Nelder-Mead can be applied to smooth and nonsmooth functions
 - Does not need derivatives
- Computational cost of the algorithm increases fast as the number of variables increases
- No guaranteed convergence
 - The choice of the initial simplex is essential to finding the desired minimum

Iterative Descent Methods

- When derivative information of the function is available, this information can be used to accelerate optimization on smooth functions
 - Steepest descent methods
 - Strictly follow the gradient direction of the function
 - Newton's method
 - Take into account the derivative of the gradient (the Hessian)
 - Quasi-Newton methods
 - Use a local approximation of the Hessian to reduce computation and be potentially more robust

Steepest Descent with Line Search

 In steepest descent methods the direction of the update step for the iterative solution is always given by the negative gradient at the current point.

$$x_{t+1} = x_t - \alpha_t \nabla f(x_t)$$

- Pick of step size α is very important for convergence towards a solution
 - Line search can be used to determine the best *α* for the current point

$$\alpha_t = \operatorname{argmin}_{\alpha} f(x_t - \alpha \nabla f(x_t))$$

Line search can be solved a a one-dimensional minimization problem

Steepest Descent with Line Search

- Steepest descent with line search is very robust and reliable
 - Always makes progress
 - Convergence is only linear
 - Ignoring of second derivatives makes it inefficient

Newton's Method

 Rather than relying on the gradient alone (a first order approximation), Newton's method again uses a local second order approximation.

$$x_{t+1} = x_t - H_f^{-1}(x_t) \nabla f(x_t) \quad , \quad H_f(x)_{i,j} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}$$

 To avoid the inversion, this can again be broken into a linear equation solution for the step size followed by an update

$$H_f(x_t)s_t = -\nabla f(x_t)$$
$$x_t = x_t + s_t$$

$$x_{t+1} = x_t + s_t$$

Newton's Method

- If it converges, Newton's method converges faster towards the solution
 - Quadratic convergence
 - Convergence is assured only when started close enough to a solution
 - In principle a step size is no longer necessary
 - Convergence can be improved by adding line search in the direction of the Newton step to ensure decrease in every step (damped Newton)
 - Incurs significant additional complexity

Quasi-Newton Methods

- Newton's method needs calculation of the Hessian and its inversion (solution of linear system).
 - *O*(*n*³) computational complexity
 - Requires knowledge of the Hessian
- Quasi-Newton methods use an approximation of the Hessian (similar to Boyden's method) $x_{t+1} = x_t - \alpha_t B_f^{-1}(x_t) \nabla f(x_t)$
 - Broyden–Fletcher–Goldfarb–Shannon (BFGS) Method
 - Conjugate Gradient Methods

BFGS Method

- Broyden–Fletcher–Goldfarb–Shannon (BFGS) is an extension of Broyden's Method for equation solving that maintains symmetry of approximate $\operatorname{Hesian}_{t+1} B_f^{-1}(x_t) \nabla f(x_t)$
 - The approximate Hessian is updated in each iteration shafting $With^{x}ah$ initial estimate (often $B_{0}=I$)

$$\begin{aligned} x_{t+1} &= x_t + s_t \\ \Delta f'_{t+1} &= \nabla f(x_{t+1}) - \nabla f(x_t) \\ B_{t+1} &= B_t + (\Delta f'_{t+1}^T \Delta f'_{t+1}) / (\Delta f'_t^T s_t) - (B_t s_t s_t^T B_t^T) / (s_t^T B_t s_t) \end{aligned}$$

© Manfred Huber 2011

BFGS Method

- BFGS method does not require second derivatives and is computationally much less expensive
 - Methods can be used to directly update factorization of B, making the method O(n²)
 - Converges superlinearly
 - More robust than Newton's method
 - Line search can be used to add a step size
 - Can increase the convergence radius for BFGS
 - Incurs additional cost

Conjugate Gradient Method

 The Conjugate gradient method further simplifies the approximation of the Hessian by explicitly estimating its effect on the gradient

$$x_{t+1} = x_t - \alpha_t (\nabla f(x_t) - \beta_t s_{t-1})$$

$$s_t = -\nabla f(x_t) + \beta_t s_{t-1}$$

$$\beta_t = \left(\nabla f(x_t)^T \nabla f(x_t)\right) / \left(\nabla f(x_{t-1})^T \nabla f(x_{t-1})\right)$$

- Conjugate gradient is exact for a quadratic objective function after at most n iterations
 - Also works usually well for general unconstrained optimization
- The step parameter can be formed using line search

Unconstrained Optimization

- Unconstrained Optimization allows to find the best parameters for arbitrary objective functions
 - Least squares is a special case of unconstrained optimization
- Two basic approaches exist
 - Direct search techniques
 - Iterative improvement algorithms
 - Newton's method if gradient and Hessian information is available
 - Quasi-Newton methods if no such information is to be used.