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Abstract 

Imitation represents a powerful approach for programming 
and autonomous learning in robot and computer systems. 
An important aspect of imitation is the mapping of 
observations to an executable control strategy. This is 
particularly important if the behavioral capabilities of the 
observed and imitating agent differ significantly. This paper 
presents an approach that addresses this problem by locally 
optimizing a cost function representing the deviation from 
the observed state sequence and the cost of the actions 
required to perform the imitation. The result are imitation 
strategies that can be performed by the imitating agent and 
that as closely as possible resemble the observations of the 
demonstrating agent. The performance of this approach is 
illustrated within the context of a simulated multi-agent 
environment. 

Introduction1 

As computer and robot systems move into more complex 
real-world environments, adaptive capabilities and ease of 
programming become increasingly important. This is 
particularly important for systems that have to interact with 
humans and that are under the control of a person who is 
not a skilled computer programmer. In such situations it 
becomes essential that other means of programming or 
autonomous learning capabilities are available to achieve 
task performance. Imitation, or learning from 
demonstration is a technique that takes an intermediate 
stance between fully autonomous learning and direct 
programming. In this paradigm the system acquires new 
behaviors by observing other agents, be they human or 
artificial, operating in its environment. Instead of learning 
in solitude, the agent is now able to benefit from the 
experience of others. This framework can be seen either as 
a learning paradigm that provides the learning robot with 
richer information about its environment, or alternatively 
as a simpler approach to programming that allows the 
programmer to communicate new behaviors to the system 
by demonstrating them. 

Robot Imitation and learning from demonstration have 
received significant interest in recent years (Atkeson and 
Schaal, 1997; Kang and Ikeuchi, 1993; Mataric, 1994). 
Within the field of robotics most of this has focused on 
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imitation in humanoid systems. Most approaches in this 
domain address imitation initially by observing the 
demonstrator’s joint angles and then attempting to execute 
the same angle sequence on the kinematic structure of the 
robot. If the structure of the imitator is not identical or very 
similar to the one of the imitating system, however, such 
approaches often lead to unsatisfactory results and 
approaches have been devised to adapt the observed 
sequences on-line to address this problem. A second 
limitation of these techniques is that imitation at such a low 
level often limits its application to relative small task 
domains with short task sequences and does generally not 
generalize to the re-use of the acquired strategy when the 
environmental conditions change. 

Other, more symbolic approaches to learning from 
demonstration have been developed where the imitating 
agent attempts to learn the internal policy model of the 
demonstrating agent (Demiris, 1999; Peterson and Cook,  
1998). While it permits to address larger, more extended 
tasks, most of these approaches require that the imitating 
and the demonstrating agent have identical representations 
and behavioral repertoires and that the imitating agent can 
observe the action chosen by the other agent. In most real-
world systems, however, the demonstrating and the 
imitating agent can have significantly different capabilities 
and only the effects of actions are observable. 

The approach to imitation presented here is aimed at 
imitation from observations of the demonstrating agent at a 
functional level. Functional here implies that the goal is not 
to copy action sequences but rather to attempt to achieve 
similar sequences of effects on the state of the environment 
irrespective of the particular actions. The resulting 
imitation strategies here are mappings from the observed 
states of the world to the behavioral capabilities of the 
imitating agent. The result is a control strategy that 
matches the behavioral repertoire of the imitating agent 
and that exactly or closely matches the functional effects of 
the observed actions even in situations where behavioral 
capabilities of the imitating and demonstrating agent are 
dissimilar. To achieve the mapping between observation 
and imitation, the approach presented here uses a distance 
metric to establish the control strategy that most closely 
reproduces the effects of the observed sequence. This 
paper will focus on the mapping from an observed state 
sequence to an executable control strategy and largely 
ignore the perceptual challenges involved in translating 
sensory, and in particular visual input into representations 
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of the state of the environment. The techniques introduced 
here will be illustrated using the WISE simulation 
environment (Holder and Cook, 2001) which is based on 
the Wumpus world computer game. 

Imitation Using Cost-Based Policy Mapping 
Imitation takes place when an agent learns a task from 
observing the execution of the same task by a teacher or 
demonstrator. In general, the demonstrator can here be 
another artificial agent or ideally a human while the 
imitator is a robot or an artificial computer agent. This 
general definition implies that the behavioral capabilities 
of the two agents involved here can be substantially 
different and that the imitating might not be capable of 
performing the precise action sequence of the 
demonstrating agent. Moreover, it might not be capable of 
fully performing all aspects of the task in the same fashion 
due to missing capabilities. For example, if a mobile robot 
with a simple front gripper is to imitate a human 
demonstrator for a house cleaning task, it will generally not 
be capable of performing all aspects of the demonstration 
in the same fashion. It might, for example, not be capable 
to reach on top of a book shelf to dust due to its limited 
size. Similarly, it will not be able to perform other aspects 
of the task in the same fashion as the human. For example, 
to pick a magazine off the floor, the human will bend down 
and reach forward. To achieve the same functional 
outcome, the mobile robot will have to drive up to the 
magazine and then close its gripper on it, thus executing an 
action sequence that, at the behavior level,  differs 
substantially from the one observed. The approach 
presented here addresses this challenge by means of 
establishing a lowest cost approximation to the observed 
sequence. The result is an agent that approximately repeats 
the observed task. 

Underlying the approach presented here is a view that 
sees imitation as a three step process leading from 
perceptual observations to the execution and storage of a 
corresponding, executable control policy: 

1. Mapping perceptual observations to a model of 
the observed task execution 

2. Mapping the observed model onto the internal 
behavior model of the imitating agent 

3. Execution of the resulting policy 
The first step here involves translating the perceptual 

input stream into a discrete representation of the sequence 
of the observed events. The resulting model of the 
observed task takes the form of a discrete Markov model 
where states represent the observed state of the 
demonstrator and the environment and transition occur 
whenever a significant observable change in the state is 
detected. Since actions are not directly observable, no 
actions are associated with the transitions. Similarly, 
aspects of the state that can not be directly observed or that 
can not be extracted by the perceptual routines will also not 
be represented in the model of the observed task. 

The second step is concerned with mapping the 
observed behavior model onto the internal model of the 
imitating agent. The internal model is again represented as 
a discrete Markov model where states represent states of 
the environment and of the imitating agent. In contrast to 
the observed model of the demonstrator, however, the 
internal model is a complete representation of the 
behavioral capabilities of the imitator. States occurring in 
the model represent all possible states that can be achieved 
actively by the agent using all options in its behavioral 
repertoire. Transitions of the internal model correspond to 
the effects of the execution of a particular action by the 
agent. In general, this model can be learned by the agent by 
exploring the range of actions at its disposal or can be pre-
programmed by the designer using the available 
knowledge about the operation of the agent. The goal of 
the model mapping process is then to find the policy, i.e. a 
mapping from states to actions in the internal model that 
produces the state sequence that most closely matches the 
sequence represented in the model of the observed task and 
thus most closely reproduces the functional outcomes of 
the observed task. 

In the third step, the imitating agent executes the policy 
identified in the second step, thus imitating the agent. If the 
internal model is an accurate representation of the actual 
behavioral capabilities of the imitating agent the execution 
of the policy should be straightforward. 

This paper focuses on the second step and thus assumes 
that the perceptual capabilities to generate the model of the 
observations are available and that the model of the 
observed task is already constructed. The main task 
addressed here is the mapping from the observed model to 
the internal model. In general, this will require identifying 
correspondences between states of the observed model and 
states in the internal model and searching for a state and 
transition sequence that matches the one observed. For the 
purpose of this paper it is assumed that the states in the 
observed and in the internal model are built on the same 
state representation and thus that there is a one-to-one 
correspondence between observed and internal states.  

However, since the behavioral capabilities of the 
demonstrator and the imitating agent are generally not 
identical, the mapping process might not result in the exact 
same state sequence for the imitator, requiring the 
identification of the closest matching sequence which 
might include additional transitions or might not include 
certain observed states because they can not be achieved 
by the imitator or prevent it from achieving the remainder 
of the task.  

To identify the best matching policy, the approach 
presented here searches for the best match using a cost 
function defined on the state and action space of the 
internal model. Figure 1 illustrates the basic model 
mapping parameters used. Here, the observed model states 
(dark states) are mapped to internal states (light states) 
using a cost criterion consisting of a distance metric 
between the states and the cost of the actions selected in 
the internal model. 
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Figure 1: Cost-based model mapping 

Cost-Based Model Mapping 
To map the state and transition sequence of the observed 
model to the internal model of the agent, the approach 
taken here has to address two main parts: 

1. Mapping the start state of the observed model to a 
corresponding start state in the imitator’s. 

2. Mapping each transition in the observed model 
onto transitions in the imitator’s internal model 
such as to produce the closest matching state 
sequence.  

The first part here involves determining the internal state 
that most closely matches the start state of the 
demonstrating agent and potentially finding a policy that 
moves the imitator to this state. The second part then 
corresponds to matching the observed transition sequence 
to an executable transition sequence for the imitator. Both 
of these mapping steps are achieved here by optimizing a 
cost function C. The cost function used here consists of  
two components representing the cost of the actions 
selected to achieve the mapped transitions, Ca , and a cost, 
Cs , computed based on a distance metric between the 
observed and mapped states: 

C = Ca + Cs 
For the example in Figure 1 these cost factors can be 

computed as: 
        Ca = A1 + A2 + A3 + A4 + A5 

        Cs = D1 + D2 + D3 + D4 + D5 + D6 
Where Ai is the cost of the action associated with the ith 

transition and Dj is the distance metric between the jth state 
mapping between the observed sequence and the matched 
internal state sequence. It is important to note here that the 
state and transition mapping between observed and internal 
model is generally not one-to-one and that therefore 
multiple distances can be associated with each state in 
these sequences. These cost factors can be defined in 
different ways by the user or an autonomous learning 

component, resulting in the potential for different types of 
imitation behavior. For example, by giving more weight to 
one feature of the internal state representation, the 
importance of exactly matching the parts of task related to 
this feature will be emphasized while features with lower 
weights might be ignored if their achievement introduces 
too high a cost.  In this way, the choice of cost function can 
directly influence the resulting imitation policy, thus 
providing additional flexibility to this approach.  

A second choice in the construction of the matching 
state sequence in the internal model is the one between 
establishing lowest cost matches locally across a short part 
of the model or doing so globally for the complete model. 
While establishing a minimum cost match globally would 
result in the best match according to the cost function used, 
the cost of such a procedure is very high. Moreover, 
establishing such a global match can only be accomplished 
if the entire demonstration is observed before the imitation 
strategy is formed and executed. Using a local matching 
procedure, on the other hand, can permit an imitating agent 
to start executing the first steps of the imitation policy 
before the demonstrator has finished the complete task.  

The approach presented here forms a local solution by 
incrementally searching for state and transition matches in 
the observed sequence. This local solution could be used 
subsequently as a starting point for a global optimization 
procedure to improve the policy for future use. 

In the course of locally mapping the sequence of 
observed states to the internal model it is possible that 
states can either be matched exactly or that they have to be 
approximated because the behavioral capabilities of the 
imitating agent are not sufficient to achieve the exact 
outcome produced by the demonstrator. 

Exact State Mapping 
If the exact outcome state of a transition in the model of 

the observed task can be achieved by the imitating agent, 
the local mapping approach taken here still searches for the 
lowest cost policy to achieve this state. This however 
might require different actions as the one used by the 
demonstrator and a transition in the observed model might 
thus be mapped to a transition sequence of variable length 
in the imitator’s internal model. In addition, multiple action 
sequences can potentially achieve the same outcome, 
requiring to select one of them. Here, the cost function is 
used as the selection criterion. Since the start and end 
states of each observed transition exactly match the ones 
selected in the internal model, the match is based largely 
on the cost of the selected actions. To find the lowest cost 
action sequence that accomplishes the desired overall 
transition, a search algorithm is used here. During search, 
the cost function serves as a heuristic and pruning criterion. 
Figure 2 shows an example result of this search process.  

This figure shows the alternatives encountered during 
the search process and the associated action costs. The 
policy chosen by the imitating agent is the bottom one 
which has the lowest cost. 
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Figure 2: Search for optimal cost action sequence to 

perform an observed state transition 

A side effect of using the cost function for model 
mapping is that demonstrator actions that do not change 
the observable state will be ignored as shown in Figure 3.  

Ignored  
Figure 3: Removal of self-loops during mapping 

This search process sequentially maps each state 
transition in the observed model to a sequence of 
transitions in the internal model of the imitating agent if 
they can be achieved. However, if the behavioral 
capabilities of the imitator are substantially different from 
the ones of the demonstrating agent, the outcome of a 
transition might not be achievable and the imitator has to 
find a policy that most closely approximates the outcome. 

Approximate State Mapping 
If the end state of an observed transition is not reachable, 
the algorithm incrementally increases its search horizon to 
find action sequences that skip states in the observed 
sequence. It does so in the forward as well as the backward 
direction (i.e. by backtracking along the already mapped 
policy segments) to find the lowest cost approximation. 

Figure 4 shows an example where neither the first nor 
the second transitions are achievable by the imitating 
agent. In this figure, two possible transition strategies that 
can replace the initial observed transitions are indicated. 
Each of these skips one of the states in the observed 
sequence. If no action sequence for these cases can be 
found, the search horizon is extended further to include 
hypothetical observation sequences where one more state 
of the observed sequence is ignored.   To limit the time 
spent in this process, the algorithm used here limits the 
maximum search horizon and if no action sequence is 
found that achieves the later state of the observed model 
exactly, reverts to the action sequence that throughout the 
search process led to the state most closely matching a 
state in the observed sequence.  
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Figure 4: Search for lowest cost action sequence for 
observation models with unachievable transitions 

Experiments 

To illustrate the operation and results of the approach 
presented here, a number of experiments have been 
performed using a simulated agent environment related to 
the Wumpus World computer game. In this environment, 
the agent moves through a grid world to collect gold pieces 
(G). At the same time it has to avoid pits and wumpi (W), 
fierce creatures that can kill the agent. Also the agent can 
kill the wumpi in some particular conditions. The actions 
available to the imitating agent are Forward (GF), Turn left 
(L), Turn right (R), Shoot (S), and Grab (G). The Shoot 
operation is used to shoot a wumpi which will be killed if 
it is in the way the agent faces and Grab operation is used 
to collect the gold pieces. In these experiments, both 
demonstrator and imitator agent have been implemented. 
The imitating agent observes the state of the demonstrator 
and uses this to derive an imitation strategy.  

Here each observed state from the file contains the 
information of the observable features of the demonstrator 
including the change in the world state. Including only the 
change in state decreases the amount of memory used as 
compared to storing the full instance of the world state. 
The features of the agent used here are the current x and y 
coordinates, the orientation, and if the agent carries a piece 
of gold. The features of the world included in the state are 
the presence and location of any wumpi or pieces of gold 
in the world. Since the wumpi can potentially kill an agent, 
a high negative reward is associated with the agent 
encountering a wumpus in order to avoid imitation in 
situations where the demonstrator is not affected by the 
wumpus. The weights for this reward can be changed by 
the user to make the imitator act differently. 

For test case 1, the observed model starts from an initial  
position, shoot a wumpus on its way to a position where 
gold lies. Then it grabs the gold and returns to the start 
position to exit using the action Climb (C). However, the 
imitator agent, who observes the same discrete number of 
states and transitions, does not repeat the task in the same 
way since it is not capable of shooting. Instead it tries to 
approximate the task as shown in the Figure 5.  

This figure shows that the imitator model initially 
performs in the same way as the demonstrator. However, 
instead of shooting the wumpus as the demonstrator, it 
changes  its  orientation  by  turning left, moves up through 
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Figure 5: Test Case 1 

the Forward action until it can avoid the three wumpi, and 
makes its way towards the nearest approximately matched 
state of the observed model. Then it grabs the gold and on 
its way back again encounters the risk of being killed by 
the wumpi. Hence it again acts differently from the 
demonstrator and ultimately reaches a state close to the 
observed state and exits in the same way as demonstrator. 
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Figure 6: Test Case 2 

For test case 2, as shown in the Figure 6, the observed 
model starts from the start position, goes towards the gold 
by shooting a wumpus in its path and grabs the gold. On its 
way back to the start position it drops the gold and exits 
without any gold. The imitator agent here has the 
capability of shooting but not the capability of dropping 
the gold. Hence it first shoots the wumpus in its way. Then 
it plans to grab the gold but once arriving at the drop state 
sees that it cannot drop the gold. It therefore starts 
searching for approximate solutions by analyzing future 
and past states for valid imitation strategies. In the course 
of this it determines that the lowest cost approximate 
imitation strategy does not include grabbing the gold. It 

therefore passes by the location without executing the grab 
action and returns to its original position without the gold. 

Conclusions and Future Work 
This paper presented an approach to imitation that 
constructs an imitation strategy by mapping an observed 
model into the internal model of its behavioral capabilities. 
This mapping uses a cost function, permitting it to be 
applied in situations where the behavioral capabilities of 
the demonstrating and imitating agent differ. The 
experiments presented show that the imitator agent is 
capable of imitating the demonstrator even under these 
circumstances by addressing the same task differently 
using its own action set. In this process it sometimes 
deviates from the observed state sequence, finding the 
closest state match that is achievable. This permits this 
approach to be used even if the demonstrator and imitator 
are different agent types.  

To extend to real robot imitation, a number of additional 
challenges have to be addressed. In such systems, 
observations and internal states of the imitating agent can 
differ significantly. This requires the addition of techniques 
that permit to relate observed and internal states. 
Furthermore, the strategy derived here represents a local 
solution. However, if a task is to be performed repeatedly 
by the imitator, it might be advantageous to attempt to 
further optimize the derived strategy in order to more 
closely approximate globally optimal task imitation. 
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