

INTERACTIVE REFINEMENT OF CONTROL POLICIES FOR
AUTONOMOUS ROBOTS

Vinay Papudesi and Manfred Huber
Department of Computer Science and Engineering

University of Texas at Arlington
Arlington, TX 76019-0015

{papudesi, huber}@cse.uta.edu

ABSTRACT
The automation of various aspects of life through robotics
is a promising and useful mechanism to the general end-
user. Robots are required to accept human guidance, and
in its absence, have to operate autonomously while
ensuring safety and optimality. This paper presents an
approach to variable autonomy that extends reinforcement
learning with the capability of integrating user guidance at
varying levels of abstraction into its control policies. This
permits the modification of robot behavior based on the
preferences of the user and faster policy acquisition. User
commands are filtered to satisfy a priori constraints and
task requirements. The applicability of the approach is
illustrated with its operation in a task of navigation.

KEY WORDS
Reinforcement Learning, Human-Robot Interaction

1. Introduction

Robotic automation in daily chores is a promising
technology for the general end-user, with a large area of
applicability. Specifically, tasks that involve repetition or
dangerous environments could be automated. Further,
providing such agents with the capability to operate with
variable autonomy permits the end-user to monitor and
control its operation with minimal effort. This is
especially important to extend the applicability of such
systems to include the population of end-users that are
unskilled in operating robots. Consequently, the human-
robot interface should facilitate the incorporation of user
commands at different levels of abstraction.
While recent research efforts in this direction have been
numerous, they were conducted with only the skilled
operator in mind. In contrast, this work integrates
potentially unreliable user commands into the control
policies while ensuring that both robot safety and task
completion are achieved. To achieve this, user commands
at different levels of abstraction are filtered prior to their
integration into an autonomous learning component.
Reinforcement learning [10, 5] has been used extensively
as a formal mechanism for autonomous agents to learn
optimal solutions to a variety of real-world tasks. This

strategy allows the agent to learn from its interaction with
the environment, through which it obtains numerical
feedback, called reinforcements, which measure the
progress of the agent with respect to a particular task.
Reinforcements are typically obtained intermittently,
when the agent achieves a goal or sub-goal. Further,
reinforcements measure the utility of a single action and
not the preceding potentially sub-optimal sequence of
actions. These qualities of the feedback make learning
from reinforcements slow, and a more continuous
feedback structure is desired from the reward function.
However, it is generally non-trivial to construct such
reward functions without imposing further restrictions on
the nature of the task; similarly, simplifications in its
design might lead to incorrect executions of the task.
To avoid these restrictions, this paper presents an advisor-
based solution [4] to the problem of modifying the
feedback pattern. We define a composite reward function
with a static, task-specific component and a tunable user-
based component. In the context of this work, a task is
defined as reaching one or more accepting states. Positive
task rewards are assigned to all actions that lead to such
accepting states. Variable autonomy is achieved by
integrating user commands into the user-based reward
component. This approach adopts the advisor-based
extension to Reinforcement learning as depicted in
Figure 1. The user commands are incorporated into the
user-based reward component, thereby modifying the
learned control policy. While the general notion behind
this framework is that humans are better trained at most

Environment

Learning Agent

User

Action

Instruction

Reinforcement

Figure 1. Learning from reinforcements
and advice

State

In Prodeedings of the 10th IASTED International Conference on Robotics and Applications, Honolulu, HI. © 2004 IASTED

practical tasks that require automation, separating and
filtering the user commands through the user-based
reward component permits the provision of unreliable and
incorrect user commands.
The advantages of learning from advice were identified
by McCarthy [8] in his proposal of the advice taker.
Clouse [1] defines a training agent that provides advice
and an associated feedback that is applied to the learning
agent regardless of the true feedback from the
environment. Similarly, Lin [6] suggests the use of advice
in the form of a sequence of actions that yield some
predetermined reinforcement. Placing the onus of
computing such reinforcements on the advisory entity,
specifically humans, could produce unpredictable and
potentially incorrect policies. Maclin and Shavlik [7]
describe an approach to learning from reinforcements and
advice that uses knowledge-based neural networks; advice
is applied as weight-changes, thereby producing a
modified policy.
In the next section, we describe learning with composite
reward functions. In Section 3, we define an example task
of robot navigation and illustrate the modification of
control policies with human advice. Finally, Section 4
presents the conclusions.

2. Composite Reward Functions

The learning problem is modeled as a Markov Decision
Process),,,(RTASM with a state space S, a set of actions
A, a probabilistic transition function SAST →×: and a
composite reward function ℜ→× ASR : defined as the
unweighted sum of the task reward τR and user
reward υR components. Q-learning [12] is used to evaluate
the state-action utility function ℜ→× ASQ : , called the
Q-value function.
The task reward component is defined as a static reward
structure that mirrors the task requirements. The
construction and verification of a task reward function is
generally non-trivial. Often, the agent derives a large
positive reward when it reaches an accepting state. More
complex reward structures can be created by assigning
rewards to intermediate states that represent specific sub-
goals or check-points.
However, adding intermediate reinforcements to the task
reward function can unpredictably result in the formation
of a policy that does not execute the task correctly. Such
problems have been well documented in relation to
reward shaping [11], in which external rewards are added
to τR while maintaining an invariant optimal policy. A
typical scenario is the formation of a state-action loop
involving one or more states; the agent derives more
reward from moving through these state configurations ad
infinitum than performing a more distant task goal.
We counter this problem by imposing bounds on all
intermediate task reinforcements. In particular, inter-
mediate task rewards must maintain the monotonicity of

the Q-value function; states encountered in optimal paths
to an accepting state must have strictly increasing Q-
values. Task reward functions that do not satisfy this
property can be modified by enforcing bounds that are
similar to those imposed on user rewards (Section 2.1).
There is, however, no guarantee that the task is
accomplished in the same manner. Furthermore, the
bounds imposed on task and user reward functions do not
prohibit changes to the optimal policy as with shaping [9];
instead, they prevent the formation of self-sufficient loops
while allowing for modified policies.

2.1 Formulating Rυ from Human Advice

Advice is typically in the form of recommended states or
state-action pairs. The recommendation of state-action
pair),(as leads to a preference for action a when the agent
is in state s. The recommendation of state s leads to a
preference for the path of state-action pairs starting at the
current state and ending at s. The ambiguity of selecting
an appropriate sequence of state-action pairs is typically
handled using a model-based or utility function-based
approach. The model-based solution computes the
sequence with the maximum probability or involving the
minimum number of intermediate actions. The utility
function-based approach uses the current Q-function to
determine the best sequence of state-action pairs.
The set of recommended state-action pairs is mapped onto
a numerical function, ℵ→× ASbias : . If the total number
of actions available at state s is represented by ns, the
numerical bias is defined as:

⎩
⎨
⎧

−

−+
←

1),(
1),(

),(
asbias

nasbias
asbias s

This definition ensures that the sum of the numerical
biases at any state is always zero. The recommendation of
all sn actions at state s increases),(asbias by 1−sn when
action a is recommended and decreases it by 1 for each of
the remaining 1−sn actions, for a net change of zero. This
allows random advice (such as when the advisor is unsure
of the true best action) to ultimately be rejected by the
agent.

υR is derived as a generic transformation of the bias
function, a trivial example of which is an equal-to
mapping:

),(),(asbiasasR ←υ
A severe problem with this mapping is the independence
of the user reward structure from the Q-value function.
For states with arbitrarily small utilities, this would result
in the formation of a self-loop (a loop with a single action
that leads to the agent remaining in the same state
forever). Handling the dependency on the utility function
results in mappings similar to:

()),(),()1(),(),(asRasQkasbiasasR τγυ −⋅−⋅⋅←
where 0>k . The final factor in this formula determines
the maximum acceptable user reward without resulting in

if),(as is recommended,

if),(as is an alternate.

a self-loop. By ensuring that the magnitude of),(asbias

remains below 1−k , we can guarantee that erroneous self-
loops do not form.
With negative user rewards, however, it may be
determined [10] that erroneous loops do not form unless a
cycle of state-action pairs with utilities of zero are
formed. By ensuring that the Q-value of any state-action
pair never drops to zero, we can guarantee that negative
user rewards do not create erroneous loops. An example
of such a mapping is:

()
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+−−
−−⋅⋅

←
−∈

ε
γ

τ
υ

τ
),(),(max

,),(),()1(),(
max),(

}{
asRbsQ

asRasQkasbias
asR

aAb

where ε is a small positive number. Similarly, mappings
that are non-linear in the bias function, such as the
mapping used to generate the results of Section 3, may
also be defined.

2.2 Learning with Composite Rewards

We describe an offline Q-learning algorithm that makes
use of a probabilistic model of the environment and a
composite reward function. Q-values of state-action pairs
are updated according to their probabilities of success.
The updated Q-value of a successful state-action
pair),(as is:

)),(maxarg,(),(),(bsQsQasRas
Ab

succ ′′⋅+←
∈

γδ

where s′ represents the state to which the agent transfers
with the successful execution of action a. Under the
simplifying assumption that unsuccessful actions do not
change the current state of the agent, the updated Q-value
of a failed state-action pair),(as is:

),(asQfail ⋅← γδ

The resultant Q-value of the state-action pair),(as is:
),(),|(),(asassPasQ succδ⋅′←

+ ()),(),|(1 asfailassP δ⋅′−
The algorithm is shown in Table 1. The iterative
computation of the user reward component υR in step 1(b)
of the algorithm may be better understood from the
following discussion.
Consider a state-action pair),(as with a 100%
probability of success. There is a direct dependence
between),(asQ and),(asRυ —the value assigned to),(as
increases with the user reward assigned to it, while the
user reward itself is proportional to the difference in
values of the best next state and),(as . Initially, as the
user reward is zero,),(asQ is at its natural discounted
maximum. When),(as is recommended externally, a user
reward proportional in magnitude to the difference in
values of the best next state and the state-action pair itself
is assigned. This user reward causes an increase in

),(asQ . This then causes a decreased difference in the

value of the best next state and),(as . This would
resultantly decrease the user reward, and so on. While this
causal chain does eventually converge to the desired user
reward and Q-value, the oscillations may cause abnormal
behavior in the interim, such as the selection of a sub-
optimal action. An incremental user reward update
scheme would therefore seem essential for oscillation-free
convergence of the user reward function.
This notion is further illustrated in Figure 2. The red plot
is due to the direct assignment of user rewards, while the
oscillation-free blue plot is due to the iterative update
scheme. Its monotonous increase prevents abnormal user
reward assignments prior to convergence. This aspect is
captured by the algorithm in table 1 through the user
reward update rate υα . An assignment of 10 <≤ υα leads
to a weighted sum of the old and new estimates with a
weight ratio of υυ αα −1: .

Table 1. Learning with Composite Rewards

LEARN-WITH-COMPOSITE-REWARDS:
 Initialize:
 0←i
 For each state-action pair),(as , do 0),(←asRi

υ
 Repeat forever:
 1+← ii
 For each state-action pair),(as , do:
 1. Determine the composite reward),(asR :
 a. Compute),(asRυ according to),(asbias
 b. ()),(),(),(),(11 asRasRasRasR iii −− −⋅+← υυυυυ α

 c.),(),(),(asRasRasR i
υτ +←

 2. Compute the components of),(asQ :
 a.)),(maxarg,(),(),(bsQsQasRas

Ab
succ ′′⋅+←

∈
γδ

 b.),(asQfail ⋅← γδ

 3.),(),|(),(asassPasQ succδ⋅′←
 + ()),(),|(1 asassP failδ⋅′−

Figure 2. Comparison of direct assignment and
iterative update schemes for user rewards

3. Robot Navigation

Learning with composite rewards is a general learning
algorithm applicable to a wide variety of tasks for which
task reward functions can be correctly defined. Complex
tasks can be divided into a set of sub-tasks, each of which
may be modeled by a task reward function, and all of
which are linked together in a connected graph.
To demonstrate the functionality of this approach to
learning from reinforcements and advice, we consider the
task of mobile robot navigation. Activmedia Robotics’
Pioneer 2, shown in Figure 3, was used to learn to
navigate an environment in order to reach a functional
goal, such as its proximity to a specific geometrical
location or a particular visually identifiable feature. The
environment consists of a set V of via-points on a set W of
maps. Via-points represent geometrical locations that are
of interest to the learning task, reducing the state space to
be considered to an important few. The maps are linked
together through a subset of V representing the linkage
via-points, which are via-points that are present on two
neighboring maps and serve as links when traversing
between maps.
The size of a map is an important design criterion.
Specifically, it is related to the control strategy used for
inter-via-point navigation (represented by the set of
actions). This work uses harmonic potential-based motion
controllers [2, 3] for this purpose. Advantages of a
harmonic path planner include its computation of a path
(called a streamline) that avoids obstacles and that is
suitable for wheeled mobile robots. A typical
implementation assigns a high potential to obstacles and a
low potential to the goal; the robot follows the path of
minimum potential in reaching the goal. To allow for
real-time updates of the grid potentials due to the
presence of dynamic obstacles, maps were empirically
determined to be 50×50 grids of square cells.

In addition to via-points, visually identifiable features also
contribute to the state space. For this work, blobs of three
colors—red, blue and green—may be distinctly identified
by the robot.

Figure 4 shows a sample environment consisting of four
maps for a grid of 100×100 cells. The via-points and
visual features are shown linked together to identify the
probabilistic model over which learning takes place.
Three types of visual features are used in this
environment, identified by red, blue and green objects.

3.1 Modifying the Control Policy

For the experiments presented in this paper, a user reward
transformation that is non-linear in the bias function is
used. For positive biases, the user reward is:

()),(),()1(
),(1

),(),(asRasQ
asbias

asbiasasR τυ γ −⋅−
+

←

The first factor is always less than one, and as a result, the
user reward never exceeds the maximum allowable user
reward as determined by the second factor. Multiple
recommendations of the same state-action pair increase
the first factor closer to one.

Key:

 Free space Obstacle

 Via-point Linkage via-point

 Actions Red feature

 Blue feature Green feature

Figure 4. An environment for the task of robot navigation Figure 3. Activmedia Robotics’ Pioneer 2 mobile robot

For negative biases, the user reward function, together
with the lower bound to prevent the values from dropping
to zero, is:

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

+−−
←

−∈
ετ

υ),(),(max

),,(
10
1

max),(
}{

asRbsQ

asbias
asR

aAb

where ε is a small positive number.
The control policy may be modified by both
recommending and prohibiting states and state-action
pairs. Figure 5 presents the results of recommending a
sub-optimal state-action pair so as to include it in the
control policy. We consider the task of reaching the via-
point marked by the red ×. The initial control policy is
shown as a dashed line, and includes action x (shown in
red). When action y (shown in blue) is recommended, it is
included in the new control policy as shown by the dotted
line. The changes in the user reward and utility functions
are shown in Figure 6 and Figure 7 respectively.

3.2 Prevention of Loops

The prevention of loops is ensured through the upper and
lower bounds on the user reward component. To
demonstrate the manner in which loops are prevented, we
recommend a set of actions that together form a loop. As
illustrated in Figure 5, the actions y and z together
constitute a loop. When action z is also recommended, the
agent avoids entering the loop and instead selects the
sequence of actions that were used by the initial unaltered
control policy (shown as a dashed line). The Q-value of

action y drops below that of action x, and resultantly,
action x is preferred over action y. This is shown in the
utility function plot of Figure 7.

4. Conclusions

The automation of tasks through robots that learn form
their interaction with the environment is applicable to
various domains. By providing such robots with the
ability to perform with variable autonomy, domain
experts can further refine the autonomously learned
policies to incorporate environmental or task-based
information to improve efficiency, reduce learning time
and/or fine-tune the policies.
The automation of tasks that are repeatedly encountered
by the general end-user poses restrictions on the design of
such systems. Operational safety must be maintained in
its operation by filtering out harmful or prohibitively
expensive user commands. Further, the implications of
user commands must be analyzed to verify their utility.
While various measures of utility may be used, probably
most relevant amongst them is task completion. The
prevention of spurious loops in the control policy through
the bounding of user rewards provides the mechanism
with this property.
More generally, learning with composite rewards allows
external advice at different levels of abstraction to be
integrated with reinforcement learning techniques. The

Figure 5. Modifications in the control policy due to advice

x

y

z
 Initial Action y is recommended Action z is recommended
 policy

Figure 6. Changes in the user reward function with advice

 Initial
 policy Action y is recommended Action z is recommended

Figure 7. Changes in the utility function with advice

filtering of the advice in the formation of the user reward
structure provides an additional layer of protection to the
task definition. This prevents advice from redefining the
task, and prevents the formation of erroneous control
structures. Furthermore, strategically provided advice can
be used to accelerate the learning process, while incorrect
advice is ultimately ignored, as its effects diminish over
time.

5. Acknowledgements

This work was supported in part by NSF ITR-0121297
and EIA-0203499.

References:

[1] J.A. Clouse, Learning from an Automated Training

Agent. In G. Weiβ, S. Sen, Adaptation and Learning
in Multiagent Systems, Springer Verlag, Berlin,
1996.

[2] C.I. Connolly and R.A. Grupen, Harmonic Control.
In Proceedings of the International Symposium on
Intelligent Control, 1992.

[3] C.I. Connolly and R.A. Grupen. Applications of
Harmonic Functions to Robotics. In Proceedings of
the International Symposium on Intelligent Control.
1992.

[4] F. Hayes-Roth, P. Klahr, and D.J. Mostow, Advice-
taking and knowledge refinement: An iterative view
of skill acquisition. Technical Report, Rand
Corporation, 1980.

[5] L.P. Kaelbling, M.L. Littman, A.W. Moore,
Reinforcement learning: A survey. Journal of
Artificial Intelligence Research, 4, 1996, 237–285.

[6] L-J. Lin, Self-improving reactive agents based on
reinforcement learning, planning and teaching.
Machine Learning, 8, 1992, 293-321.

[7] R. Maclin and J.W. Shavlik, Incorporating advice
into agents that learn from reinforcements. In
Proceedings of the Twelfth National Conference on
Artificial Intelligence, 1994, MIT Press, 694–699.

[8] J. McCarthy, Programs with common sense. In
Proceedings of the Symposium on Mechanisation of
Thought Processes, volume 1, London, 1958, 77–84.

[9] A.Y. Ng, D. Harada, and S. Russell, Policy
invariance under reward transformations: Theory and
application to reward shaping. In Machine Learning:
Proceedings of the Sixteenth International
Conference, 1999, 278-287.

[10] V.N. Papudesi, Integrating Advice with Reinforce-
ment Learning. M.S. thesis, Department of Computer
Science, Univ. of Texas at Arlington, 2002.

[11] J. Randløv, and P. Alstrøm, Learning to Drive a
Bicycle using Reinforcement Learning and Shaping.
In Machine Learning: Proceedings of the Fifteenth
International Conference. MIT Press, 1998, 463-471.

[12] C.J.C.H. Watkins, Learning from delayed rewards.
PhD thesis, Psychology Department, Univ. of
Cambridge, 1989.

