
 
 
 

LEARNING TASK-SPECIFIC MEMORY POLICIES 
 

Srividhya Rajendran and Manfred Huber 
Department of Computer Science and Engineering 

University of Texas at Arlington 
Arlington, TX-76019 

vidhya@ailab.uta.edu, huber@cse.uta.edu 
 
 

ABSTRACT 
Effective AI agents and robots require the ability to adapt 
to real world situations and perform multiple tasks. This 
requires them to take into account the important sensory 
information. Extraction of this information can be made 
tractable using mechanisms of focus of attention that 
select perceptual features that have to be processed. This 
mechanism alone however is inadequate for tasks in real 
world situations since it still requires the robot to maintain 
all past information, rendering decision making 
computationally intractable. This requires the robots and 
AI agents to have the capability to remember only the past 
events that are required for successful completion of a 
task. Here we present an approach (illustrated using block 
stacking and block copying tasks) that extends a previous 
focus of attention mechanism by incorporating short term 
memory to remember past events. The result is a task-
specific control, sensing, and memory policy. 
 
KEY WORDS 
Focus of Attention, Memory Policies, Robots, AI agents      
 
1.  Introduction 
 
Science and technology advances have led to many new 
pieces of equipment that are used in day to day life. 
Robots, however, while having a great potential are yet to 
become popular. One of the reasons is that robots today 
tend be very task specific and use very simplistic 
strategies. In order for them to be more useful, they 
require capabilities to deal with real world situations and 
should also have the ability to handle multiple tasks. 
Robots process the data generated by sensor modalities to 
deal with real world situations, to interact with humans, 
and to interpret the state of the world. Representing and 
processing the huge amount of raw data generated by the 
sensor modalities in real time increases the complexity of 
the system. Biological systems receive a similar 
magnitude of data from their sensor modalities. Instead of 
processing all the data, however, they pay attention to and 
process only the small subset of their perceptual data that 
is significant while ignoring the rest. For example, the 
task of ″Navigation″ requires us to look out for charging 
animals if we are navigating through a jungle but requires 
looking out for vehicles if we are navigating through a 
city. As a result, even though task is the same 

(″Navigation″), the sensing strategies depend heavily on 
the situation and on the resources available (e.g. sensing 
strategies for this task will be different for a blind person 
and a person with eyesight). To address this biological 
systems develop task and resource specific strategies for 
the efficient perception of significant properties. Robots 
and AI agents can develop similar mechanisms of task-
specific focus of attention to deal with the large amount of 
irrelevant data by focusing on the relevant set of features 
at any given point in time during task execution [1] [2].  

Humans further enhance the mechanism of task-
specific focus of attention with short term memory. Short 
term memory holds information for short amounts of time 
after which it decays leading to complete loss of the 
information unless it is further reinforced by rehearsals or 
repetitions. This reflects the cognitive and perceptual 
operation the subject is currently involved in [3].The 
memory allows humans to retain information about past 
events [4] that are no longer available in the physical 
world. Remembering significant, task-specific 
information allows them to complete complex tasks 
successfully. Experiments have shown that humans have 
difficulty remembering more than 25 ±  novel items. 
Even this limited amount of short term memory, however, 
allows them to perform highly complex tasks. For 
example, while doing a block copying task [5] where a 
person has to build a copy of the model in the workspace 
area using blocks in the source area, a person can 
completely memorize and replicate a stack of blocks only 
for very small tasks (2-3 blocks) and even in these 
situations this does not represent a commonly used 
strategy due to limitations on remembering the block 
colors and their relations at once. Instead, it was observed 
[5] that the subjects constantly refer back to the model 
throughout the execution of the task. It was further 
observed that subjects had the tendency to break up the 
tasks into subtasks of single block moves. This shows that 
humans, instead of memorizing the configuration to be 
copied in its entirety before moving the blocks (which 
becomes computationally difficult), divided the task into 
subtasks and used strategies involving the use of minimal 
memory. Robots and AI agents, apart from having 
mechanisms of focus of attention, also require the ability 
to remember past events. But processing all past events to 
complete a task is still intractable. Consequently robots 
and AI agents also require a memory management 

In Prodeedings of the 6th IASTED International Conference on Intelligent Systems and Control, Honolulu, HI.                                           © 2004 IASTED



mechanism that determines what events are significant for 
task completion and when to remember them. 

In recent years some research has been performed to 
develop algorithms to learn tasks in partially observable 
environments. Some of them simply ignore the memory 
issues by focusing on suboptimal, memory-free solutions 
to partially observable problems [6]. Others use fixed size 
window approaches [7] to try and resolve the hidden state 
problem by choosing actions that depend not only on the 
current observations but also on a fixed number of the 
most recent observations and actions. These approaches 
fail to learn a policy when the relevant information falls 
outside the history window. Other approaches find 
optimal solutions in partially observable environments [8] 
[9] but are limited to very small problems and do not 
perform well in continuous state spaces [10] [11].  

This paper presents an approach that is aimed at 
enhancing a task-specific focus of attention mechanism 
[1] by adding limited short term memory and learning a 
memory policy. The learned memory policy tells the 
robot what past events are significant for task completion 
and when to remember them in order to successfully 
complete a task. 
  
2.  Control Architecture 
 
The control architecture used here is based on hybrid 
discrete event dynamic systems [12] [13] [14]. Figure 1 
shows a diagram of the control architecture used. 

The controller/feature pair component of this 
architecture directly deals with the environment. This 
component uses physical sensors to interpret the state of 
the world and physical actuators to modify it. The 
activation signal given by the supervisor to the physical 
sensors and actuators is determined by the learning 
component. Each action executed in the real world is 
associated with a set of features that define the functional 
objective of the action. For example, action "Reach" 
"Blue", uses the feature "Blue" to form the functional 
objective of the action reach. This allows the robot to try 
and reach for a blue coloured object. The convergence of 
controllers results in the completion of a control 
objective. This completion, in turn, generates a discrete 
symbolic event. The supervisor uses this discrete event 
along with the information in the event memory to 
generate an abstract state.  
 
2.1 Action Representations 
 
The robot interacts with the world through its control 
actions. Each control action is associated with a set of 
features that the robot has to process in order to derive the 
functional objective of the action. At each point in time 
the robot has to decide the relevant features to process in 
the context of the chosen action. This limits the amount of 
raw data to be analyzed to the data required for the 
selected features. The convergence of controllers 
represents the completion of a control objective and 
results in the generation of a discrete symbolic event. 

 
Figure 1: Control Architecture 

 
In the blocks world domain examples used 

throughout this paper the robot configuration consists of a 
stereo vision system, an arm, short term memory cells (to 
remember past events), and a feature extraction algorithm 
to identify the visual features of the blocks in the world. 
The robot arm can execute following actions: 
1. "Reach": This action is used by the robot arm to 

reach for an object at any given location within the 
boundaries of the blocks world. 

2. "Pick": This action is used to pick or drop an object 
at the current location. 

3. "Top":  This action is used to find out if the block 
with feature "y" is on top of the block with feature 
"x" when the robot is focusing on block with feature 
"x". For example, if the robot takes action "Top" 
"Blue" "Yellow", this action is successful if the robot 
is focusing on a blue block and there is a yellow 
block on top of the blue block. 

4. "Bottom": This action is used to find out if the block 
with feature "y" is at the bottom of the block with 
feature "x" when the robot is focusing on block with 
feature "x".  

5. "Stop": This action permits the robot to stop its 
interaction with the blocks world. This action is 
necessary because : 
1. The robot does not know what task it is learning 
and uses the reinforcements given by the world to 
learn a policy. 
2. There are no absorbing states in the real world. So, 
the robot has to learn when to stop performing a task 
in order to maximize expected reward. 

Each of the actions "Reach", "Pick", "Top", and “Bottom" 
can be associated with multiple features that form its 

Physical 
Sensors

Physical 
Actuators

Reinforcement 

Learning Component 

Supervisor 

Event 
Memory Event 

Controller/Feature Pairs 

Control/Sensing 
+ Memory Policy 

Abstract State 
Information 

Memory 
Action 

 
 

Control 
Activation 



target objective. In the experiments presented here we 
limit the number features associated with an action to two 
in order to restrict the complexity of the system. Apart 
from these actions the robot can also execute memory 
actions. A memory action cannot be executed by itself. It 
always has to be associated with a "Reach", "Pick", 
"Top", or “Bottom" action. Associating a memory action 
with a control action allows the robot to remember the 
effect of the action on the world in short term memory. 
 
2.2 State Space Representations 
 
In order for the robot to be able to handle multiple 
complex tasks in real time, and at the sensory-motor level, 
it has to handle continuous space and time. 
Representation of such a complex state and action space 
however poses a serious issue. Further, learning a policy 
using an exploration based technique becomes easily 
impractical. To address this, the state space has to be 
modeled at a different level of abstraction, thus reducing 
the size of the search space used by the learning 
component of the control architecture to acquire a policy. 

The state space, S, in this control architecture is 
modeled at an abstract level. Where each abstract state, Si, 
consists of two parts: 

1. Current Symbolic Event, Ei 
2. Event Memory 

n1 ii M.......,M  

Formally, the state space, S, is defined as nMES ×= , 
where E is the set of symbolic events, M is the set of 
memory events, and n is the number of memory cells. 
 
Current Symbolic Event 
 
The symbolic event component of the abstract state is 
represented as a vector of predicates. Each of these 
predicates indicates whether the equilibrium state of the 
controller meets the control objective. For example, 
action "Reach" "Blue" defines a location in the world that 
the robot arm has to reach. Upon convergence of 
controllers the predicates of the event indicate whether the 
robot arm has successfully reached for the blue object in 
the world or has failed. At this level of abstraction the 
overall behaviour of the system can be characterised by 
the effects of each controller on the discrete predicate 
space. However, outcomes of these control actions are 
non-deterministic due to kinematic limitations, controller 
interactions and other non-linearities in the system. The 
symbolic events consist of the following predicates: 
1. Action Taken: This indicates what action was taken. 
2. Action Outcome: This indicates if the action was 

successful or unsuccessful.  
Feature 1 and/or Feature 2: This indicates the features 
that define the target location in blocks world 
domain. For example, action ″Reach″ ″Blue″ ″White″ 
will result in the arm reaching for a blue block with 
white background. The action is successful if the 
blocks world domain contains a blue block in front of 
a white background. 

3. Feature Combination Outcome (successful/ 
unsuccessful): This indicates whether the color 
combination used by the last action was found or not. 

4. Arm Holding: This indicates if the arm is holding an 
object. 

 
Event Memory  
 
The event memory component of the abstract state 
represents the past events that are considered significant 
for task completion by the robot. In order for a robot to 
actually remember an event that occurred as a result of 
executing a control action, the robot has to associate a 
memory action with the control action. The memory 
action allows the robot to remember the current event in 
the event memory. Once an event is stored in the event 
memory, it remains in the memory until it is explicitly 
replaced by some other event. The predicates that 
constitute the memory part of the abstract state consist of: 

1. Action Taken. 
2. Action Outcome. 
3. Feature 1 and/or Feature 2. 

These predicates indicate what action was taken, the 
features that formed the target objective of the action, and 
the outcome of the action. For example, if a robot in state 
St takes the action ″Reach″ ″Blue″ ″White″ + ″Memory″, it 
reaches a new state with the predicates {″Reach″, 
″Successful″, ″Blue″, ″White″, ″Successful″, ″Holding 
Nothing″}, meaning that the robot has successfully 
reached for the blue block with white background, that the 
feature combination ″Blue″, ″White″ was successfully 
found and that the robot arm is currently holding nothing. 
Further, the outcome of this action is remembered in short 
term memory. The predicate values of short term memory 
after the execution of this action are {″Reach″, 
″Successful″, ″Blue″, ″White″}. 
 
2.3 Q-Learning 
 
Q-learning [15] [16] is a reinforcement learning algorithm 
that learns a model-free optimal policy for an agent by 
estimating the values of state-action pairs using feedback 
from the environment in the form of delayed reward. 

Let the agent be in state St at time t. The agent 
chooses an action At from state St. As a result the agent 
receives a reward Rt and reaches a new state St'. This 
information is used by the agent to learn to choose actions 
maximizing discounted cumulative rewards over time. 
The value Q(St ,At) is defined as the expected discounted 
sum of future payoffs obtained by taking action At from 
state St and following an optimal policy thereafter. The Q 
value of the state-action pairs is learned iteratively 
through on-line exploration. Each time a state-action pair 
(St, At) is selected its value is updated according to: 

)])A,Q(S-)A,Q(Smaxγ[α(R)A,Q(S)A,Q(S ttt't'AAttttt
t'∈

++←  

where 1)γ(0 0.9γ ≤≤=  is the discount factor, and 
1)α(0 0.2α ≤≤=  is the learning rate parameter. Upon 



convergence of the algorithm the optimal action from any 
state is the one with the highest Q value. In order for the 
agent to learn an optimal policy it should follow an 
exploration-exploitation strategy. This strategy allows the 
agent to explore when it has no knowledge of the 
environment and exploit when it gained knowledge of the 
correct actions. In this paper Q-learning uses the 
Boltzmann “softmax” [17] strategy since it ensures 
sufficient exploration while still favouring actions with 
higher value estimates. Though Q-learning allows 
learning accurate value functions, it does generally not 
perform well on complex tasks and continuous state 
spaces because the size of the state space grows 
exponentially with the number of state variables making 
learning of a complete value function unwieldy.  This 
problem is addressed in this paper at the supervisor level 
of the control architecture. The supervisor uses an abstract 
state space and closed loop actions, resulting in a reduced 
search space. Each time a new state is reached, the 
feedback in the form of reinforcements is used to update 
the state-action pair in the abstract state space. 
 
3.  Experiments and Results 
 
To illustrate the approach proposed in this paper, two 
tasks in the blocks world domain are considered: 

1. Block Copying Task 
2. Block Stacking Task 

The main objective of the robot in these experiments is to 
learn the task-specific control, sensing, and memory 
policies in order to optimize the system performance for 
the given task.  

In all experiments the robot has no prior knowledge 
of the environment or the task it has to learn. Further it is 
assumed that all blocks are uniquely identifiable by their 
colour in this blocks world domain. 
 
3.1 Block Copying Task 
 

In this experiment, two tables with similar set of 
blocks are present. Table1 has an already built stack 
(using the blocks on table1). The task of the robot is to 
learn to copy any stack presented on table1 onto table2. 
Two scenarios of the block copying task are considered: 
1. Block Copying Task with Two Blocks 
2. Block Copying Task with Three Blocks 
In both tasks, the robot has a cost -1 associated with each 
action and receives a reward of +10 each time two blocks 
are stacked correctly.  
 
Block Copying Task with Two Blocks 
 
Figure 2 shows the initial and final situations of a 
successful strategy for an instance of the block copying 
task with two blocks and Table 1 shows the two different 
configurations possible with the two blocks used. In this 
task, the robot has to learn a policy that will allow it to 
copy any of the two possible stacks using the two blocks 
present on the table top. While learning a policy for the 

task, the robot also has to learn when to stop since there is 
no explicit information as to when the task is completed.  

The robot starts out by exploring the world and uses 
the feedback to learn a policy for the copying task. 

 
Figure 2: Block Copying Task with Two Blocks 

 
World No. Top Block Bottom Block 

1 "Red" "Pink" 
2 "Pink" "Red" 

Table 1: Different world configurations using "Red" 
and "Pink" blocks 

Figure 3 shows the learning curve for the block 
copying task with two blocks. The graph shows that the 
system learns a policy that is general enough to copy each 
of stacks when it is presented. 

 
Figure 3: Learning Curve for Block Copying Task  

with Two Blocks 
Figure 4 shows a policy learned by the robot for the 

block copying task with two blocks. Table 2 shows the 
different symbolic events and memory events in this 
learned policy. Each arrow in Figure 4 represents a 
possible result of the related action in terms of a transition 
from the old state to the new state of the world. The robot 
starts in state {E0,M0,M0} and learns to copy any stack 
presented on table1 by reaching for the "Pink" block with 
"White" background, finding out if it is the bottommost 
block on table1 and remembering the outcome of this 
action in  memory. The memory event enables the robot 
to identify which stack it has to build on table2. For 
example, if the memory event is M1 then it knows that 
pink is the bottommost block in the stack on table1 and 
thus the robot reaches for the red block on table2, picks it 
up and drops it on top of the pink block. Once the blocks 
are stacked, any further exploration of the environment by 
the robot does not earn it any rewards, enabling it to 
“Stop” for maximizing the reward. 

Table 2 Table 1 

WORLD 1 

Start State Final State Feature

Table 2Table 1
Grey (G) 

White (W) 
Pink (P) 

Red (R) 

-30

-20

-10

0

10

20

0 50000 100000 150000
Learning Steps

A
ve

ra
ge

 R
ew

ar
d



 

Event 
E0 {"Null", "Null", "Null", "Null", "Null", "HN"} 
E1 {"Reach", "S", "Pink", "White", "S", "HN"} 
E2 {"Bottom", "S", "Pink", "White", "S", "HN"} 
E3 {"Reach", "S", "Red", "Grey", "S", "HN"} 
E4 {"Pick", "S", "Red", "Grey", "S", "Holding Red Grey"} 
E5 {"Reach", "S", "Pink", "Grey", "S", "Holding  Red Grey"} 
E6 {"Pick", "S", "Pink", "Grey", "S", "HN"} 
E7 {"Stop", "S", "Null", "Null", "Null", "HN"} 
E8 {"Bottom", " Unsuc ", "Pink", "White", "S", "HN"} 
E9 {"Reach", "S", "Pink", "Grey", "S", "HN"} 
E10 {"Pick", "S", "Pink", "Grey", "S", "Holding Pink Grey"} 
E11 {"Reach", "S", "Red", "Grey", "S"," Holding Pink Grey"} 
E12 {"Pick", "S", "Red", "Grey", "S", "HN"} 

 
Memory 

M0 {"Null", "Null", "Null" , "Null"} 
M1 {"Bottom", “S”, "Pink", "White"} 
M2 {"Bottom",  "Unsuc", "Pink", "White"} 

"HN" – Holding Nothing, "S"– "Successful", "Unsuc"– "Unsuccessful" 

Table 2: Event and Memory Values for a Learned 
Policy (Block Copying Task with Two Blocks) 

 
Block Copying Task with Three Blocks 
 
To illustrate the power of selective memory policies, a 
second experiment with stacks of three blocks was 
performed. Table 3 shows the different configurations 
possible using "Red", "Blue" and "Pink" blocks.  
 

World 
No. 

Top 
Block 

Middle 
Block 

Bottom 
Block 

1 "Blue" "Red" "Pink" 
2 "Blue" "Pink" "Red" 
3 "Red" "Blue" "Pink" 
4 "Red" "Pink" "Blue" 
5 "Pink" "Red" "Blue" 
6 "Pink" "Blue" "Red" 

Table 3: Different world configurations using 
"Red", "Blue" and "Pink" blocks 

Figure 5 shows the block copying task’s start and 
final states for world1. Here the robot tries to learn with 
and without a memory policy using the following setups: 
1. Setup with memory policy: the robot explicitly learns 

a memory policy to remember past events required 
for task completion. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. Setup without memory policy: the robot does not 

learn a memory policy but maintains the information 
of the last two events. 

 

 
Figure 5: Block Copying Task with Three Blocks 

Figure 6 shows the learning curve for the copying 
task with and without a memory policy. The learning 
curves here show that as the task becomes more complex 
(e.g. copying task), the robot with a memory policy 
performs better than the one with a fixed size history 
window. The robot that tries to learn the copying task 
without a memory policy learns to “Stop” because 
remembering only the past two events does not allow it to 
complete the task. On the other hand, the robot with a 
memory policy is able to complete the task successfully. 
 

 
Figure 6: Learning Curve for Block Copying Task       

 
3.2 Block Stacking Task 
 
An additional experiment was performed to investigate 
the cost of learning memory policies. In this experiment, 

Figure 4: One of the Learned Policies for Block Copying Task with Two Blocks (memory 

″R
ea

ch
 ″

 ″
P″

 ″
W

 ″
 

″Reach ″ ″R″ ″G ″ ″Pick ″ ″R″ ″G ″ ″Pick ″ ″P″ ″G ″ 
  ″Stop″ 

  ″Stop″ 

″Bottom ″ ″P″ ″W ″ 

″Pick ″ ″R″ ″G ″ ″Reach ″ ″P″ ″G ″ ″Pick ″ ″P″ ″G ″ ″Reach ″ ″R ″ ″G ″ 

+ ″Memory 1″ 

E2 
E3 E4 E5 E6 

E1 

E7 

E0 

E8 E9 E11 E10 E12 

Unsuccessful Action  Successful Action  M2  M1   M0   

″Reach ″ ″P ″ ″G ″ 

WORLD 1 

Start State Final State 

Table 2Table 1 Table 2Table 1 

Features

Pink (P) 

Red (R) 
Blue (B) 

 Grey (G) 
 White (W)

-60

-40

-20

0

20

40

60

0 200000 400000 600000 800000
Learning Steps

A
ve

ra
ge

 R
ew

ar
d

Copying Task w /o Memory Policy

Copying Task w ith Memory Policy



the task of the robot is to learn to build a fixed stack of 
blocks. Figure 7 shows the start and final configuration 
for this block stacking task.  

 
Figure 7: Block Stacking Task 

Figure 8 shows the learning curves for the stacking 
task with and without a memory policy. The learning 
curves show that the robot learns to complete the task 
successfully in both cases. This is because it has to 
remember only the last block stacked before reaching for 

 

 
Figure 8: Learning Curve for Block Stacking Task       

and picking up the next object to stack. This, however, 
can be achieved by remembering only the past two events. 
The graphs show that the robot with a fixed size history 
window learns the task slightly faster than the robot with 
a memory policy because the former has a smaller action 
space compared to the latter one. However, the main 
advantage occurs only in the early stages and learning of 
the final policy occurs at almost the same time. 
 
4.  Conclusion and Future Work 
 
The results presented in this paper illustrate that  
enhancing a perceptual focus of attention mechanism with 
short term memory and by learning a memory policy 
enables, a robot to perform complex tasks (e.g. block 
copying ) that require information about past events. The 
memory policy permits the robot to learn task-specific 
significant events that it has to remember and when to 
remember them in order to successfully complete the task. 

Though this approach permits the robot to 
successfully learn a policy for the tasks in the blocks 
world domain but it still has a number of limitations to be 
addressed. In the experiments presented here, it is 
assumed that all blocks are uniquely identifiable by their 
feature combinations. Blocks that are not uniquely 
distinguishable are treated identically. This approach fails 
if the stack to be copied has two or more identical blocks. 
Another limitation with this approach is its small number 
of spatial representations (like ″Top″ and ″Bottom″). This 

results in failure of the approach when the robot has to 
learn to copy more than one stack on the table. 

To address these issues it is required to further 
investigate what additional types of spatial representations 
and memory aggregations are required, and whether these 
systems require counting mechanism. 
 
5.  Acknowledgements 
 
This work was supported in part by UTA REP- 14748719 
 
References: 
 
[1] S. Rajendran and M. Huber, Developing Task Specific 
Sensing Strategies Using Reinforcement Learning. In 
Proc. FLAIRS, Miami Beach, FL, 2004, 738-743. 
[2] J. H. Piater, Visual Feature Learning. Ph.D. diss., 
Dept. of Comp. Sc., Univ. of Mass., Amherst, 2001. 
[3] Baddeley A. D., G. Hitch, Working Memory, Recent 
advances in learning and motivation, 8, Edition G. 
Bower,  NY : Academic Press, 1974. 
[4] A.D. Baddeley, Working Memory (Oxford Univ. 
Press, 1986).  
[5] D.H. Ballard, M.M. Hayhoe, Feng Li, S. D. 
Whitehead, Hand-Eye Coordination during Sequential 
Tasks, Phil. Trans. R. Soc. London B, 337, 1992, 331-339.  
[6] T.Jaakkola, S.P. Singh, and M. Jordan, Reinforcement 
learning algorithm for partially observable Markov 
decision problems, NIPS, Cambridge MA, 1995, 345-352. 
[7] L.J. Lin and T. Mitchell, Reinforcement learning with 
hidden states. In Proc. of the 2nd Int. Conf. on SAB, 
Cambridge, MA, 1992, 271-280.  
[8] L.P. Kaelbling, M.L. Littman, and A.R. Cassandra, 
Planning and acting in partially observable stochastic 
domains, CS-95-11, Brown Univ., Providence RI, 1995. 
[9] M.L. Littman, A.R. Cassandra, and L.P. Kaelbling, 
Learning policies for partially observable environments: 
Scaling up. In Proc. of the 12th Int. Conf. on Machine 
Learning, San Francisco, CA, 1995, 362-370. 
[10] R. A. McCallum, Learning to use selective attention 
and short-term memory in sequential tasks. In Proc. of the 
4th Int. Conf. on SAB, Cambridge, MA, 1996, 315-324. 
[11] A. R. McCallum, Hidden state and reinforcement 
learning with instance-based state identification. IEEE 
Trans. SMC, 26B (3), 1996, 464 -473. 
[12] Huber M. and Grupen R.A., A Feedback Control 
Structure for On-line Learning Tasks, Robotics and 
Autonomous Systems, 22(3-4), 1997, 303-315. 
[13] P.J.G. Ramadge and W.M. Wonham, The control of 
discrete event systems. Proc. IEEE, 1989, 77(1):81-97. 
[14] J.G. Thistle, W.M. Wonham, Control of infinite 
behavior of finite automata, SIAM Journal of Control and 
Optimization, 32(4), 1994, 1075-1097. 
[15] C.J.C.H Watkins, Learning From Delayed Rewards. 
PhD thesis, Cambridge Univ., Cambridge, England, 1989. 
[16] L.P. Kaelbling, M.L. Littman, A.M. Moore, Rein- 
forcement Learning: A Survey, JAIR, 1996, (4):237-285. 
[17] R.S. Sutton and A.G. Barto, Reinforcement learning: 
an introduction (Cambridge, MA: MIT Press, 1998) 

-15

-10

-5

0

5

10

15

20

0 50000 100000 150000
Learning Steps

A
ve

ra
ge

 R
ew

ar
d

Stacking Task w /o
Memory Policy
Stacking Task w ith
Memory Policy

Start State Final State Features 

Grey (G) 

Red (R) 
White (W) 

 Pink (P) 


