

Reasoning with Uncertainty

Fuzzy Logic

Fuzzy Logic

- Fuzzy Logic is a multivalued logic
 - Rule-based inference system
 - Membership values indicate degree of truth of predicates
 - Fuzzy set operations permit reasoning with membership values
- Fuzzy Logic has been applied very successfully to a number of control problems

Fuzzy Logic - Applications

- Many everyday applications use Fuzzy Logic control
 - Microwaves
 - ABS brakes
 - Camera image stabilization
 - Cruise control
 - Air conditioning control
 - Washing machine control

Fuzzy Sets

- A Fuzzy set A is a set of items with membership values
 - A is a subset of the universe (all possible objects)
 - There is a membership function

$$\mu_{A}(x) \in [0..1]$$

indicating the degree to which *x* belongs to set *A*

Fuzzy Set Operations

- Union of two Fuzzy Sets
 - $\mu_{A \cup B}(x) = \mu_A(x) \oplus \mu_B(x)$ Often max $(\mu_A(x), \mu_B(x))$
- Intersection of two Fuzzy Sets
 - $\mu_{A \cap B}(x) = \mu_A(x) \otimes \mu_B(x)$ Often min $(\mu_A(x), \mu_B(x))$
- Inversion of a Fuzzy Set
 - $\mu \neg_A (x) = 1 \mu_A (x)$

Fuzzy Inference (Control)

- Fuzzy Logic uses logic inference rules and defuzzification
 - Inference rules are of the form:

If a in A and b in B then c in C

Where *A*, *B*, and *C* are Fuzzy sets, a, b, and c, are elements from the universe of discourse.

- Multiple rules for the same set are combined using ⊕
- A value for the variable c in C is extracted by defuzzification - Often as the center of mass of the membership function

Fuzzy Inference (Control)

- Inference rules derive a membership function for the resulting fuzzy set
 - Rule 1: If a in A and b in B then c in C
 - Results in a membership function for c which is limited by the degree of truth of the rule's antecedents and the membership function for

$$\mu_{Rule\ 1}$$
 (c) = min (μ_A (a) $\otimes \mu_B$ (b) , μ_C (c))

 All inference rules that have the same variable as a consequent

$$\mu_{Result}(c) = \mu_{Rule 1}(c) \oplus \mu_{Rule 2}(c) \oplus \dots$$

Fuzzy Inference (Control)

- A value for the variable in the consequent is derived from the resulting membership profile using defuzzification
 - Defuzzification often uses the center of mass of the membership function
 - c is the point where

$$\int_{-\infty}^{c} \mu_{Result}(x) dx = \int_{c}^{\infty} \mu_{Result}(x) dx$$

Fuzzy Logic

- Advantages
 - Simple inference system
 - Easy to design
 - Good for simple control
- Problems
 - Problems with strings of inference
 - Non-symmetric inference
 - Difficulty interpreting resulting membership values.