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ABSTRACT 
The automation of various aspects of life through robotics 
is a promising and useful mechanism to the general end-
user. Robots are required to accept human guidance, and 
in its absence, have to operate autonomously while 
ensuring safety and optimality. This paper presents an 
approach to variable autonomy that extends reinforcement 
learning with the capability of integrating user guidance at 
varying levels of abstraction into its control policies. This 
permits the modification of robot behavior based on the 
preferences of the user and faster policy acquisition. User 
commands are filtered to satisfy a priori constraints and 
task requirements. The applicability of the approach is 
illustrated with its operation in a task of navigation. 
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1.  Introduction 
 
Robotic automation in daily chores is a promising 
technology for the general end-user, with a large area of 
applicability. Specifically, tasks that involve repetition or 
dangerous environments could be automated. Further, 
providing such agents with the capability to operate with 
variable autonomy permits the end-user to monitor and 
control its operation with minimal effort. This is 
especially important to extend the applicability of such 
systems to include the population of end-users that are 
unskilled in operating robots. Consequently, the human-
robot interface should facilitate the incorporation of user 
commands at different levels of abstraction.  
While recent research efforts in this direction have been 
numerous, they were conducted with only the skilled 
operator in mind. In contrast, this work integrates 
potentially unreliable user commands into the control 
policies while ensuring that both robot safety and task 
completion are achieved. To achieve this, user commands 
at different levels of abstraction are filtered prior to their 
integration into an autonomous learning component. 
Reinforcement learning [10, 5] has been used extensively 
as a formal mechanism for autonomous agents to learn 
optimal solutions to a variety of real-world tasks. This 

strategy allows the agent to learn from its interaction with 
the environment, through which it obtains numerical 
feedback, called reinforcements, which measure the 
progress of the agent with respect to a particular task. 
Reinforcements are typically obtained intermittently, 
when the agent achieves a goal or sub-goal. Further, 
reinforcements measure the utility of a single action and 
not the preceding potentially sub-optimal sequence of 
actions. These qualities of the feedback make learning 
from reinforcements slow, and a more continuous 
feedback structure is desired from the reward function. 
However, it is generally non-trivial to construct such 
reward functions without imposing further restrictions on 
the nature of the task; similarly, simplifications in its 
design might lead to incorrect executions of the task. 
To avoid these restrictions, this paper presents an advisor-
based solution [4] to the problem of modifying the 
feedback pattern. We define a composite reward function 
with a static, task-specific component and a tunable user-
based component. In the context of this work, a task is 
defined as reaching one or more accepting states. Positive 
task rewards are assigned to all actions that lead to such 
accepting states. Variable autonomy is achieved by 
integrating user commands into the user-based reward 
component. This approach adopts the advisor-based 
extension to Reinforcement learning as depicted in 
Figure 1. The user commands are incorporated into the 
user-based reward component, thereby modifying the 
learned control policy. While the general notion behind 
this framework is that humans are better trained at most 
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practical tasks that require automation, separating and 
filtering the user commands through the user-based 
reward component permits the provision of unreliable and 
incorrect user commands. 
The advantages of learning from advice were identified 
by McCarthy [8] in his proposal of the advice taker. 
Clouse [1] defines a training agent that provides advice 
and an associated feedback that is applied to the learning 
agent regardless of the true feedback from the 
environment. Similarly, Lin [6] suggests the use of advice 
in the form of a sequence of actions that yield some 
predetermined reinforcement. Placing the onus of 
computing such reinforcements on the advisory entity, 
specifically humans, could produce unpredictable and 
potentially incorrect policies. Maclin and Shavlik [7] 
describe an approach to learning from reinforcements and 
advice that uses knowledge-based neural networks; advice 
is applied as weight-changes, thereby producing a 
modified policy. 
In the next section, we describe learning with composite 
reward functions. In Section 3, we define an example task 
of robot navigation and illustrate the modification of 
control policies with human advice. Finally, Section 4 
presents the conclusions. 
 
 
2.  Composite Reward Functions 
 
The learning problem is modeled as a Markov Decision 
Process ),,,( RTASM with a state space S, a set of actions 
A, a probabilistic transition function SAST →×: and a 
composite reward function ℜ→× ASR : defined as the 
unweighted sum of the task reward τR  and user 
reward υR components. Q-learning [12] is used to evaluate 
the state-action utility function ℜ→× ASQ : , called the 
Q-value function. 
The task reward component is defined as a static reward 
structure that mirrors the task requirements. The 
construction and verification of a task reward function is 
generally non-trivial. Often, the agent derives a large 
positive reward when it reaches an accepting state. More 
complex reward structures can be created by assigning 
rewards to intermediate states that represent specific sub-
goals or check-points. 
However, adding intermediate reinforcements to the task 
reward function can unpredictably result in the formation 
of a policy that does not execute the task correctly.  Such 
problems have been well documented in relation to 
reward shaping [11], in which external rewards are added 
to τR  while maintaining an invariant optimal policy. A 
typical scenario is the formation of a state-action loop 
involving one or more states; the agent derives more 
reward from moving through these state configurations ad 
infinitum than performing a more distant task goal. 
We counter this problem by imposing bounds on all 
intermediate task reinforcements. In particular, inter-
mediate task rewards must maintain the monotonicity of 

the Q-value function; states encountered in optimal paths 
to an accepting state must have strictly increasing Q-
values. Task reward functions that do not satisfy this 
property can be modified by enforcing bounds that are 
similar to those imposed on user rewards (Section 2.1). 
There is, however, no guarantee that the task is 
accomplished in the same manner. Furthermore, the 
bounds imposed on task and user reward functions do not 
prohibit changes to the optimal policy as with shaping [9]; 
instead, they prevent the formation of self-sufficient loops 
while allowing for modified policies. 
 
2.1 Formulating Rυ from Human Advice 
 
Advice is typically in the form of recommended states or 
state-action pairs. The recommendation of state-action 
pair ),( as leads to a preference for action a when the agent 
is in state s. The recommendation of state s leads to a 
preference for the path of state-action pairs starting at the 
current state and ending at s. The ambiguity of selecting 
an appropriate sequence of state-action pairs is typically 
handled using a model-based or utility function-based 
approach. The model-based solution computes the 
sequence with the maximum probability or involving the 
minimum number of intermediate actions. The utility 
function-based approach uses the current Q-function to 
determine the best sequence of state-action pairs. 
The set of recommended state-action pairs is mapped onto 
a numerical function, ℵ→× ASbias : . If the total number 
of actions available at state s is represented by ns, the 
numerical bias is defined as: 
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This definition ensures that the sum of the numerical 
biases at any state is always zero. The recommendation of 
all sn actions at state s increases ),( asbias by 1−sn when 
action a is recommended and decreases it by 1 for each of 
the remaining 1−sn actions, for a net change of zero. This 
allows random advice (such as when the advisor is unsure 
of the true best action) to ultimately be rejected by the 
agent. 

υR  is derived as a generic transformation of the bias 
function, a trivial example of which is an equal-to 
mapping: 

),(),( asbiasasR ←υ  
A severe problem with this mapping is the independence 
of the user reward structure from the Q-value function. 
For states with arbitrarily small utilities, this would result 
in the formation of a self-loop (a loop with a single action 
that leads to the agent remaining in the same state 
forever). Handling the dependency on the utility function 
results in mappings similar to: 

( )),(),()1(),(),( asRasQkasbiasasR τγυ −⋅−⋅⋅←  
where 0>k . The final factor in this formula determines 
the maximum acceptable user reward without resulting in 

if ),( as is recommended, 

if ),( as is an alternate. 



a self-loop. By ensuring that the magnitude of ),( asbias  

remains below 1−k , we can guarantee that erroneous self-
loops do not form. 
With negative user rewards, however, it may be 
determined [10] that erroneous loops do not form unless a 
cycle of state-action pairs with utilities of zero are 
formed. By ensuring that the Q-value of any state-action 
pair never drops to zero, we can guarantee that negative 
user rewards do not create erroneous loops. An example 
of such a mapping is: 
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where ε is a small positive number. Similarly, mappings 
that are non-linear in the bias function, such as the 
mapping used to generate the results of Section 3, may 
also be defined. 
 
2.2 Learning with Composite Rewards 
 
We describe an offline Q-learning algorithm that makes 
use of a probabilistic model of the environment and a 
composite reward function. Q-values of state-action pairs 
are updated according to their probabilities of success. 
The updated Q-value of a successful state-action 
pair ),( as is: 

)),(maxarg,(),(),( bsQsQasRas
Ab

succ ′′⋅+←
∈

γδ  

where s′  represents the state to which the agent transfers 
with the successful execution of action a. Under the 
simplifying assumption that unsuccessful actions do not 
change the current state of the agent, the updated Q-value 
of a failed state-action pair ),( as is: 

),( asQfail ⋅← γδ  

The resultant Q-value of the state-action pair ),( as is: 
),(),|(),( asassPasQ succδ⋅′←  

+ ( ) ),(),|(1 asfailassP δ⋅′−  
The algorithm is shown in Table 1. The iterative 
computation of the user reward component υR in step 1(b) 
of the algorithm may be better understood from the 
following discussion. 
Consider a state-action pair ),( as  with a 100% 
probability of success. There is a direct dependence 
between ),( asQ and ),( asRυ —the value assigned to ),( as  
increases with the user reward assigned to it, while the 
user reward itself is proportional to the difference in 
values of the best next state and ),( as . Initially, as the 
user reward is zero, ),( asQ  is at its natural discounted 
maximum. When ),( as is recommended externally, a user 
reward proportional in magnitude to the difference in 
values of the best next state and the state-action pair itself 
is assigned. This user reward causes an increase in 

),( asQ . This then causes a decreased difference in the 

value of the best next state and ),( as . This would 
resultantly decrease the user reward, and so on. While this 
causal chain does eventually converge to the desired user 
reward and Q-value, the oscillations may cause abnormal 
behavior in the interim, such as the selection of a sub-
optimal action. An incremental user reward update 
scheme would therefore seem essential for oscillation-free 
convergence of the user reward function. 
This notion is further illustrated in Figure 2. The red plot 
is due to the direct assignment of user rewards, while the 
oscillation-free blue plot is due to the iterative update 
scheme. Its monotonous increase prevents abnormal user 
reward assignments prior to convergence. This aspect is 
captured by the algorithm in table 1 through the user 
reward update rate υα . An assignment of 10 <≤ υα leads 
to a weighted sum of the old and new estimates with a 
weight ratio of υυ αα −1: . 

Table 1.  Learning with Composite Rewards 
 
LEARN-WITH-COMPOSITE-REWARDS: 
 Initialize: 
  0←i  
  For each state-action pair ),( as , do 0),( ←asRi

υ  
 Repeat forever: 
  1+← ii  
  For each state-action pair ),( as , do: 
  1. Determine the composite reward ),( asR : 
   a. Compute ),( asRυ according to ),( asbias  
   b. ( )),(),(),(),( 11 asRasRasRasR iii −− −⋅+← υυυυυ α  

   c. ),(),(),( asRasRasR i
υτ +←  

  2. Compute the components of ),( asQ : 
   a. )),(maxarg,(),(),( bsQsQasRas

Ab
succ ′′⋅+←

∈
γδ

   b. ),( asQfail ⋅← γδ  

  3. ),(),|(),( asassPasQ succδ⋅′←  
       + ( ) ),(),|(1 asassP failδ⋅′−  

Figure 2.   Comparison of direct assignment and  
iterative update schemes for user rewards 



3.  Robot Navigation 
 
Learning with composite rewards is a general learning 
algorithm applicable to a wide variety of tasks for which 
task reward functions can be correctly defined.  Complex 
tasks can be divided into a set of sub-tasks, each of which 
may be modeled by a task reward function, and all of 
which are linked together in a connected graph. 
To demonstrate the functionality of this approach to 
learning from reinforcements and advice, we consider the 
task of mobile robot navigation. Activmedia Robotics’ 
Pioneer 2, shown in Figure 3, was used to learn to 
navigate an environment in order to reach a functional 
goal, such as its proximity to a specific geometrical 
location or a particular visually identifiable feature. The 
environment consists of a set V of via-points on a set W of 
maps. Via-points represent geometrical locations that are 
of interest to the learning task, reducing the state space to 
be considered to an important few. The maps are linked 
together through a subset of V representing the linkage 
via-points, which are via-points that are present on two 
neighboring maps and serve as links when traversing 
between maps. 
The size of a map is an important design criterion. 
Specifically, it is related to the control strategy used for 
inter-via-point navigation (represented by the set of 
actions). This work uses harmonic potential-based motion 
controllers [2, 3] for this purpose. Advantages of a 
harmonic path planner include its computation of a path 
(called a streamline) that avoids obstacles and that is 
suitable for wheeled mobile robots. A typical 
implementation assigns a high potential to obstacles and a 
low potential to the goal; the robot follows the path of 
minimum potential in reaching the goal. To allow for 
real-time updates of the grid potentials due to the 
presence of dynamic obstacles, maps were empirically 
determined to be 50×50 grids of square cells. 

In addition to via-points, visually identifiable features also 
contribute to the state space. For this work, blobs of three 
colors—red, blue and green—may be distinctly identified 
by the robot. 
 
Figure 4 shows a sample environment consisting of four 
maps for a grid of 100×100 cells. The via-points and 
visual features are shown linked together to identify the 
probabilistic model over which learning takes place. 
Three types of visual features are used in this 
environment, identified by red, blue and green objects. 
 
3.1 Modifying the Control Policy 
 
For the experiments presented in this paper, a user reward 
transformation that is non-linear in the bias function is 
used. For positive biases, the user reward is: 

( )),(),()1(
),(1

),(),( asRasQ
asbias

asbiasasR τυ γ −⋅−
+

←  

The first factor is always less than one, and as a result, the 
user reward never exceeds the maximum allowable user 
reward as determined by the second factor. Multiple 
recommendations of the same state-action pair increase 
the first factor closer to one. 

Key: 

 Free space    Obstacle 

 Via-point     Linkage via-point 

 Actions     Red feature 

 Blue feature    Green feature 

Figure 4.   An environment for the task of robot navigation Figure 3.   Activmedia Robotics’ Pioneer 2 mobile robot 



For negative biases, the user reward function, together 
with the lower bound to prevent the values from dropping 
to zero, is: 
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where ε is a small positive number. 
The control policy may be modified by both 
recommending and prohibiting states and state-action 
pairs. Figure 5 presents the results of recommending a 
sub-optimal state-action pair so as to include it in the 
control policy. We consider the task of reaching the via-
point marked by the red ×. The initial control policy is 
shown as a dashed line, and includes action x (shown in 
red). When action y (shown in blue) is recommended, it is 
included in the new control policy as shown by the dotted 
line. The changes in the user reward and utility functions 
are shown in Figure 6 and Figure 7 respectively. 
 
3.2 Prevention of Loops 
 
The prevention of loops is ensured through the upper and 
lower bounds on the user reward component. To 
demonstrate the manner in which loops are prevented, we 
recommend a set of actions that together form a loop. As 
illustrated in Figure 5, the actions y and z together 
constitute a loop. When action z is also recommended, the 
agent avoids entering the loop and instead selects the 
sequence of actions that were used by the initial unaltered 
control policy (shown as a dashed line). The Q-value of 

action y drops below that of action x, and resultantly, 
action x is preferred over action y. This is shown in the 
utility function plot of Figure 7. 
 
 
4.  Conclusions 
 
The automation of tasks through robots that learn form 
their interaction with the environment is applicable to 
various domains. By providing such robots with the 
ability to perform with variable autonomy, domain 
experts can further refine the autonomously learned 
policies to incorporate environmental or task-based 
information to improve efficiency, reduce learning time 
and/or fine-tune the policies. 
The automation of tasks that are repeatedly encountered 
by the general end-user poses restrictions on the design of 
such systems. Operational safety must be maintained in 
its operation by filtering out harmful or prohibitively 
expensive user commands. Further, the implications of 
user commands must be analyzed to verify their utility. 
While various measures of utility may be used, probably 
most relevant amongst them is task completion. The 
prevention of spurious loops in the control policy through 
the bounding of user rewards provides the mechanism 
with this property.  
More generally, learning with composite rewards allows 
external advice at different levels of abstraction to be 
integrated with reinforcement learning techniques. The 

Figure 5.   Modifications in the control policy due to advice 
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Figure 6.   Changes in the user reward function with advice 
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Figure 7.   Changes in the utility function with advice 



filtering of the advice in the formation of the user reward 
structure provides an additional layer of protection to the 
task definition. This prevents advice from redefining the 
task, and prevents the formation of erroneous control 
structures. Furthermore, strategically provided advice can 
be used to accelerate the learning process, while incorrect 
advice is ultimately ignored, as its effects diminish over 
time. 
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