CSE 4345 / CSE 5315 - Computational Methods Exam 2: Least Squares Approximation and Optimization

Name: ID#:

CSE 4345 / CSE 5315 - Computational Methods

Practice Exam 2- Fall 2011
Note: This problem set is somewhat larger and more difficult than one exam

Closed book, 2 pages of notes

Date: Nov. 29 2011, 3:00 pm - 8:20 pm

Nonlinear Least Squares
1. Consider the following nonlinear least squares data fitting problem.
fla,z) = a1+ (v +a2)* . Data(z,y): {((0,1),(1,3),(2,4)}

a) Derive the Gauss-Newton formulation for this problem.

For the Gauss-Newton method we need to derive the residual function and the correspond-
ing Jacobian.

y1 — fla, 1) 1—a; — a3
rle) =1 yo— floyaza) | =] 3—a1—(1+ay)?
ys — fla,z3) 4—ay — (24 ay)?
—1 —2009
J(a) =1 =1 —2(1+ay)
—1 —2(2+4 @)

The Gauss-Newton formulation then provides an iterative step:

JE () Jr(aw)s = =T r(ay)

Qg1 = Qp + S

b) Show the first 2 steps of Gauss-Newton on the resulting system. (You can use normal
equations to solve the linear least squares step).

Using normal equations and Gaussian Elimination to solve the linear step:
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0
Initial conditions: oy = ( )

0
1
r(ag) = | 2
0
-1 0
J(ag)=1| -1 =2
-1 —4
Step 1:
1 -1 -1 -0 3 6
T _ _
& (ao)Jr(ao)—< 0 -2 —4) j :z _(6 20)

1
—J  (ag)r(og) = — ( _01 :; :i ) 2= ( :i )
0

Solving using Gaussian elimination:

3 6 3
S =

6 20 4

3

—2 1
52 = % i
s 3—6xsy _ 3+5 _ 3
1= 773 — 73 —2
3
_ _ 2
o) =0p+S= )
T4
3 1 _9
1 27 16 16
— _3_9 — 15
rlan) = | 3 27 16 16
_3_ 4 _9
4 2 16 16
1
-1 !
3
Jlan) =] -1 =2
_ _T
1 2

Step 2:
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1
2 2 2 1
1 -1 -1 16
—JTT(%)T(%):—( 13 _7) 1 :_(

Solving using Gaussian elimination:

e QO

ARSI
~

1 -1 —1 -1 3
JTT(Oél)Jr(Oél):< X 7) -1 -3 :(
7
2

Ble Gles
~

3 2 _3
2 4 732
A
0 2 0
82:0
e

23
Qg =01 +85= 161
T4

Unconstrained Optimization

2. Optimization is concerned with finding an optimum of a function.

a) What is the difference between a local and a global optimum ?

A local optimum is any point that is an optimum (minimal or maximal) within an (arbi-
trarily small) local neighborhood of feasible points around the point. A global optimum
is a point that is an optimum (i.e. minimal or maximal) for all feasible points within the
entire domain of the function.

b) Name conditions under which all local minima of a function are also global minima.
If a function f(z) is convex on the set of feasible points then every local minimum is also

a global minimum.
One-Dimensional Optimization

3. In the Bisection method for root finding, the concept of a bracket was based on the observation
that if the two endpoints of an interval have opposite signs and the function is continuous, then
the function has to take on a value of 0 somewhere in the interval. Using this, computing the
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value of the midpoint allowed to select which half of the interval formed a new bracket. Golden
Section Search uses a similar concept but uses three points to characterize the active interval.
Using this and picking one new point and computing its value here again allows the algorithm
to deterministically remove one of the endpoints, effectively making the interval narrower.

a)

b)

Discuss how the data point is chosen and how the endpoint that is removed is selected.

In golden section search, the additional interior point in the already existing interval [a, b]

is chosen either as a + 3*27\/5(13 —a)orasa-+ @(b — a) depending wether the right or

the left interval end point has been removed in the last iteration.

Given the four points, a, 1, x5, b, defining the interval [a, b] and the two interior points
(z, being the left and x5 being the right), the interval end point that is closer to the larger
interior point is removed and that interior point becomes the new interval endpoint.

Describe the rationale and assumptions behind this choice and how they ensure that there
will always remain a minimum in the remaining interval.

The assumption underlying the interval shrinking criterion in Golden Section Search is
that the function is convex over the given interval (it is actually sufficient that it has a
convex section since it will eventually shrinking down to the point where it contains only
one of the convex segments). If the function is convex over the interval (which requires
that the initial interior point has a lower function value than the interval endpoints), then a
local minimum of the function has to lie between the interior point with the lower function
value and either its neighboring interval endpoint or the other interior point. This is the
case since these three points are (given that they fulfill this condition initially) always such
that the interior point’s function value is lower than the function values of the new interval
bounds and thus any convex function through them has to have a minimum within this
interval.

4. Consider the following nonlinear optimization problem to find the value for x that (locally)
minimizes the function f(z) = 2* + 32% + 42 — 6.

a)

b)

Formulate Newton’s method for one-dimensional optimization for this problem (i.e. de-
rive all the terms you need to apply Newton’s method).

To use Newton’s method for one-dimensional optimization we need the first and second
derivative of the function:
f'(z) = 42® + 6z + 4

f(z) = 1222 + 6

This gives us Newton’s method as:

o M) _4x2+6xk+4_ _2$i—|—3xk+2
Tr+1 = Tk » o2 s Tk T 5 4
f 6xy + 3

(@) * T T 122216

Show the first three iterations of Newton’s method on this problem starting from xy = 0.

Step 1:
2z3+3zo+2

I :$0—76x3+3 = —

wino
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Step 2:
@zml_% N N G Dkl YR N B dus A S S
x7+3 3 6(—%)%+3 3 & +3 3 5
2,16 _ 86
3 153 153
Step 3:
056209 — 986 _ssagozs o
' 4.895681 :

Multi-Dimensional Optimization

5. Present the basic idea behind the Nelder-Mead method for direct search-based multi-dimensional
optimization. In particular, how does it address the shortcomings of Golden Section search in
multi-dimensional optimization problems and how do the different operations address finding
an area containing a minimum.

The main problem with extending Golden Section Search to multi-dimensional optimization is
that if the interval shrinking is applied independently to different dimensions, then it is possible
that the complete (multi-dimensional) interval during shrinking will drop the interval, effec-
tively not being able to converge around the interval. This could partially be addressed by
explicitly modeling the interval as a multi-dimensional interval. This, however would increase
the number of points required exponentially, making it intractable. Nelder-Mead addresses this
starting with a simplex and allowing it to not only shrink but also to move and (temporarily)
expand in oder to allow it to search for a convex region that contains a local minimum and then
converging around it.

Reflection is the main operation used to allow the area to move if the values of the simplex
points suggest that it is more likely that the minimum is on the opposite side of the hyperplane
described by all the points except the worst one. Expansion is used to (temporarily) increase the
size of the area in order to make sure the minimum is contained within the region. Contraction
and Reduction are used to shrink the area if it looks as if the minimum lies within the current
simplex.

6. Consider the following unconstrained optimization problem to find the values for = and y that
minimize the value for the function f(z,y) = 2* + y* + = + .

a) Derive the terms needed for an optimization using Newton’s method for multi-dimensional
optimization.
For Newton’s method for multi-dimensional optimization we need the derivative of the
function and its Hessian (matrix of second derivatives):

Vf(x’y):( 2 + 1 )

49 +1

2 0
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From this we get Newton’s method, H (2, yx)s = —V f(xk, yi), as:

2 0 2Ik +1
§=—
0 12y? 4y 4+ 1
Tk41 = Tk + S1

Ye+1 = Yk + S2
b) Show the first 2 steps of Newton’s method on this problem starting with xy = yo = 0.

Initial conditions:

1

Hf(mo,yo) = ( 3 8 )

V f(xo,y0) = ( ! )

From this we can see that the rank of the Hessian is less than 2. This implies that we
can not compute its inverse and thus not compute the Newton step (which would also not

converge).
Note: this was an oversight on my part, so tho show the actual iteration, we will slightly
change the initial conditions to yy = —0.1. Then we have:
Vi) =
Zo,Yo) =
o 0.8
2 0
He(x, =
10, 40) (0 0.12)
Step 1:
2 0 -1
S =
0 0.12 —0.8
S1 = —0.5
S9 _§
1 =0-0.5=-0.5
_ 2 23
Step 2:
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0
Vi@ n) = ( 0.54937 )

25 0
Hy@oyo) = | 15333

2 0 0
S =
0 7.05333 —0.54937

51=0

s9 = —0.077888

o =—-054+0=-0.5

Yo = —0.54937 — 0.077888 = —0.627258

Constrained Optimization

7. Constrained optimization problems allow for two types of constraints: equality constraints and
inequality constraints.

a)

b)

Discuss some of the differences between optimization with only equality constraints and
with inequality constraints. In particular focus on the applicability of different methods to
the solution.

Equality constraints basically tightly constrain the variables. This allows the application
of simpler methods than with inequality constraints. In particular, it allows to use the La-
grange function to build a system of equations that includes the objective function as well
as the equality constraints. With inequality constraints, this method can only be used if it is
possible to identify the constraints that are active (i.e. for which the equality part holds at
the solution). Similarly, the use of a merit function is easier with equality constraints since
they can be modeled using a quadratic (and thus symmetric) penalty function. Inequality
constraints, on the other hand, have to be modeled using asymmetric penalty functions
which are not defined for parts of the space and thus the used unconstrained optimization
approach has to verify explicitly that it did not violate a constraints.

Why is optimization with inequality constraints more difficult than with equality con-
straints ?

Inequality are harder to deal with since they not always influence the choice of variables.
In particular, they are only “active” if the constrained minimum lies on the constraint
(i.e. fulfills the equal relation). Since it is not possible a-priori to determine which con-
straints will be active at the solution, the solution methods have to explicitly deal with
the asymmetric influence these constraints have on the solution. This makes converting
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the constrained optimization problem into a modified unconstrained optimization problem
significantly more difficult.

8. Derive the extended form with slack variables for the following linear programming problem.

Objective function : f(Z) =z + bxg — Tx3
T

Constraints : hy(Z) =227 — 329 —2 <0
ho(Z) = o1 + 223 —4 <0
h3(¥) = 3z9 — 623 <0
120,220, 23>0

Since there are 3 constraints we need 3 slack variables xs;. Also, to include the objective
function, we introduce an additional variable F', leading to the following system:

Objective function : F —x1 —dxg+ Txz3 =0
Constraints : 2x1 — 3x9 + 1851 = 2
T1+2x3+ 189 =4
3x9 — 623+ 53 =0
2120, 2020, 23>0, 281 >0, 259 >0, 53 >0

This results in the extended form system:

F
xy

1 -1 =5 7 0 00 0
o)

0 2 -3 0 100 2
T3 | —

01 0 2 010 4
TS

0 0 3 -6 001 0
TS9
IS3

9. One way to address constrained optimization with equality constraints is to convert the original
objective function into a merit function by adding a weighted penalty function for the con-
straints. The most common one of these is the square of the constraints, g(z)% g(x).

Consider the following optimization problem with equality constraints:

Objective function : f(Z) =z + 13

Constraints : g(¥)=x1—29=0
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a) Show the merit function for this problem.
Using the penalty function described above, the Merit function would be

—

A(&) = (&) + 3p9(Z)"9(Z) = 21+ 23 + 5p(21 — 72)*
b) Provide a description of the basic algorithm to solve this problem using the merit function.
The basic algorithm operates as follows:

i. Pick an initial value of py (e.g. pp = 1) and a start point x
ii. Run an unconstrained optimization algorithm on the resulting Merit function
iii. Increase p (e.g. pry1 = pr * 4)
iv. if pr4q 1s smaller than a convergence threshold, goto step 2. using the previous solu-
tion of the unconstrained optimization as the start point

v. Return the solution to the last unconstrained optimization

c) Show the first 2 iterations of the solution using the unconstrained optimization scheme of
choice in each iteration. Note: an iteration here refers to a choice of mixing parameter
between objective function and penalty term, not an iteration of the unconstrained opti-
mization algorithm you choose (e.g. Steepest descent, Newton’s method, etc). You can be
very lax about the termination condition for your optimization approach in each iteration
(i.e. you can let it converge after a very small number of iterations - e.g. 3). You should
start at x1 = x5 = 0 in the first step of the first iteration.

Using steepest descent and 2 steps for each optimization

Initial Conditions:

po=1

First Iteration:
Perform steepest descent with line search:

Step 1:
Vo(d) - ( (1] )

Line : ¥ = %y — oy Vp(Zp)

Find o that minimizes value along line :
ap = argming,d(—a, 0)

ag = 0.5

B —0.5
I =
0
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Step 2:

V¢(f1) = ( 8? )

Line : fQ = fl — Q1V¢(fl>

Find o that minimizes value along line :

a; = argmingd(—0.5 — 0.5 % @, 0 — 0.5 * a)

a1:1

. —1
To =
—0.5

Second Iteration: Change p to 4
Perform steepest descent with line search:

Step 1:

Step 2:

Manfred Huber

Vo(E) = ( _11 )

Line : fg = fg - OéQVQb(fQ)

Find o that minimizes value along line :

()

Vo(#s) = ( h )

ay = argmin,d(—1 + o, —0.5 — )
8
Line : %y = 75 — agV(Z3)

| ool

Find o that minimizes value along line :

a3 = argmingd(—2 + a,—1 — T *x )

8
as = 0.111684

. —0.736684
Ty =
—0.236684
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