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Nonlinear Least Squares
1. Consider the following nonlinear least squares data fitting problem.

f(α, x) = α1 + (x+ α2)
2 , Data (x, y) : {((0, 1), (1, 3), (2, 4)}

a) Derive the Gauss-Newton formulation for this problem.

b) Show the first 2 steps of Gauss-Newton on the resulting system. (You can use normal
equations to solve the linear least squares step).
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Unconstrained Optimization

2. Optimization is concerned with finding an optimum of a function.

a) What is the difference between a local and a global optimum ?

b) Name conditions under which all local minima of a function are also global minima.
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One-Dimensional Optimization

3. In the Bisection method for root finding, the concept of a bracket was based on the observation
that if the two endpoints of an interval have opposite signs and the function is continuous, then
the function has to take on a value of 0 somewhere in the interval. Using this, computing the
value of the midpoint allowed to select which half of the interval formed a new bracket. Golden
Section Search uses a similar concept but uses three points to characterize the active interval.
Using this and picking one new point and computing its value here again allows the algorithm
to deterministically remove one of the endpoints, effectively making the interval narrower.

a) Discuss how the data point is chosen and how the endpoint that is removed is selected.

b) Describe the rationale and assumptions behind this choice and how they ensure that there
will always remain a minimum in the remaining interval.
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4. Consider the following nonlinear optimization problem to find the value for x that (locally)
minimizes the function f(x) = x4 + 3x2 + 4x− 6 .

a) Formulate Newton’s method for one-dimensional optimization for this problem (i.e. de-
rive all the terms you need to apply Newton’s method).

b) Show the first three iterations of Newton’s method on this problem starting from x0 = 0.
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Multi-Dimensional Optimization

5. Present the basic idea behind the Nelder-Mead method for direct search-based multi-dimensional
optimization. In particular, how does it address the shortcomings of Golden Section search in
multi-dimensional optimization problems and how do the different operations address finding
an area containing a minimum.
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6. Consider the following unconstrained optimization problem to find the values for x and y that
minimize the value for the function f(x, y) = x2 + y4 + x+ y.

a) Derive the terms needed for an optimization using Newton’s method for multi-dimensional
optimization.

b) Show the first 2 steps of Newton’s method on this problem starting with x0 = y0 = 0.
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Constrained Optimization

7. Constrained optimization problems allow for two types of constraints: equality constraints and
inequality constraints.

a) Discuss some of the differences between optimization with only equality constraints and
with inequality constraints. In particular focus on the applicability of different methods to
the solution.

b) Why is optimization with inequality constraints more difficult than with equality con-
straints ?
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8. Derive the extended form with slack variables for the following linear programming problem.

Objective function : f(~x) = x1 + 5x2 − 7x3

Constraints : h1(~x) = 2x1 − 3x2 − 2 ≤ 0

h2(~x) = x1 + 2x3 − 4 ≤ 0

h3(~x) = 3x2 − 6x3 ≤ 0

x1 ≥ 0 , x2 ≥ 0 , x3 ≥ 0
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9. One way to address constrained optimization with equality constraints is to convert the original
objective function into a merit function by adding a weighted penalty function for the con-
straints. The most common one of these is the square of the constraints, g(x)Tg(x).

Consider the following optimization problem with equality constraints:

Objective function : f(~x) = x1 + x22

Constraints : g1(~x) = x1 − x2 = 0

a) Show the merit function for this problem.

b) Provide a description of the basic algorithm to solve this problem using the merit function.
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c) Show the first 2 iterations of the solution using the unconstrained optimization scheme of
choice in each iteration. Note: an iteration here refers to a choice of mixing parameter
between objective function and penalty term, not an iteration of the unconstrained opti-
mization algorithm you choose (e.g. Steepest descent, Newton’s method, etc). You can be
very lax about the termination condition for your optimization approach in each iteration
(i.e. you can let it converge after a very small number of iterations - e.g. 3). You should
start at x1 = x2 = 0 in the first step of the first iteration.
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