Reasoning with Uncertainty

Representing Uncertainty

Reasoning with Uncertainty

- The goal of reasoning is usually to:
 - Determine the state of the world
 - Determine what actions to take
 - Determine the how the world behaves
- Uncertainty makes reasoning more complex
 - Multiple possible states
 - Multiple possible outcomes or conclusions
 - Simple logical representations are often insufficient to represent uncertain information

Traditional Reasoning

Traditional reasoning methods

- Formal reasoning:
 - Rule-based inference
 - Logic knowledge representations
- Procedural reasoning
 - Use procedures that specify how to solve problems
- Reasoning by analogy
 - Infer solution from similar instances (very difficult for computers)

Uncertainty

Sources of Uncertainty:

- Noise:
 - Observations of the environment are not precise
- Uncertain change:
 - The world does not behave deterministically
 - No single successor state can be predicted
- Incompleteness ("ignorance"):
 - Information is missing
- Uncertainty leads to inconsistencies in many traditional reasoning systems

Example Problems

- Determine the state of the world
 - Given a set of observations, determine what state (or situation) the world (or part of it) is in.
- Predict the outcome of an action
 - Given the state (or situation) of the world, determine what effect an action would have.
- Determine optimal actions
 - Given the state (or situation) of the world, what actions would lead to the best outcome.

Note: The results of reasoning with uncertainty are not always intuitive

Uncertainty Reasoning Methods

- Symbolic Methods
 - Non-monotonic reasoning
 - Use logic framework but accept inaccuracies. E.g.:
 - Ignore unlikely possibilities
 - Draw conclusions that are merely possible
- Statistical Methods
 - Certainty factors
 - Use logic rules augmented with measures of certainty
 - Probability
 - Dempster-Shafer
 - Reason with Belief and Plausibility
 - Fuzzy Logic Methods

© Manfred Huber 2015

Symbolic Methods

Extend traditional logic to non-monotonic logics:

- Addition of knowledge does not strictly increase the set of known things and thus does not strictly reduce the set of possible consequences
- Extension can take multiple forms:
 - Allow for changing sets of facts and conclusions
 - Default assumptions about unknown facts
 - Changing assumptions due to new information
 - Allow for additional belief in truth values:
 - True, False, neither True nor False / True and False
 - Include information about knowledge of facts

© Manfred Huber 2015

Symbolic Methods

Examples:

- Default reasoning
 - Include default assumptions about unknown facts
- Abductive reasoning
 - Allow to infer the most likely explanations
- Autoepistemic logic
 - Reason explicitly about the knowledge behind facts
- Belief revision
 - Dynamically change the belief / available facts
- Paraconsistent logics
 - Allow for facts to be true and false at the same time

Symbolic Methods

Advantages:

- Use of a well defined reasoning and inference framework
- Mostly well understandable and interpretable steps
- Simple mechanism
- Problems:
 - No quantitative notion of uncertainty
 - Chains of inferences potentially loose consistency and order can not be changed

Statistical Methods: Certainty Factors

Proposed for the MYCIN system

- Augment rules with certainty factors
- Perform logic inference while tracking certainty facors
- Certainty Factors
 - A measure of belief and disbelief
 B(H | E), D(H | E)
 C(H | E) = B(H | E) D(H | E)
 - Inference maintains both belief measures
 - Evidence is combined as in probability
 - Hypotheses are combined using an independence assumption

Statistical Methods: Certainty Factors

- Advantages:
 - Rule-based inference mechanism
 - Follows probabilistic rules
 - More tractable than general probaility
- Problems
 - Rules have to be independent (very difficult to do in practice)
 - Certainty factors have to be available

Statistical Methods: Probability

- Probability distributions over states represent the current situation of the world
- Conditional probabilities are used as models of the world
- Bayes theorem allows probabilistic inference:
 P(H|E) = P(E | H) * P(H) / P(E)
- Advantages:
 - Quantitative measure of uncertainty
- Problems:
 - High complexity of inference

Statistical Methods: Dempster-Shafer

- Distinguishes between incompleteness ("ignorance") and other uncertainty
- Represent Belief and Plausibility
 - Belief: represents all evidence available for a hypothesis
 - Plausibility: represents all evidence that is compatible and not inconsistent with the hypothesis
- Belief and Plausibility represent an interval within which the true probability lies with a certain confidence

Statistical Methods: Dempster-Shafer

Advantages:

- Represents the actual state of knowledge more precisely
- Distinguishes randomness from missing information

Problems:

- Very complex mathematically
- Has to be calculated over all possible sets of states

Fuzzy Methods: Fuzzy Logic

- Fuzzy Logic models the degree of truth or membership to a class.
 - Redefines set theory with a real-valued membership function
 - Membership function $\mu_A\left(x\right)$ represents the degree to which x belongs to set A
 - Set operations are defined as:
 - $\mu_{A\cup B}(x) = \mu_A(x) \oplus \mu_B(x)$ (often defined as *max*)
 - $\mu_{A \cap B}(x) = \mu_A(x) \otimes \mu_B(x)$ (often defined as *min*)
 - Inference through the application of rules and defuzzification
 - Defuzzification extracts a value from a membership function (usually as the weighted mean or center of mass)

Fuzzy Methods: Fuzzy Logic

Advantages:

- Easy to design
- Relatively intuitive rules
- Relatively robust controllers
- Problems:
 - Longer inference chains can be problematic
 - The order of inference steps matters
 - After inference it can be difficult to exactly interpret the membership value

Choosing a Mechanism

Choosing a Mechanism

- The choice of reasoning mechanism depends on the given requirements and the problem
 - Fuzzy logic works well for simple control problems that do not require precise knowledge of uncertainty
 - Certainty factors work well if rules can be engineered to be independent and if certainties are available
 - Probability is best for situations where a precise measure of uncertainty is required
 - Dempster-Shafer provides additional information about the degree to which information is available

Choosing a Mechanism

 Bayesian Probability is the most commonly used and best developed mechanism

- Formal mathematical framework exists
- Different modeling mechanisms are available
- Optimal modeling and decision methods exist

This course will largely focus on this framework for the representation of uncertainty.