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Problems marked with∗ are required only for students of CSE 5315 but will be graded for extra credit
for students of CSE 4345.

Eigenvalues and Singular Values

1. Inverse iteration computes the smallest eigenvalue and the corresponding eigenvector by com-
puting the largest eigenvalue ofA−1. Show one iteration of normalized inverse iteration for the
following transformation matrix,A, and starting vector,x0.

A =





1 4

2 3



 , x0 =





1

1




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2. When computing eigenvectors and eigenvalues, a number oftransformations can be applied to
the original matrixA without loosing the ability to compute its eigenvalues and eigenvectors.

a) Shift (the subtracting of a constant from the diagonal terms, i.e. B = A − σI) and
Similarity Transformations (i.e. transformations of the formB = T−1AT ) are important
problem transformations. Indicate how these transformations influence the eigenvalues
and eigenvectors and discuss how they can be used to simplifythe eigenvalue problem.

b) Eigenvalues and eigenvectors of diagonal and triangularmatrices are significantly simpler
to compute than for general matrices. Discuss why this is thecase and how they can be
determined.
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3. Power iteration and inverse iteration are limited to computing the largest and the smallest eigen-
value (and corresponding eigenvector).

a) Both, Deflation and Simultaneous Iteration can be used to address this limitation and deter-
mine more than just the largest and smallest eigenvectors. Discuss some of the differences
of these methods and some of their advantages and disadvantages.

b)∗ Simple simultaneous iteration becomes ill-conditioned relatively fast. Discuss why this is
the case and how QR factorization in QR iteration addresses this problem.
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4. Singular values are important for a number of important problems related to the transformation
A and the space it describes. List at least four of the characteristics of the transformation that
can be answered using the result of singular value decomposition.

Randomness and Monte Carlo Methods

5. Randomized algorithms can be effective ways to approximate solutions to highly complex prob-
lems. To apply them it is important to be able to generate random numbers. There are differnt
types of random numbers based on their general properties. List 3 different types of random
numbers and indicate one way to generate them for each of them.
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6. Pseudo-random number generators can be very sensitive tothe parameter settings.

a) Briefly discuss why this is and what some of the effect of badparameter choices can be.

b)∗ For the following, simple settings of a congruential randomnumber generator, compute
the first 5 pseudo-random numbers for a seed of 4. Basem = 100, Multiplier a = 17,
Shift c = 0.
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Errors

7. Briefly discuss the difference between stability and sensitivity. What do they measure and what
are they influenced by ?

8. For the following equations which suffer from a loss of significance (cancellation) forx → 0,
provide a reformulation that avoids this problem.

a) (x2−4)2−16
x
4

b)
√
x+9−3
2x
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Root Finding

9. Briefly explain the operation of the interval bisection method for equation solving with single
equations in one variable. Illustrate the operation by performing the first two iterations of the
bisection method on the functionf(x) = x2

− 2x+ 1 starting with the bracket[0, 2]. Show the
new points, their values, and the brackets for each of the four iterations.

10. The Multivariate Newton method solves a system of nonlinear equations by iteratively solving
a sequence of linear systems of equations. List the basic operation steps of the Multivariate
Newton method.
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Interpolation

11. There are generally an infinite number of possible piecewise quadratic or cubic interpolation
functions for a set of data points. Provide a piecewise cubicinterpolation for the data points
(0, 1), (1, 1), (2,−2). (Note that it does not have to be differentiable or smooth.)

12.∗ Interpolate the data points of problem 17. using polynomialinterpolation with monomial basis
functions.
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Optimization

13. First and second-order optimality conditions are necessary conditions that allow to characterize
optima. In particular, the first order optimality conditionstates that in a continuous differen-
tiable function, the first derivative of the function at an optimum has to be 0.

a) Fulfilling the first-order optimality condition is not sufficient for a point to be identified as
an optimum. Discuss why this is the case.

b) How does the second order optimality condition (i.e. information about the Hessian - the
second derivatives of the function) address this ?

14. In multi-dimensional optimization, a variety of optimization methods can be used that are vari-
ations on Newton’s method. Briefly discuss the differences between Newton’s method and
quasi-Newton methods and list some of the advantages of quasi-Newton methods ?
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15. Linear programs are a special type of constrained optimization problem. Briefly discuss what
makes a linear programming problem easier to solve than other, more general constrained opti-
mization problems.

16. Define the Lagrange function for the following constrained optimization problem with equality
constraints.
Objective function:f(x, y) = x2 + y2 − 2xy + 7, Constraints:g1(x, y) = 7x + 2y = 0,
g2(x, y) = x2

− xy = 0
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