Computational Methods

Least Squares
 Approximation/Optimization

Least Squares

- Least squares methods are aimed at finding approximate solutions when no precise solution exists
- Find the solution that minimizes the residual error in the system
- Least squares can be used to fit a model to noisy data points or to fit a simpler model to complex data
- Amounts to projecting higher dimensional data onto a lowerdimensional space.

Linear Least Squares

- Linear least squares attempts to find a least squares solution for an overdetermined linear system (i.e. a linear system described by an $m x n$ matrix A with more equations than parameters).

$$
A \vec{x} \cong \vec{b}
$$

- Least squares minimizes the squared Eucliden norm of the residual

$$
\min _{\vec{x}}\|\vec{b}-A \vec{x}\|_{2}^{2}=\min _{\vec{x}}\|\vec{r}\|_{2}^{2}
$$

- For data fitting on m data points using a linear combination of basis functions this corresponds to

$$
\min _{\alpha} \sum_{i=1}^{m}\left(y_{m}-\sum_{j=1}^{n} \alpha_{j} \phi_{j}\left(x_{i}\right)\right)^{2}
$$

Existence and Uniqueness

- Linear least squares problem always has a solution
- Solution is unique if and only if A has full rank, i.e. $\operatorname{rank}(A)=n$
- If $\operatorname{rank}(A)<n$ then A is rank-deficient and the solution of the least squares problem is not unique
- If solution is unique the residual vector can be expressed through A

$$
\|r\|_{2}^{2}=r^{T} r=(b-A x)^{T}(b-A x)=b^{T} b-2 x^{T} A^{T} b+x^{T} A^{T} A x
$$

- This is minimized if its derivative is 0

$$
-2 A^{T} b+2 A^{T} A x=0
$$

Normal Equations

- Optimization reduces to a $n \times n$ system of (linear) normal equations

$$
A^{T} A x=A^{T} b
$$

- Linear least squares can be found by solving this system of linear equations
- Solution can also be found through the Pseudo Inverse

$$
\begin{aligned}
& A x \cong b \Rightarrow x=A^{+} b \\
& A^{+}=\left(A^{T} A\right)^{-1} A^{T}
\end{aligned}
$$

- Condition number with respect to A can be expressed as in the case of solving linear equations

$$
\operatorname{cond}(A)=\|A\|_{2}\left\|A^{+}\right\|_{2}
$$

Data Fitting

- A common use for linear least squares solution is to fit a given type of function to noisy data points
- $\mathrm{n}^{\text {th }}$ order polynomial fit using monomial basis:

$$
A \vec{\alpha}=\left(\begin{array}{cccc}
1 & x_{1} & \cdots & x_{1}^{n} \\
1 & x_{2} & \cdots & x_{2}^{n} \\
\vdots & \vdots & \ddots & \vdots \\
1 & x_{m} & \cdots & x_{m}^{n}
\end{array}\right) \vec{\alpha}=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right)
$$

- Solving the system of equations provides the best fit in terms of the Euclidian norm

$$
A^{T} A \alpha=A^{T} y
$$

Condition Number and Sensitivity

- Sensitivity also depends on b
- Influence of b can be expressed in terms of an angle between b and y

$$
\cos (\theta)=\frac{\|y\|_{2}}{\|b\|_{2}}=\frac{\|A x\|_{2}}{\|b\|_{2}}
$$

- Bound on the error in the solution due to perturbation in b can be expressed as

$$
\frac{\|\Delta x\|_{2}}{\|x\|_{2}} \leq \operatorname{cond}(A) \frac{1}{\cos (\theta)} \frac{\|\Delta b\|_{2}}{\|b\|_{2}}
$$

Condition Number and Sensitivity

- Bound on the error in the solution due to perturbation in A can be expressed as

$$
\frac{\|\Delta x\|_{2}}{\|x\|_{2}} \leq\left((\operatorname{cond}(A))^{2} \tan (\theta)+\operatorname{cond}(A)\right) \frac{\|\Delta A\|_{2}}{\|A\|_{2}}
$$

- For small residuals the condition number for least squares is approximately cond(A).
- For large residuals the condition number can be square of worse

Condition Number and Sensitivity

- Conditioning of normal equation solution is
$\operatorname{cond}\left(A^{T} A\right)=(\operatorname{cond}(A))^{2}$
- For large systems of equation the condition number of the formulation using normal equations (or the Pseudoinverse) increases rapidly
- Much of the increased sensitivity is due to the need for multiplying A and A^{T} in order to be able to apply a solution algorithm for the system of equations
- Conditioning of the normal equations is potentially significantly worse than the conditioning of the original system
- Algorithm is not very stable for large numbers of equations/data points

Augmented System Method

- Augmented system method transforms least square problem into an system of equation solving problem by adding equations and can be used to improve the conditioning
- Increase matrix size to a square $(m+n) x(m+n)$ matrix by including the residual equations

$$
\begin{gathered}
r+A x=b \\
A^{T} r=0
\end{gathered} \quad \Rightarrow \quad\left(\begin{array}{cc}
I & A \\
A^{T} & 0
\end{array}\right)\binom{r}{x}=\binom{b}{0}
$$

- Greater freedom to choose pivots and maintain stability
- Substentially higher complexity for systems with $m \gg n$ due to the need to solve a $(n+m) x(n+m)$ system

QR Factorization

- The Augmented System method addresses stability but adds very high cost since it expands the matrix
- QR factorization changes the system matrix into solvable form without computation of $A^{\top} A$ and without expanding the matrix

$$
A=Q\left(\begin{array}{cccc}
R_{1,1} & R_{1,2} & \cdots & R_{1, n} \\
0 & R_{2,2} & \cdots & R_{2, n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & \cdots & 0 & R_{n, n} \\
0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0
\end{array}\right)=Q\binom{R}{0} \quad \Rightarrow \quad Q^{T} A x=Q^{T} b
$$

QR Factorization

- The important part of Q for the solution consists of the first n rows since the others are multiplied by 0

$$
Q^{T}=\left(Q_{1} Q_{2}\right) \quad \Rightarrow \quad Q_{1}^{T} A x=R x=Q_{1}^{T} b
$$

- QR factorization factors the system matrix A into Q an R where R is upper triangular
- As in LU Factorization, Q^{\top} represents a sequence of solutionpreserving transformations
- In LU Factorization only identity has to be preserved which can be done using elimination matrices
- In QR Factorization the least square characteristic has to be preserved which requires the use of orthogonal transformations
- R is an upper triangular matrix that can be used for backward substitution to compute the solution

Orthogonal Transformations

- Orthogonal transformations preserve the least square solution

$$
\begin{aligned}
& Q Q^{T}=I \\
& \|Q v\|_{2}^{2}=(Q v)^{T} Q v=v^{T} Q^{T} Q v=v^{T} v=\|v\|_{2}^{2}
\end{aligned}
$$

- For QR factorization we need to find a set of orthogonal transformations that can transform A into an upper triangular matrix R and that are numerically stable
- Householder transforms
- Givens rotations
- Gram-Schmidt orthogonalization

QR Factorization with Householder Transformations

- Householder transformations allow to zero all entries below a chosen point in a vector a
- Applying this consecutively for every column of the matrix A, choosing the diagonal element as the one below which everything is to be zeroed out we can construct R
- Householder transformation can be computed from a given vector (vector of column values), a, setting all the values that are not to be changed (entries above the diagonal) to 0

$$
Q=H=I-2 \frac{v v^{T}}{v^{T} v}, \quad v=a-\beta e_{i}, \quad \beta= \pm\|a\|_{2}
$$

- The sign for β can be chosen to avoid cancellation (loss of significance) in the computation of v
- H is orthogonal and symmetric: $H=H^{T}=H^{-1}$

QR Factorization with Householder Transformations

- In QR factorization with Householder transforms, successive columns are adjusted to upper triangular by zeroing all entries below the diagonal element.
- Householder transform does not affect the entries in the columns to the left and the rows above the currently chosen diagonal element since it contains only $0 s$ in the rows below the chosen diagonal term.
- Applying the Householder transform only to the columns to the right saves significant processing time

$$
H \vec{a}_{j}=\left(I-2 \frac{v v^{T}}{v^{T} v}\right) \vec{a}_{j}=\vec{a}_{j}-2 \frac{v v^{T}}{v^{T} v} \vec{a}_{j}=\vec{a}_{j}-2 v \frac{v^{T} \vec{a}_{j}}{v^{T} v}=\vec{a}_{j}-2 \frac{v^{T} \vec{a}_{j}}{v^{T} v} v
$$

- Applying it to individual columns also eliminates the need to compute full matrix H - only $v=\vec{a}_{j}-\beta e_{j}$ is needed

QR Factorization Example

- Quadratic polynomial fit to 5 data points
Data: (-1,1),(-0.5,0.5),(0,0),(0.5,0.5),(1,2)
- Design linear system for data fitting

$$
A \vec{\alpha}=\left(\begin{array}{lll}
1 & x_{1} & x_{1}^{2} \\
1 & x_{2} & x_{2}^{2} \\
1 & x_{3} & x_{3}^{2} \\
1 & x_{4} & x_{4}^{2} \\
1 & x_{5} & x_{5}^{2}
\end{array}\right) \vec{\alpha} \cong\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3} \\
y_{4} \\
y_{5}
\end{array}\right) \Rightarrow\left(\begin{array}{ccc}
1 & -1 & 1 \\
1 & -0.5 & 0.25 \\
1 & 0 & 0 \\
1 & 0.5 & 0.25 \\
1 & 1 & 1
\end{array}\right) \vec{\alpha} \cong\left(\begin{array}{c}
1 \\
0.5 \\
0 \\
0.5 \\
2
\end{array}\right)
$$

- Starting with the first column start eliminating entries below the diagonal using appropriate Householder transforms choosing the sign on β to avoid cancellation

OR Eactorization Exann e

- Householder elimination by column
- $1^{\text {st }}$ column:

$$
v_{1}=\vec{a}_{1}-\left\|\vec{a}_{1}\right\|_{2} e_{1}=\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right)+\sqrt{5}\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right)
$$

- Negative sign on β because potentially cancelling term is +1

$$
H_{1} A=\left(\begin{array}{ccc}
-2.236 & 0 & -1.118 \\
0 & -0.191 & -0.405 \\
0 & 0.309 & -0.655 \\
0 & 0.809 & -0.405 \\
0 & 1.309 & 0.345
\end{array}\right), \quad H_{1} \vec{y}=\left(\begin{array}{c}
-1.789 \\
-0.362 \\
-0.862 \\
-0.362 \\
1.138
\end{array}\right)
$$

QR Factorization Example

- Householder elimination by column
- $2^{\text {nd }}$ column:

$$
\left.v_{2}=\vec{a}_{2}-\left\|\vec{a}_{2}\right\|_{2} e_{2}=\left(\begin{array}{c}
-0.191 \\
0.309 \\
0.809 \\
1.309
\end{array}\right)-\sqrt{2.5}\left(\begin{array}{l}
1 \\
1 \\
0 \\
0 \\
0
\end{array}\right)=\begin{array}{c}
-1.772 \\
0.309 \\
0.809 \\
1.309
\end{array}\right)
$$

- Positive sign on β because possibly cancelling term is $\mathbf{- 0 . 1 9 1}$

$$
H_{2} H_{1} A=\left(\begin{array}{ccc}
-2.236 & 0 & -1.118 \\
0 & 1.581 & 0 \\
0 & 0 & -0.725 \\
0 & 0 & -0.589 \\
0 & 0 & 0.047
\end{array}\right), H_{2} H_{1} \vec{y}=\left(\begin{array}{c}
-1.789 \\
0.632 \\
-1.035 \\
-0.816 \\
0.404
\end{array}\right)
$$

QR Factorization Example

- Householder elimination by column
- 3rd column:

$$
v_{2}=\vec{a}_{3}-\left\|\vec{a}_{3}\right\|_{2} e_{3}=\left(\begin{array}{c}
0 \\
0 \\
-0.725 \\
-0.589 \\
0.047
\end{array}\right)-\sqrt{0.875}\left(\begin{array}{l}
0 \\
0 \\
1 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
-1.66 \\
-0.589 \\
0.047
\end{array}\right)
$$

- Positive sign on β because possibly cancelling term is -0.725

$$
H_{3} H_{2} H_{1} A=\left(\begin{array}{ccc}
-2.236 & 0 & -1.118 \\
0 & 1.581 & 0 \\
0 & 0 & 0.935 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad H_{3} H_{2} H_{1} \vec{y}=\left(\begin{array}{c}
-1.789 \\
0.632 \\
1.336 \\
0.026 \\
0.337
\end{array}\right)
$$

QR Factorization Example

- Backward substitution with the upper triangular matrix yields the parameters and least squares fit second order polynomial

$$
\vec{\alpha}=\left(\begin{array}{c}
0.086 \\
0.4 \\
1.429
\end{array}\right) \quad p(x)=0.086+0.4 x+1.429 x^{2}
$$

Other Orthogonal Transformations

- Other transformations can be used for QR Factorization
- Givens rotations
- Gram-Schmidt Orthogonalization
- Householder Transformations generally achieve the best performance and stability tradeoff
- Complexity of QR Factorization with Householder transformations is approximately $m n^{2}-n^{3} / 3$ multiplications
- Depending on the size of m (data points / equations) this is between the same and two times the work of normal equations
- Conditioning of QR Factorization with Householder transformations is optimal

$$
\operatorname{cond}(A)+\|r\|_{2}(\operatorname{cond}(A))^{2}
$$

QR Factorization

- Transformations for QR Factorization are numerically more stable than elimination steps in LU Factorization
- Choice of sign in Householder transformations allows to avoid cancellation and thus instabilities in individual transforms
- Row Pivoting is usually not necessary
- Stability leads to QR factorization also frequently being used instead of LU Factorization to solve nonsingular systems of linear equations
- Increased complexity is traded off against stability (and thus precision) of the solution

Nonlinear Least Squares

- As for equation solving, finding solutions for general nonlinear systems requires iterative solutions
- Goal is to find the approximate solution with the smallest square residual, ρ, for the system of functions $f(x)$

$$
\begin{aligned}
& r_{i}(x)=b_{i}-f_{i}(x) \\
& \rho(x)=\frac{1}{2} r^{T}(x) r(x)
\end{aligned}
$$

- At the minimum, the gradient of the square residual function, would be 0

$$
\nabla \rho(x)=J_{r}^{T}(x) r(x)=0
$$

- Could use Multivariate Newton method to find the root of the derivative which would require second derivative, the Hessian of the square error

$$
H_{\rho}(x)=J_{r}^{T}(x) J_{r}(x)+\sum_{i=1}^{m} r_{i}(x) H_{r_{i}}(x)
$$

Gauss-Newton Method

- Multivariate Newton method would require solving the following linear system in each iteration

$$
\left(J_{r}^{T}(x) J_{r}(x)+\sum_{i=1}^{m} r_{i}(x) H_{r_{i}}(x)\right) s=-J_{r}^{T}(x) r(x)
$$

- Requires frequent computation of the Hessian which is expensive and reduces stability
- Gauss-Newton avoids this by dropping second order term

$$
J_{r}^{T}(x) J_{r}(x) s=-J^{T}(x) r(x)
$$

- This is best solved by converting this into the corresponding least squares problem and using QR factorization

$$
J_{r}(x) s \cong-r(x)
$$

- Once solved, Gauss-Newton operates like Multivariate Newton

$$
x_{t+1}=x_{t}+s
$$

Gauss-Newton Method

- Gauss-Newton method replaces nonlinear least squares problem with a sequence of linear least squares problems that converge to solution of nonlinear system
- Converges if residual at the solution is not too large
- Large residual at solution can lead to large values in Hessian, potentially leading to slow convergence or, in extreme cases, non-convergence
- If it does not converge (large residual at solution) other methods have to be used
- Levenberg-Marquardt method which uses an additional scalar parameter (and a separate, function-specific strategy to choose it) to modify step size

$$
\left(J_{r}^{T}(x) J_{r}(x)_{-} \mu I\right) s=-J_{r}^{T}(x) r(x) \quad \Rightarrow \quad\binom{J_{r}(x)}{\sqrt{\mu I}} s \cong\binom{-r(x)}{0}
$$

- General optimization using the complete Hessian

Gauss-Newton Example

- Fit exponential function to data

$$
\begin{aligned}
& \text { Data: }(0,2),(1,0.7),(2,0.3),(3,0.1) \\
& f(\alpha, x)=\alpha_{1} e^{\alpha_{2} x}
\end{aligned}
$$

- Residual function for data fitting is given by

$$
r(\alpha)=\left(\begin{array}{c}
2-f(\alpha, 0) \\
0.7-f(\alpha, 1) \\
0.3-f(\alpha, 2) \\
0.1-f(\alpha, 3)
\end{array}\right)
$$

- Resulting Jacobian is

$$
J_{r}(\alpha)=\left(\begin{array}{cc}
-1 & 0 \\
-e^{\alpha_{2}} & -\alpha_{1} e^{\alpha_{2}} \\
-e^{2 \alpha_{2}} & -2 \alpha_{1} e^{2 \alpha_{2}} \\
-e^{3 \alpha_{2}} & -3 \alpha_{1} e^{3 \alpha_{2}}
\end{array}\right)
$$

Gauss-Newton Example

- First iteration starting at $\alpha^{(0)}=(10)^{T}$
- Initial square residual:

$$
\left\|r\binom{1}{0}\right\|_{2}=\sum_{i=1}^{4}\left(y_{i}-1 e^{0}\right)^{2}=2.39
$$

- Solve for step

$$
J_{r}\left(\binom{1}{0}\right) s=\left(\begin{array}{cc}
-1 & 0 \\
-1 & -1 \\
-1 & -2 \\
-1 & -3
\end{array}\right) s \cong\left(\begin{array}{l}
-1 \\
0.3 \\
0.7 \\
0.9
\end{array}\right) \quad \Rightarrow \quad s=\binom{0.69}{-0.61}
$$

- Update parameter vector for next iteration

$$
\alpha^{(1)}=\binom{1}{0}+\binom{0.69}{-0.61}=\binom{1.69}{-0.69}
$$

Gauss-Newton Example

- Second Iteration

- Square residual

$$
\left\|r\binom{1.69}{-0.61}\right\|_{2}=\sum_{i=1}^{4}\left(y_{i}-1.69 e^{-0.61 x_{i}}\right)^{2}=0.212
$$

- Solve for next step

$$
J_{r}\left(\binom{1.69}{-0.61}\right) s=\left(\begin{array}{cc}
-1 & 0 \\
-0.543 & -0.918 \\
-0.295 & -0.998 \\
-0.16 & -0.813
\end{array}\right) s \cong\left(\begin{array}{l}
-0.31 \\
0.218 \\
0.199 \\
0.171
\end{array}\right) \quad \Rightarrow \quad s=\binom{0.285}{-0.32}
$$

- Update parameter vector for next iteration

$$
\alpha^{(2)}=\binom{1.69}{-0.61}+\binom{0.285}{-0.32}=\binom{1.975}{-0.93}
$$

Gauss-Newton Example

- Third Iteration
- Square residual

$$
\left\|r\binom{1.975}{-0.93}\right\|_{2}=\sum_{i=1}^{4}\left(y_{i}-1.975 e^{-0.93 x_{i}}\right)^{2}=0.007
$$

- Solve for next step

$$
J_{r}\left(\binom{1.975}{-0.93}\right) s=\left(\begin{array}{cc}
-1 & 0 \\
-0.395 & -0.779 \\
-0.156 & -0.615 \\
-0.061 & -0.364
\end{array}\right) s \cong\left(\begin{array}{c}
-0.025 \\
0.079 \\
0.007 \\
0.02
\end{array}\right) \quad \Rightarrow \quad s=\binom{0.019}{-0.074}
$$

- Update parameter vector for next iteration

$$
\alpha^{(3)}=\binom{1.975}{-0.93}+\binom{0.019}{-0.074}=\binom{1.994}{-1.004}
$$

Least Squares Approximation

- Least Squares approximation is used to determine approximate solutions for a system of equation or to fit an approximate function to a set of data points
- As opposed to interpolation data points are not met precisely
- Applicable to noisy data points
- Allows less complex function to be fitted to the data points
- Least squares for linear functions has direct solution methods
- Normal equations method not very stable for large numbers of equations
- QR Factorization provides a more stable alternative that can also be used for equation solving instead of LU factorization
- Least squares for nonlinear systems requires iterative solution
- Gauss-Newton provides robust solution for problems with small residual
- Otherwise general, more expensive optimization methods have to be used

