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Optimization 
n  Optimization problems are concerned with finding the 

minimum or maximum of an objective function 
n  Find x* such that f(x*)≤f(x) for all x in S 

n  Maximization of f(x) is the same as minimization of –f(x)  

n  Least squares problem is a special case where the function 
to be minimized is the residual 

n  Optimization problems can also include a set of 
constraints that limit the set of feasible points, S 
n  Unconstrained optimization does not have any constraints  

n  Equality constraints are of the form g(x) = 0 

n  Inequality constraints are of the form h(x) ≤ 0 



© Manfred Huber 2011 3 

Optimization 
n  General continuous optimization problem is defined 

by the objective function and the constraints 
 Find min f(x) 
 Subject to gi(x) = 0   and hj(x) ≤ 0 

  
n  Linear programming characterizes optimization problems 

where the objective function and the constraints are 
linear 

n  Nonlinear programming characterizes optimization 
problems where at least one of the constraints or the 
objective function are nonlinear 

! 

f :"n #"  ,  g :"n #"m  ,  h :"n #"l



Optimization Problems
One-Dimensional Optimization
Multi-Dimensional Optimization

Definitions
Existence and Uniqueness
Optimality Conditions

Local vs Global Optimization

x∗ ∈ S is global minimum if f(x∗) ≤ f(x) for all x ∈ S

x∗ ∈ S is local minimum if f(x∗) ≤ f(x) for all feasible x in
some neighborhood of x∗
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Global vs. Local Optimization 
n  A global optimum is a point that is an optimum for 

all feasible points (points matching the constraints) 

n  A local optimum is a point that is an optimum only 
for the feasible points in some neighborhood 
around the point 
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Global vs. Local Optimization 
n  Global optimization is in general a very difficult 

problem and existing methods for global optimality 
are limited to specific function types 
n  Even verifying that an optimum is a global optimum is 

very difficult in general 

n  Most optimization methods are designed to find 
local optima 
n  To increase the chance of finding global optima, local 

optimization methods can be run multiple times from 
different starting points 
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Existence of Solution 
n  Not every function has an optimum 

n  E.g. Polynomials of odd order do not have global optima 
since they they tend to ±∞ for x towards ±∞  

n  Some conditions exist under which the existence of 
a global minimum can be ensured 
n  If objective function f(x) is continuous on a closed and 

bounded set S of feasible points, then f(x) has a global 
minimum on S 

n  If f(x) is coercive on a closed, unbounded set S of 
feasible points, then it has a global minimum on S 

n  Coercive:  

! 

lim
x "#

f (x) =#
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Uniqueness of Solution 
n  If function f(x) is convex on the set of feasible 

points, S, then any minimum on S is a global 
minimum on S 
n  In a convex function every minimum must have the same 

function value (all minima form a “plateau”) 

n  If function f(x) is strictly convex on the set of 
feasible points, S, then it has a unique global 
minimum on S 
n  A strictly convex function can only have one minimum 
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Optimality Conditions 
n  First-Order optimality condition 

n  Any extremum of a continuous, differentiable function f
(x) has to be either on the boundary of the feasible set or 
a critical point, i.e. a solution to the nonlinear system 

n  Not every critical point is an extrema (e.g. saddle points) 

n  Second-Order optimality condition 
n  If f(x) is twice differentiable, the Hessian matrix (matrix 

of partial second derivatives) permits to identify extrema 
n  Critical point x* is a minimum if Hf(x*) is positive definite 

n  Critical point x* is a maximum if Hf(x*) is negative definite 

 

! 

"f (x) = 0
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Sensitivity and Conditioning 
n  Sensitivity analysis for the scalar case using Taylor 

series expansion 
n  Absolute forward error: 

n  Absolute backward error:  

 
n  Sensitivity of optimization: 

! 

"x = ˆ x # x *

! 

f (x *+"x) = f (x*) + f '(x*)"x +
1
2

f ' '(x*)"x 2 + O("x 3) # f (x*) +
1
2

f ' '(x*)"x 2

f ( ˆ x ) $ f (x*) # 1
2

f ' '(x*)"x 2

! 

"x # 2 f ( ˆ x ) $ f (x*) f ' '(x*)
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Unconstrained Optimization 
n  Unconstrained optimization has many similarities to 

the problem of solving equations and solution 
methods are similar 
n  Direct search methods iteratively narrow down the 

neighborhood of the solution (like bisection method for 
equation solving 

n  Iterated approximation methods use a fixed-point 
formulation and the derivative (or an approximation of it) 
to achieve the solution  
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Direct Search Methods for 
One-Dimensional Optimization 

n  Golden Section search iteratively narrows down the 
interval within which the solution has to exist 
n  To ensure existence of the solution within the interval, 

the function is assumed to be unimodal in the interval 
n  f(x) is unimodal in an interval if it has a minimum, x*, in the 

interval and is strictly increasing in both directions from this point 
n  Any continuous, twice differentiable function has a (potenitally small) 

interval around each minimum for which the function is unimodal   

n  To divide the interval two points, x1, x2, within the 
interval are used and their function values indicate which 
end of the interval can be discarded 

n  The side of the point with the higher function value is discarded 
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Golden Section Search 
n  Golden Section achieves a reduction of the interval 

by a constant factor and requires only one function 
evaluation in each iteration by carefully choosing 
the locations of the interior points 
n  Interior points in interval [a,b] are chosen at  

n  If one side of the interval is discarded the other point stays at a 
correct location in the new interval. E.g. if left is discarded: 

! 

x1 = a +
3" 5

2
(b " a)   ,   x2 = a +

5 "1
2

(b " a)

! 

x2 = a +
5 "1
2

(b " a) = x1 +
2 5 " 4

2
1

1" (3" 5) /2
(b " x1) = x1 +

(2 5 " 4)2
2("1+ 5)

(b " x1)

    = x1 +
"3 + 4 5 " 5
2("1+ 5)

(b " x1) = x1 +
(3" 5)("1+ 5)

2("1+ 5)
(b " x1) = x1 +

3" 5
2

(b " x1)



Optimization Problems
One-Dimensional Optimization
Multi-Dimensional Optimization

Golden Section Search
Successive Parabolic Interpolation
Newton’s Method

Example: Golden Section Search

Use golden section search to minimize

f(x) = 0.5− x exp(−x2)
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Example 
n  Golden Section search on                    and initial 

interval [0,2] 

! 

f (x) = 0.5 " xe"x
2
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Successive Parabolic 
Interpolation 

n  Golden Section search is safe but converges only at 
a linear rate with constant 0.618 

n  Successive parabolic interpolation uses only one 
point in the interval, calculating the next (and 
which interval point to remove)  
n  Take 3 points and their function values and interpolate 

them using a parabola 
n  Minimum of parabola is added as a new point 

n  Oldest of the points is dropped 

n  Achieves superlinear convergence with r≈1.324 
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Newton’s Method 
n  As in the case of solving nonlinear equations, a 

better convergence rate can be achieved using 
information about the function 

n  Necessary first-order condition yields 

n  Yields Newton’s method for f’(x)=0 

n  Has quadratic convergence rate and converges if started close 
enough to the solution 

! 

f (x + "x) # f (x) + f '(x)"x +
f ' '(x)

2
"x 2  

! 

"f (x + #x)
"#x

= f '(x) + f ' '(x)#x = 0   $   #x = %
f '(x)
f ' '(x)

 

! 

xt+1 = xt "
f '(xt )
f ' '(xt )
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Safeguard Methods 
n  As in nonlinear equation solving there are interval 

search methods that are guaranteed to converge slowly 
and methods with higher convergence rates but without 
guarantees that they will convergence 

n  Safeguard methods combine multiple methods to 
achieve both guaranteed convergence and a good 
convergence rate 
n  Golden selection search and  successive parabolic interpolation 

can be combined if no derivatives are available 

n  Golden selection search and Newton’s method can be 
combined if derivatives are available 
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Multi-Dimensional 
Optimization 

n  As for the one-dimensional case, two basic 
methods for optimization of multi-dimensional 
functions exist 
n  Direct search methods 

n  Iterative descent methods 

n  Direct search methods for multi-dimensional data 
introduce additional problems 
n  Definition of an equivalent to a bracket is not easily 

possible in the multi-dimensional case 
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Nelder-Mead Method 
n  Nelder-Mead is a direct search method for the 

multi-variate case 
n  Does not use a “bracket” but a simplex with n+1 points 

for a function with n variables 
n  Points of the simplex form the points of interest defining a region 

n  No guarantee that the solution lies within this region 

n  Next search volume can lie partially outside the previous one 

n  Next simplex is created by replacing the worst point of 
the existing simplex with a new point 

n  New point is improved point on the line connecting the old point 
and the centroid of the remaining points in the simplex 

n  If no better point is found, simplex is shrunk towards best point 
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Nelder-Mead Method 
n  Nelder-Mead does not require any information 

about the function to be minimized 
n  Only evaluation of the function is necessary 

n  Convergence is only guaranteed if the function within the 
simplex region has a unique minimum 

n  Operations change location and shape of simplex 
n  Reflection: mirrors simplex away from worst point 

n  Expansion: expands simplex in direction of new point 

n  Contraction: contracts simplex away from worst point  

n  Reduction: shrinks simplex around best point 
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Nelder-Mead Method 
n  Variations of the algorithm exists which apply 

slightly different rules to select operation 

n  A common set of rules is: 

n  Precomputation: 
n  Sort the vertices of the simplex by function value f(xi) 

n  Compute centroid xc of the best n vertices 

n  Start by applying reflection to worst vertex to get 
reflected vertex xr 

 
n  If reflected vertex is not the worst of the remaining and not the 

best vertex, replace previously worst vertex with reflected vertex 

! 

xr = xc +"(xc # xn+1)   ,   often  " =1
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Nelder-Mead Method 
n  Else, if reflected vertex is the best vertex apply expansion 

n  If expansion point is better than the reflected point, replace the 
worst point with the expanded point 

n  Else replace the worst point with the reflected point 

n  Else, if reflected point is the worst point apply contraction 

n  If contraction point is better than the original worst point, replace 
the worst point with the contraction point 

n  Else, if the contraction point is no better than the original worst 
point apply reduction by shrinking all points towards the best point 

! 

xe = xc + "(xc # xn+1)    ,   often  " = 2

! 

xo = xc " #(xc " xn+1)    ,   often  # =1 2

! 

xi = x1 +"(xi # x1)    ,   often  " =1 2
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Nelder-Mead Method 
n  Nelder-Mead can be applied to smooth and non-

smooth functions 
n  Does not need derivatives 

n  Computational cost of the algorithm increases fast 
as the number of variables increases 

n  No guaranteed convergence 
n  The choice of the initial simplex is essential to finding the 

desired minimum 
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Iterative Descent Methods 
n  When derivative information of the function is 

available, this information can be used to 
accelerate optimization on smooth functions 
n  Steepest descent methods 

n  Strictly follow the gradient direction of the function  

n  Newton’s method 
n  Take into account the derivative of the gradient (the Hessian) 

n  Quasi-Newton methods 
n  Use a local approximation of the Hessian to reduce computation 

and be potentially more robust 



© Manfred Huber 2011 24 

Steepest Descent with Line Search 
n  In steepest descent methods the direction of the 

update step for the iterative solution is always 
given by the negative gradient at the current point. 

n  Pick of step size α is very important for convergence 
towards a solution 

n  Line search can be used to determine the best α for the current 
point 

 Line search can be solved a a one-dimensional minimization 
problem  

 

! 

xt+1 = xt "# t$f (xt )

! 

" t = argmin" f (xt #"$f (xt ))
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Steepest Descent with Line Search 
n  Steepest descent with line search is very robust 

and reliable 
n  Always makes progress 

n  Convergence is only linear 
n  Ignoring of second derivatives makes it inefficient  

 

O ptimiz ation Proble ms
O n e-Dim e nsion al O ptimiz ation

Multi-Dim e nsion al O ptimiz ation

U nconstrain e d O ptimiz ation
N onlin e ar L e a st S qu are s
C onstrain e d O ptimiz ation

E x a mple , continu e d

< intera ctive ex a mple >
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Newton’s Method 
n  Rather than relying on the gradient alone (a first 

order approximation), Newton’s method again 
uses a local second order approximation. 

n  To avoid the inversion, this can again be broken into a 
linear equation solution for the step size followed by an 
update 

 ! 

xt+1 = xt "Hf
"1(xt )#f (xt )    ,   Hf (x)i, j =

$ 2 f (x)
$xi$x j

! 

Hf (xt )st = "#f (xt )
xt+1 = xt + st
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Newton’s Method 
n  If it converges, Newton’s method converges faster 

towards the solution  
n  Quadratic convergence 

n  Convergence is assured only when started close enough 
to a solution 

n  In principle a step size is no longer necessary 

n  Convergence can be improved by adding line search in the 
direction of the Newton step to ensure decrease in every step 
(damped Newton) 

n  Incurs significant additional complexity  
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Quasi-Newton Methods 
n  Newton’s method needs calculation of the Hessian 

and its inversion (solution of linear system). 
n  O(n3) computational complexity 

n  Requires knowledge of the Hessian 

n  Quasi-Newton methods use an approximation of 
the Hessian (similar to Boyden’s method) 

n  Broyden–Fletcher–Goldfarb–Shannon (BFGS) Method 

n  Conjugate Gradient Methods 

! 

xt+1 = xt "# tBf
"1(xt )$f (xt )
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BFGS Method 
n  Broyden–Fletcher–Goldfarb–Shannon (BFGS) is an 

extension of Broyden’s Method for equation 
solving that maintains symmetry of approximate 
Hessian  

n  The approximate Hessian is updated in each iteration 
starting with an initial estimate (often B0=I) 

n  Sherman–Morrison formula can be used to avoid inversion 

! 

xt+1 = xt " Bf
"1(xt )#f (xt )

! 

Btst = "#f (xt )
xt+1 = xt + st
$f 't+1=#f (xt+1) "#f (xt )

Bt+1 = Bt + ($f 't+1
T $f 't+1 ) ($f 't

T st ) " (Btstst
TBt

T ) (st
T Btst )
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BFGS Method 
n  BFGS method does not require second derivatives 

and is computationally much less expensive 
n  Methods can be used to directly update factorization of B, 

making the method O(n2) 

n  Converges superlinearly 

n  More robust than Newton’s method 

n  Line search can be used to add a step size  
n  Can increase the convergence radius for BFGS 

n  Incurs additional cost 
 



© Manfred Huber 2011 31 

Conjugate Gradient Method 
n  The Conjugate gradient method further simplifies 

the approximation of the Hessian by explicitly 
estimating its effect on the gradient 

n  Conjugate gradient is exact for a quadratic objective 
function after at most n iterations 

n  Also works usually well for general unconstrained optimization 

n  The step parameter can be formed using line search ! 

xt+1 = xt "# t ($f (xt ) "% t st"1)
st = "$f (xt ) + % t st"1
%t = ($f (xt )

T$f (xt )) ($f (xt"1)
T$f (xt"1))
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Unconstrained Optimization 
n  Unconstrained Optimization allows to find the best 

parameters for arbitrary objective functions 

n  Least squares is a special case of unconstrained 
optimization 

n  Two basic approaches exist 
n  Direct search techniques 

n  Iterative improvement algorithms 
n  Newton’s method if gradient and Hessian information is available 

n  Quasi-Newton methods if no such information is to be used. 


