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Reasoning with Uncertainty 

Graphical Models 



© Manfred Huber 2015 2 

Inference Complexity and Dependence 

n  Inference in probabilistic and belief systems is 
computationally complex 
n  Probabilistic inference is exponential in the number of 

random variables 

n  Dempster-Schafer is doubly exponential in the number 
of state attributes (polynomial in state subsets) 

n  Independence relations can reduce this complexity  
n  Conditional independence in probability limits the 

number of random variables that have to be 
considered to make inference 
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Graphical Models 

n  Graphical models provide an efficient structure to 
represent dependencies in probabilistic (and much 
less well developed) belief systems. 

n  There are two main types of graphical models for 
probabilistic systems: 
n  Bayesian Networks are directed graphical models 

n  Markov Networks (Markov Random Fields) are 
undirected graphical models 

n  Both types of models can represent different types of 
dependencies 
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Graphical Models for Probabilistic Inference   

n  Graphical models in probabilistic systems allow to 
represent the interdependencies of random variables 
n  Structure shows dependency relations 

n  Inference can use the structure to control the 
computations 

n  Graphical models provide a basis for a number of 
efficient problem solutions 
n  Inference of prior and conditional probabilities 

n  Learning of network structure 
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Bayesian Networks 
n  Bayesian networks are graphical representation for 

conditional independence providing a compact 
specification of joint probability distributions  
n  Bayesian networks are directed, acyclic graphs 

n  Nodes represent random variables 

 

n  Links represent “direct influences” 

 

n  Nodes are annotated with the conditional probability 
distribution of the node given its parents 

n  Probabilities in the network represent joint distribution 

! 

N = {Xi |1" i " n}

! 

A = {(Xsj
,Xe j

) | Xsj
and Xsj

 "directly influence each other"}

! 

P(Xi |Parents(Xi))
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Markov Networks 
n  Markov networks (Markov Random Fields) are graphical 

representation for conditional independence, providing 
a compact specification of joint probability distributions  

n  Markov networks are undirected graphs 
n  Nodes represent random variables 
 

n  Links represent dependencies (nodes are not pairwise Markov) 
 

n  Cliques in the graph are annotated with “clique potentials” that 
allow to compute the probability distributions 

n  Probabilities induced represent joint distribution 

! 

N = {Xi |1" i " n}

! 

A = {(Xsj
,Xe j

) | Xsj
and Xsj

 are not conditionally independ}

! 

"i(X{i})



Markov Networks 
n  Undirected graphical models 

B 
D 

C 
A 

n  Potential functions defined over (maximal) cliques 
n  2 maximal cliques: {A,B} , {B,C,D} 

A B   ϕ(A,B) 
False False      3.5 
False True      6.5 
True False      2.1 
True True      4.3 

! 

P(x) =
1
Z

"c (xc )
c
#

! 

Z = "c (xc )
c
#

x
$
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Hammersley-Clifford Theorem 
n  Hammersley-Clifford Teorem states that for every 

distribution that is not 0 for any item, there is a 
corresponding Markov network 

 If Distribution is strictly positive (P(x) > 0) 
 And Graph encodes conditional independences 
 Then Distribution is product of potentials over 

 cliques of graph 
 

n  Inverse is also true 
n  This comes from the fact that the Markov network 

represents the Gibbs distribution 
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Markov Networks 
n  Using the fact that all potentials are non-zero and 

that the probability is exponentiated log likelihood, 
the potential can be represented in log-linear form 

 
n  Features fi,j (x) can, for example, be selected to be indicators 

that the state matches a particular assignment to a specific 
clique: 

 
n  Other feature choices can result in a more compact representation 

! 

fi, j (x) =
1 if the variables of x in clique i match the jth  value assignment 
0  otherwise

" 
# 
$ 

wi, j = log %i(xi)( )

! 

P(x) =1 Z *e
wi , j fi , j (x )i , j"
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Markov Nets vs. Bayes Nets 
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n  Bayesian and Markov Networks can be used to represent 
probability distributions. However, they have a different 
representation and different limitations to encode 
dependency relations in the structure of the network. 
n  Markov networks can represent cyclical dependency 

relations. Bayesian networks can represent induced 
dependencies 

n  In both graphical models the distribution is represented as 
a product of potentials 
n  Potentials in Bayesian networks are conditional probabilities 

n  Independence is achieved through the Markov blanket 
which is more local in a Markov network 



Independence in Markov Networks 

n  Two nodes in a Markov network 
are independent if and only if there 
is no path between them that does 
not cross an observed (evidence) 
variable 
n  E.g. nodes B and C are independent 

when A and D are observed  
n  E.g. nodes B and E are independent 

when node A and D are observed 
n  E.g. nodes C and E are not 

independent 
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Markov Blanket 
n  In a Markov network, the Markov blanket of a 

node consists of that node and its neighbors 
n  Markov blanket in a Markov network is easier to 

represent and analyze than in a Bayesian network 
since it does not include any nodes at a distance larger 
than 1. 

n  In a Bayesian network there can be a relation through parents 
of children and thus a remaining dependence is much more 
difficult to evaluate. 

n  Dependencies in Markov networks are inherently local 
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Converting Between Bayesian 
and Markov Network Structure 

n  Bayesian and Markov networks can both 
represent arbitrary probability distributions 

n  To convert between the two network types a 
number of properties have to be considered 
n  Same data flow must be maintained in the conversion 

n  Sometimes new dependencies must be introduced to maintain 
data flow 

n  For efficient conversion of the structure independent of 
the specific potential functions the original set of 
immediate dependencies has to be maintained 

n  When converting to a Markov network, the dependencies of 
Markov net must be a superset of the Bayes net dependencies.  

I(Bayes) ⊆ I(Markov) 
n  When converting to a Bayes net the dependencies of Bayes net 

must be a superset of the Markov net dependencies.  
I(Markov) ⊆ I(Bayes) 
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Converting Bayesian Networks to 
Markov Networks 

n  Conversion from directed to undirected model has to 
maintain the dependencies independent of the evidence 
(observed variables) 
n  All direct dependencies in the Bayesian network are potential 

dependencies in the Markov network 
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A 

B C 

D 

F E 

n  Structure must be able to handle any evidence. 
n  Difference in Markov blanket leads to additional 
potential dependencies. If a child of a node is 
observed, the parents of this child are not 
independent. E.g. if D is observed there is still 
data flowing between B and C. 

n  Common parents of a node have to be 
connected to represent the additional 
dependencies (“moralizing”) 

 



Converting Bayesian Networks 
to Markov Networks 
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A 

B C 

D 

F E 

A 

B C 

D 

F E 

A 

B C 

D 

F E 

Remove 
directionality 

Moralize 



n  Conversion from undirected to directed model has to 
maintain the dependencies and independence relations, 
independent of the evidence (observed variables) 
n  All direct dependencies in the Markov network are potential 

dependencies in the Bayesian network 

Converting Markov Networks to 
Bayesian Networks 

© Manfred Huber 2015 16 

n  Structure has to be able to handle any 
evidence and preserve dependencies and 
independence relations 

n  Differences in Markov blanket imply that 
observations of children nodes can cause 
conditional independence in Markov 
networks that are not mirrored in a Bayesian 
network with the same connectivity  

A 

B C 

D 

F 

E 

G H 



n  Structure has to be able to handle any evidence and preserve 
dependencies and independence relations 

n  Difference in the Markov blanket implies that while parents of a 
common observed node are dependent in a Bayesian network, they 
are independent in the Markov network (given the remainder of the 
Markov blanket). E.g. if A and F are observed no  
 information flows between B and C in the Markov  
 network but does in a Bayesian network. 

Converting Markov Networks to 
Bayesian Networks 
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n  To address this, additional connections 
between the common descendants of a node 
have to be used to allow the representation of 
independence by compensating the influence 
(“triangulation”) 

n  Resulting structure has to be made directional and 
acyclic through topological sorting of nodes 

A 

B C 

D 

F 

E 

G H 



Convert Bayesian Networks to 
Markov Networks 

A 

B C 

D 

F 

E 

G H 

A 

B C 

D 

F 

E 

G H 

A 

B C 

D 

F 

E 

G H 

1 

2 3 

5 

6 

8 7 

4 

Triangulation 
Topological sorting  

And adding  
directionality 
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Inference in Markov Networks 

n  Inference in Markov networks is similar to inference 
in Bayesian networks 
n  Analytic inference in Markov networks is #P complete and 
thus intractable in general (Note that this was true for 
Bayesian networks, too.) 

n  Particular classes of Markov networks are solvable in Polynomial 
time but the exact definition of these classes is still research (in 
Bayesian networks the class of all singly connected networks is 
polynomial)  

n  Monte Carlo inference provides approximate inference and 
is more tractable 

n  Markov Chain Monte Carlo is most commonly used here and simpler 
than in Bayesian networks due to the more local dependencies  
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Variable Elimination 

n  Variable elimination in Markov 
networks works similar to Bayesian 
networks 
n  Given a set of potentials, Φi, defined 
over all maximal cliques 

n  Change all clique potentials for clique 
assignments that are inconsistent with the 
observed variables to 0 

n  Combine and marginalize potentials in the 
same way as for Bayesian network variable 
elimination 
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Markov Chain Monte Carlo  
n  Markov Chain Monte Carlo (MCMC) is a common 

family of inference algorithms for Markov networks 
n  Metropolis-Hastings is a very general algorithm (with some 

attributes of rejection sampling) but uses more samples 
than required and does not take full advantage of local 
Markov blanket 

n  Samples the next state given the current one according to the 
transition probabilities in the MCMC model 

n  Reject the new state with a given probability to maintain balance 

n  Gibbs sampling is the most popular algorithm 
n  Gibbs sampling resamples each of the non-observed variables 

sequentially, treating all other variables as if they were observed 
according to the values in the last generated sample 

n  This implies that all variables in the Markov blanket are observed and the 
transition probability can therefore be computed by looking only at the potentials 
of cliques containing the variable that is being resampled  
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Gibbs Sampling 
n  Gibbs sampling is one of the simplest MCMC algorithms where 

samples are generated by sampling one variable at a time while 
considering all others to have the previous value 
n  Initial samples depend on starting point and are discarded (burn-in) 
n  Samples generated later on represent the distribution 

n  After burn-in different sample selection strategies can be used 
n  Use all samples generated in consecutive sampling steps 

n  Consecutive samples are not independent (only one variable changed) and thus a large 
number of samples is needed to correctly represent the distribution 

n  Generation of a sample only requires sampling one variable 

n  Use only every nth sample (i.e. after sampling n variables – often n is chosen to be 
the number of random variables in the system) 

n  If n is large enough the samples will be approximately independent 
n  A smaller number of samples can represent the distribution but generation of each 

sample requires n sampling steps 

n  Generate one sample per run from different, random starting points 
n  Samples are independent 
n  Sample generation is extremely expensive since it needs on burn-in per sample 

© Manfred Huber 2015 22 



Gibbs Sampling 
n  Assume P(A | C, E), i.e. C, E are observed 

n  Since no data flows from D and F to A if C 
and E are observed, these variables do not 
influence P(A | C, E) and only the other 
variables have to be sampled 

n  Start with a random sample, e.g.  

n  To generate the next samples, all relevant 
variables (A and B) have to be resampled  
n  Sampling order of variables can either be 

random or in a fixed order (they have to be 
sampled uniformly) 

A B C D E F 

0 0 1 x 1 x 
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Gibbs Sampling 
n  Picking a fixed order (A, B), first A and then 

B are resampled assuming that all other 
variables are observed at their current value 

n  Sampling A requires P(A | ~B,C,E).  
 Due to the definition of the Markov blanket in 
Markov networks this requires only the 
potentials of cliques that contain the node 
that is being sampled (Φ1 ,Φ2) 

A B C D E F 
0 0 1 x 1 x 
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A 
B C 

D 
F 

E 

Φ2 

Φ4 

Φ6 Φ5 

Φ3 

Φ1 

a ¬a 
c 1 2 
¬c 3 4 

a ¬a 
b 1 5 
¬b 4.3 0.2 

Φ1: Φ2: 
a ¬a 
12.9 0.8 

Φ1 xΦ2: 

a ¬a 
0.94 0.06 

Normalized probability to sample A: 



Gibbs Sampling 
n  Assume that sampling resulted in A. B is resampled 

next, requiring P(B | A,C,E).  
 This requires the potentials of cliquesΦ1 ,Φ3 

A B C D E F 
0 0 1 x 1 x 
1 0 1 x 1 x 
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a ¬a 
b 1 5 
¬b 4.3 0.2 

Φ1: Φ3: 

Φ1 xΦ3: 

Normalized probability to sample B: 

e ¬e 
b 1 2 
¬b 2 1 

b ¬b 
1 8.6 b ¬b 

0.11 0.89 
 

n  Assume ~B is sampled. This completes the first full 
Gibbs sampling iteration (over all relevant variables) 

n  Depending on sample retention policy either all samples 
from consecutive sampling or only the ones at the end of 
full iterations are retained 

A B C D E F 
0 0 1 x 1 x 
1 0 1 x 1 x 
1 0 1 x 1 x 



Learning Markov Networks 
n  As with Bayesian networks, Markov networks can be 

learned from data 
n  Parameter learning 

n  Given the connectivity, learn the potentials (or the 
weights in the log-linear model) 

n  Learning a generative model 
n  No assumptions are made which variables will be observed 

and which ones will be inferred. Therefore the complete joint 
probability distribution has to be inferable 

n  Learning a discriminative model 
n  Which variables are being observed is assumed to be known. 

Therefore only conditional probabilities for the other variables 
have to be inferred – Conditional Markov Networks / 
Conditional Random Fields (CRF) 
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Learning Markov Networks 
n  Structure learning 

n  Learning of the connectivity / cliques in the network (or of 
features in the log-linear model) 
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Generative Parameter Learning 

n  Given data D, maximize the likelihood, P(D | Φ), 
that the network would generate the data 
n  Generally formulated using log likelihood 

n  In contrast to Bayesian networks where the model parameters (and 
thus the maximum of the likelihood) can be solved analytically, this 
maximum has to be found here numerically using optimization 
(since Z does not decompose over network parameters) 

n  Given that ci,j represents the jth assignment to the variables in clique 
i and Ni,j represents the number of data items which match this 
variable assignment, the derivative can be determined 

 

n  Requires inference at each step (slow!) 
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Generative Parameter Learning 
n  The derivative requires the computation of the expected number of 

data samples that have a particular assignment to each clique (and 
thus a network inference) in each iteration of the optimization. 

n  Derivative for log-linear form where features fi,j are strict indicators (i.e. 
1 if the feature is present and 0 otherwise) is even simpler (but still 
requires inference) 

n  Standard optimization approaches can be used to solve for 
parameters (fixed-point iteration, gradient ascent, …) 

n  Parameter learning is relatively slow since it requires complete 
inference in each optimization iteration 

 

 

n  Requires inference at each step (slow!) 
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Pseudolikelihood Learning 

n  Faster (approximate) parameter learning can be 
achieved by optimizing the pseudolikelihood PL(D|Φ) 
rather than the likelihood 

n  Derivative of log pseudolikelihood only requires 
computation of pseudolikelihoods of clique assignments 
which does not require network inference 

n  Pseudolikelihood is a consistent estimator and thus results 
in consistent approximations to the parameters 

n  Parameters work well for basic inference but might not result in 
very good approximations for long inference chains (errors 
accumulate) 

  

! 

PL(X) " P(xi | x j1
,…,x jk

: x jl
# Markov Blanket of xi)

i
$
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Discriminative Parameter Learning 

n  Given data D and a subset of the variables, Xo, that will 
always be observed, maximize the conditional likelihood, 
P(D | Φ,Xo), that the network would generate the data 
n  Generally formulated again using log likelihood 

n  In a log-linear representation, and assuming using Nx,j,xo to represent the 
number of data items that match feature fi,j and correspond to observation 
xo, the derivative of the conditional probability for the CRF can be computed 
and optimization be used (again requiring inference in each step) 

 

n  Requires inference at each step (slow!) 
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Structure Learning 
n  As in Bayesian networks the structure can be 

learned from data by evaluating dependencies 
n  Adding nodes in a pre-determined order is not possible in 

Markov networks since there is no directionality and pairwise 
markov can not be evaluated on a subset of the variables 

n  Stucture learning in Markov networks can be performed in a 
log-linear model by aggregating features such as to 
maximize the probability of the data  

n  Start with atomic features 
n  Greedily combine features to improve score 

n  Need to reestimate parameters for each new candidate 
n  Approximation: Keep weights of previous features constant 

 
© Manfred Huber 2015 32 



Graphical Models 
n  Graphical models provide compact ways to represent 

probability distributions by using information about 
dependencies 
n  Bayesian networks are directed models that represent the 

joint distribution in terms of conditional probabilities 
n  Markov networks are undirected models that represent the 

joint distribution in terms of clique potentials 

n  Different causal relations can be represented with 
different efficiency in the two types of models 

n  For both models, algorithms exist to make arbitrary 
probabilistic inferences and to learn the parameters and 
the structure from 
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