
Solving Partial Differential Equations on a Network of Workstations

Chi-Chung Hui, Gary Ka-Keung Chan, Michelle Man-Sheung Yuen,
Mounir Hamdi, and Ishfaq Ahmad

Department of Computer Science, Hong Kong University of Science and Technology
Clear Water Bay, Kowloon, Hong Kong

Abstract
The use of a network of workstations as a single unit

for speeding up computationally intensive applications is
becoming a cost-eflective altemative to traditional paral-
lel computers. In this paper, we present the implementa-
tion of an application-driven parallel platform for solving
partial differential equations (PDEs) on this computing
environment. The platform provides a general and e@-
cient parallel solution for time-dependent PDEs and an
easy-to-use intelface that allows the inclusion of a wide
range of parallel programming tools. We have used two
different parallelization methods in this platform. The first
method is a two-phase algorithm which uses the conven-
tional technique of alternating computation and communi-
cation phases. The second method uses a novel pre-com-
putation technique which allows overlapping of computa-
tion and communication. Both methods yield signzjicant
speedup. However, the pre-computation technique is
shown to be more efSicient and scalable.

1 Introduction
Parallel computing environments based on networks

of workstations have recently become effective and eco-
nomical platforms for high-performance computing. This
is due to a number of reasons. First, by providing con-
trolled access to a much larger and richer computational
resource, network environments can increase application
performance by significant amounts. Second, the incre-
mental enhancement of a network based concurrent com-
puting environment is usually straightforward because of
the availability of high-bandwidth networks. Third, many
existing and projected applications are composed of heter-
ogeneous sub-algorithms. On typical networks with a
variety of architectures and capabilities, such applications
can benefit by executing appropriate subalgorithms on the
best suited processing elements.

In this paper, we use this computing environment for
the implementation of a parallel platform for the solution
of time-dependent PDEs which are generally regarded by
scientists as one of the most computationally intensive
tasks. Generally, PDEs can be classified as elliptic, hyper-
bolic or parabolic [2], [111. For example, the Poisson equa-

tion is elliptic, while the Wave equation is hyperbolic, and
the Heat equation is parabolic [9], [16]. The different
classes of PDEs are typically solved using different numer-
ical methods. In this paper, we will concentrate on parabol-
ic PDEs which are also known as time-dependent PDEs. A
parallel solution of such equations is not a straight-forward
task. This is because the traditional methods of paralleliza-
tion cannot be used due to the inherent recursive nature of
time-stepping where the solution at the current step de-
pends on the solution of the previous step [17]. Sequential
numerical methods for solving time-dependent PDEs have
been explored extensively [8], [l l] . Attempts have also
been made towards parallel solutions on distributed-mem-
ory MIMD machines [l], [3], [4], [lo], [14], [16]. Howev-
er, these parallel solutions are specific to particular kinds
of problems and are not general in nature.

The prime objective of our platform is not to be spe-
cific to one problem, rather it should be able to solve a
wide variety of time-dependent PDEs for various applica-
tions. The platform is interactive, portable, and scalable.
The parallel solution in this platform uses one of the nu-
merical approaches known as the finite-dzrerence approx-
imation [12]. The platform has been developed with a
number of objectives in mind which are outlined below:

To provide a general solution that solves a system of
PDEs using the finite difference method. In the current
implementation, the system is capable of solving sys-
tems of PDEs with a complexity of up to 3 spatial di-
mensions and 1 temporal dimension which is capable
of solving most practical problems. Our implementa-
tion has been developed using the Parallel Virtual Ma-
chine (PVM) parallel programming environment [6]
and is running on a cluster of SUN workstations.

To provide an easy-to-use interface that includes a
number of parallel programming tools including data
partitioning and load balancing.

To provide an efficient and effective parallel computa-
tion and communication design such that the speedup
gained is as high as possible without sacrificing the
generality of the platform.

To obtain a thorough understanding of the overheads of

194
0-8186-6395-2194 $4.00 0 1994 IEEE

the system (both software and hardware).
The rest of the paper is organized as follows. Section

2 presents a general overview of our parallel platform. Sec-
tion 3 details the parallel methods used for the solution of
PDEs. In Section 4, we present our experimental results.
Finally, Section 5 provides some concluding remarks.

2 System Overview
The platform uses the finite difference method which

provides approximate solutions of PDEs, such that the de-
rivatives at a point are approximated by difference quo-
tients over a small interval. In solving the initial-boundary
value problems, this method determines approximations at
a finite number of points (grid points) in the domain. Each
data point in the grid is given an initial value at the begin-
ning of the execution. As time goes by, the value at each
grid point is updated according to the PDEs provided.
Based on the time step used in time differentiation and the
order used in spatial differentiation, different dependen-
cies among the grid points are resulted. Typically, the data
at each grid point is updated at each time step by the sur-
rounding points in the past time steps, as depicted in Figure
1. This regular relationship among the data points is where
data parallelization can be captured.

i - - r - i - - i
I I I I

I I I I
I - - L - - ! - - I

Figure 1. The centra1 shaded point is the location of the point P
that needs to be calculated.

One common area involving the use of parabolic
PDEs is the theory of heat conduction [1 11. The so called
heat equation which is the fundamental component of the
theory of heat conduction is one of the troublesome equa-
tions to deal with in scientific computing. In our experi-
mental results, we use this equation to analyze our plat-
form. In its generic form, the heat equation is defined as

au a%
ax; at

- = A u = c - .
j = 1

One simple example of the heat equation is the tem-
perature distribution u(x,y,t) of a two-dimensional grid as
a function of ,the coordinates x , y and the time t .

au a2u a2u
at ax2 ay2
- = - + - .

Using an explicit forward difference approximation
to the equation, we obtain the following solution

where rx = A t I (A x)~, r = A t I (A y)* and u k i .
denotes the value of the temperature at grid point (i , j) and
time t k = t o + k x A t .

Our parallel processing environment consists of SUN
IPX workstations connected by an Ethernet network. A
single file system is being shared by all the workstations in
the network. The PVM system has been used in the imple-
mentation of the platform. The parallel programming mod-
el used is SPMD (Single Program Multiple Data). The par-
allelization process consist of a number of steps. This in-
cludes data partitioning, processor allocation, load
balancing, YO scheduling, overlapped computation and
communication routines, and message-passing proce-
dures.

3 The Parallel Platform Design
One of the main objectives of the platform is to make

it flexible enough to accommodate a wide variety of appli-
cations. The specifications of the PDEs are given through
the user interface which are then fed into a parser. The
parser parses the specification and builds the corrhpond-
ing executable programs. The user specifications are divid-
ed into 3 categories, which are the parameter section, the
definition section, and the auxiliary section. The interface
is flexible enough to allow the user to define C-style pa-
rameters, variables and functions inside the appropriate
sections. The parameter section includes the structure of a
data point, initial values, dimension of the grid, data de-
pendency, checkpointing options, computational mode,
and boundary conditions. In the definition section, the user
needs to define the function which is used by the platform
to perform iterative updates of the grid points. The auxilia-
ry section contains any user supplied sub-programs that are
needed by the three functions defined in the definition sec-
tion. Moreover, the platform carries out a number of tasks
including processor allocation, data partitioning, load bal-
ancing, computation, communication and disk YO. These
are elaborated below.

3.1 Data YO
As mentioned earlier, all workstations share a single

file system. The platform takes advantage of this to drasti-
cally reduce the amount of communication. Since the pro-
gramming model is SPMD model, there is a host process
which sets the parallel processing environment. Based on
the data partitioning scheme, the node processes are in-
formed of the region of grid points assigned to them. Each
node process can read the corresponding portion of the ini-
tial data file concurrently because the file system is shared.
Similarly, the results of computations are also written back
into the data files concurrently. Then, the results are com-
bined to get the required solution.

+ ryuki , - , + yki, +

195

3.2 Processor Allocation and Data Partitioning
The number of processors used by the platform is de-

termined by two factors. The first is the user-stated muxi-
mum which must be less than or equal to the number of
processors the PVM system is started with. The second
factor is that of data dependency. Since the grid points are
distributed across different processors, communication is
needed to pass the grid points at the processors’ boundaries
so that computations can be performed for the boundary
grid points. However, in order to reduce the communica-
tion cost, it is better if the computation in a processor does
not depend on data from more than one processor from a
side along a dimension. The above factors limit the maxi-
mum number of processors to be used. The minimum of
these two maximum is used to determine the number of
processors.

The data is distributed in a load balanced fashion into
approximately equal-sized blocks. A simple cost function
is used to decide the processors allocation scheme. The
function considers the size of the cross-sections when the
grid is split into regions. The size of the cross-sections is
minimized as it is directly proportional to the amount of in-
terprocessor communication. The method of computing
the cost is straight-forward. Given the number of proces-
sors N and the dimensionality d, we find all possible fac-
torizations of N into d integers, i.e. n, x n2 x ... x n = N .
For each factorization, we can easily compute the size of
the cross-section. The cross-section will be a point, a line
and a plane for 1-D, 2-D and 3-D problems, respectively.
As an example, consider the two allocation schemes for a
3-D grid shown in Figure 2. The resolution of the grid is 4
x 4 x 4 and the number of processors used is 4. Two pos-

4

cost function would allocate the processors in scheme 1’s
fashion. The cost function keeps track of the cost of differ-
ent allocations (factorizations of N) and selects the one
that gives the minimum.

3.3 Computation
A simple methodology for computing the point val-

ues is a two-phase algorithm. This algorithm uses altemat-
ing phases of computation and communication.

3.3.1 The Two-Phase Algorithm

In order to calculate the points at time t , the following
steps apply:

The nodes wait until all bound-
ary data in time (t - LEVEL) to time (t - 1) arrive, where
LEVEL correspond to the number of time steps used up to
that point.

The nodes compute the values at
time t .

Since the time used in each computation phase and
communication phase may be different and there is no
overlap between them, a node must wait until it receives all
of the required data from other nodes. Consequently, this
algorithm is inefficient since part of the elapsed time is
used in just waiting. This is illustrated in the left diagram
of Figure 3. As can be noticed from this figure, processor
2 is slower than other processors. As a result, processors 1
and 3 must wait until all the boundary data from processor
2 have arrived. The communication phase consists of two
parts: 1) sending and receiving messages, and 2) waiting
for the messages to arrive.

. .

time

4 4

Scheme One Scheme Two
(Without PreComputation) (With Recomputation)

4 4
(a) Scheme 1 (b) Scheme 2

Figure 2. Two possible schemes for distributing the data across
4 processors and the corresponding communication costs.

sible partitioning schemes are shown in this figure. The
communication cost is reflected by the cross-sectional ar-
eas in the above schemes. For first scheme, the total shaded
area is 4 x 4 + 4 x 4 = 32, while for the second scheme , the
total shaded area is 4 x 4 + 4 x 4 + 4 x 4 = 48. Hence, the

Computation at time step t
I Computation at time step (t+l)

Send data obtained at time step t

Figure 3. Comparison of the elapsed times for the two-
phase and pre-computations methods.

3.3.2 The Pre-Computation Algorithm

In order to alleviate the problems of the two-phase
algorithm, we use the technique of pre-computation. For
each node, if the boundary data from time (t - LEVEL) to
time (t - 1) have not yet arrived, the node computes part of
the points in time t which do not make use of the boundary
data. This can be noticed from Figure 3 by contrasting the
right diagram with the left diagram. In this case, processors
1 and 3, instead of waiting for the data from processor 2,
utilize the idle time to pre-compute portions of data at time
step (t+l). The idea of pre-computation can be further ex-
plained by considering Figure 4 which shows the data al-
located to a node represented by solid lines. This is a 2-di-
mensional region with size 8 x 8. We call it the local re-
gion. The extent of points that a node needs to receive in
this case is represented by the dotted boundary. Figure 4(a)
shows that in order to calculate the point values at time t,
and the node has not yet received all the boundary points it
needs, it can still calculate the point values in the central 6
x 6 region (it is assumed that the calculation of each point
depends on itself and its surrounding points only, see Fig-
ure 1). This region is shown as the shaded region in Figure
4(b). This technique is calledpre-computation since a por-
tion of points in time t are calculated before all the bound-
ary points have arrived.

:.- i I ; ; ; ; ; ; i--i
,..,.~..,....~.~..~.,..,.. I , l l . , I I , , ;

,..,.~..~.~..,-,..~.~..,.. ,--.-.--~-~--.-..-~-,--.-- , , , . , , , . , , : ,__, . . . : , , : , --, I , , : a-.,

I I I I I I I I .., : : : : : : : : : ! ;
I ..l I I I I I I I .., ~~~..~.~..~.~..~.~..~.~..; --, ~.~..~.~..~.~..~.~..~.~..~

(a) The local (b) The shaded (c) The lightly shaded
region and extent region indicates the region indicates the
of data required in points which can be points at time (t-
computation. computed with pre- LEVEL) that are no

computation. longer required.
,..~....I ..._,.,.......,.. . . . , , . , . , . ,

Extra points Extra points Final content of
at time step t the extra region

(d) The concept of extra regions: points resulted in different level of
pre-computations can be stored.

Figure 4. The data management schemes during the pre-
computation method.

at time step (t+l)

When the pre-computation is completed at time t and
the boundary data have not yet arrived, the node can pre-
compute the data at time (t + 1) using the available data
from time (t - LEVEL + 1) to time t. This process is repeat-
ed until no data can be pre-computed anymore. In the im-
plementation of the pre-computation algorithms, it is nec-
essary to allocate additional memory to hold the pre-com-
puted results. However, the size of additional memory
after a number of steps can grow very large. Consequently

the memory may eventually run out. To deal with this
problem, we free a region of the memory that holds the
data which is no longer required. This is shown in Figure
4(c) where the lightly shaded region shows the data that is
not required at time step t and is freed. Note that the freed
region (with size 4 x 4) is slightly smaller than the pre-
computed region (with size 6 x 6). However, the extents of
these extra points shrink as the level of pre-computation
increases, and more importantly, they do not overlap.
Thus, it is possible to allocate a region with size equal to
the local region and place all the pre-computed points into
that region. This region is called the extra region. See Fig-
ure 4(d) for an illustration.

In the following, it is shown that only 1 level of pre-
computation is sufficient such that a maximal overall re-
duction in elapsed time can be achieved. For the two-phase
algorithm, the total time used in time step n, TJn) , is giv-
en by

where T is the computation time, Ts, is the time
used in sendir$&essages, TWqit is the time usegby the plat-
form in waiting for the incoming messages, and T,, is the
time used in processing the incoming messages. dearly,
there is a period of idle time during the Twai$n) period, and
it is possible to perform pre-computation so as to overlap
Tw ,(n) and TGomp(n+l). It is impossible to overlap Twai$n)
and Trem(n) since the platform cannot process the incom-
ing message before they arrive. Similarly, it is impossible
to overlap Twai$n) and TSed(n+l) since the data required to
be sent in time (n+l) is not ready. This is shown in Figure
5 where two cases are considered:

Case 1. Twait (n) 5 Tprecompute (n +- 1) : After pre-
computation at time step (n+l) is completed, the message
at time step n arrives. Thus, no waiting time is needed for
incoming messages, and the elapsed time is:

T best (n) = T p o s t c o m p u t e (4 + Tsend (4
(n + 1) + r (n)

r e c v
+ T

p r e c o m p u t e

= T c o m p (d + Tsend (4 + Trecv (.I
(n) is the computation time of the

points in time sfep n that cannot be computed during the
pre-computation phase. Note that the term
does not appear in the equation because it is decomposed

where T p q s t c o m ute

Tcompute (n)

into two terms, Tprecompute ('1 and Tp0stcomput.e ('1 .
The above time is the shortest elapsed time achievable
since all the three components involve computations and
thus cannot be overlapped.

197

Case 2. 'wait (n) > Tprecompute (n + 1) : In this case,
the computation time is less than the waiting time. The
shortest time achievable in each time step is:

T best = ' send (4 +Twoif

+ recv (n) + Tpostcompute (4
Here, T Iecompute (n)
while (n) remains distinct. Although it is
possible to perform more levels of pre-computation
during the Twait (n) period, this waiting period cannot
be reduced further since the incoming messages arrive
only after this period (i.e., Trecv (n) cannot be started
before Twoit (n) ends).

Following the above argument, it is easy to see that 1
level of pre-computation is sufficient to obtain the shortest
elapsed time since performing more than 1 level of pre-
computation can only shift some computations earlier as
is illustrated by the right diagram of Figure 5.

is included into Twoit (n - 1)

f-

time step t finishec

Figure 5. The effect of number of levels used in pre-
computation on the elapsed time.

3.4 Load Balancing

Our platform can provide a load balancing scheme
which can be used, to perform even or uneven distribution.
Even distributions, such as those described in Section 3.2,
are required if all processors are identical and are equally
loaded. When the workloads on processors are different,
load balancing is performed to migrate some of the work-
load from heavily loaded processors to lightly loaded ones.
The load balancing scheme is designed in such a manner
that it can also be used in a heterogenous environment
where the speeds of processors are not identical. In order
to minimize the complexity of the buffer management
scheme and interprocessor communication scheme, the lo-
cal regions kept by the nodes are always rectangular in
shape. This way, our load balancing scheme considers a

grid to be a collection of planes and columns in a 3-dimen-
sional Cartesian space. Partitioning along the x-axis parti-
tions the grid into planes. Partitioning along the y-axis fur-
ther partitions these planes into blocks. Figure 6 illustrates
one simple example where the grid consists of two planes
and each plane is divided among two processors. With load

After

Load-
alancin

-
~~

plane0 plane1 plane0 plane1

Figure 6. The load balancing scheme partitions the data
across two dimensions.

balancing, the division of data can be unequal. If the grid
is very large and there are large number of processors
available, load balancing allows further partitioning of
data along the z-axis. This is shown in Figure 7 where the
grid is divided along all three dimensions. Here the planes
can be viewed as collections of columns.

3.5 Interprocessor Communication

To accommodate the load balancing schemes de-
scribed above, the platform is designed to have communi-
cation in interplane, intercolumn and interblock directions
for problems up to 3 dimensions. Interplane communica-
tion deals the communication between each processor and
the processors of the plane in front and the plane behind.
Whereas, intercolumn communication is for communica-
tion between processors in the same plane but neighboring
columns of processors. For interblock communication, it
deals with communication of each processor and its neigh-
boring processors in the same column. For example, as il-
lustrated in Figure 7, for the interplane communication,
processor 11 at location of plane 1, column 0 and block 1
needs to communicate with neighboring processors in
plane 0 and plane 2. The communication process is com-
posed of the sending and receiving steps.

Dim.:!

Figure 7. The load balancing scheme partitions the data
across three dimensions.

198

3.5.1 Send Procedure

In the sending step, the location of the processor is
determined in terms of its plane, column and block num-
ber. The sending routine determines the grid point values
needed by the neighboring processors in each plane, col-
umn and block, packs the data into messages and sends
them to each processor. Note that the same data may be re-
quired to be sent to more than one processor due to over-
lapping regions. This can be seen from Figure 8, where
processor A needs to send different chunks of data to each
of the neighboring processors. The sending process is done
in the 3 communication steps mentioned above to ensure
that the grid point values on each face of the block are sent
systematically.

,...

,...- ,.. -...,

No.of Setup vo Comp. Comm.
Nodes Time Time Time Time

1 0.78 16.26 555.26 0.18
8

Elapsed Speedup
Time
572.48 1.00

L
0 Data to be sent from Processor A to 1 neighbouring processor
EL4 Data to be sent from Processor A to 2 neighbouring processors
I Data to be sent from Processor A to 3 neighbouring processors
Figure 8. The flow of data from a processor to its surrounding
processors.

3.5.2 Receive Procedure

In the receiving step, a counter is initialized as the to-
tal number of grid point values needed to perform calcula-
tion of all grid points. The counter then keeps track of the
number of grid points that have not yet arrived. When the
counter becomes zero, data are sufficient for completing
computation for the next time step. During the communi-
cation phase, computation and communication are execut-
ed alternatively depending on when the data arrives. First,
the sending procedure for all the processors is called.
Then, the computation process starts for the points where
sufficient data exist for completing the calculation. During
the computation, non-blocking receive is called from time
to time to receive data from neighboring processors. Com-
putation continues until no more points at the next time
step can be calculated. At this time, blocking receive is
used to wait for arrival of all the grid points. The process
continues until all the data needed has arrived. Then the
computation for the grid points at the boundary of the pro-
cessor can be started for the next time step.

Table 11. Timing results (in seconds) for the 2-D heat
equation using the pre-computation method for a 3800 X 100
grid and 500 time steps.

Comp. Comm. Elapsed
Time Time Time Speedup

The major difference between the two-phase method
and the pre-computation method is in the computation time
and the communication time. The computation time is the
time spent in actual computation including the time spent
in setting up buffers and actual calculations. Typically, this

199

-

time is smaller for the two-phase method because the pre-
computation method incurs higher overhead because of
additional needed buffer management due to the overlap-
ping of computation and communication. Figure 9 illus-
trates the computation time of the two-phase method and
the pre-computation method. The communication time is

2-D n d solvor: Elapsed Computation Tim.

0 1 I
0 5 10 15 20

Number of proce~om

Figure 9. The computation times in seconds for the two-
phase method and the pre-computation method.

the time that a node spends in communication including
processing the messages and waiting for the messages. The
communication time of the pre-computation method is
smaller than that of the two-phase method since it reduces
the waiting time to a minimum by overlapping computa-
tion and communication. This is illustrated in Figure 10.

2-0 Heal Solver: Elawed COmmunlcanon Tlme

Two-phllse memod c
Precomputetion method -+-

0 5 10 15 20
Number 01 processors

Figure 10. The communication times in seconds for the
two-phase method and the pre-computation method.

Thus, as long as the time saved in communication time by
using the pre-computation method is bigger than the addi-
tional time for buffer management when compared to the
two-phase method, using the pre-computation method
would result in a smaller total elapsed time and a better
speedup. Figure 11 shows the speedup curves of the two-
phase method and the pre-computation method, where the
precomputation method compares favorably on this mea-

sure especially when using a large number of nodes. How-
ever, both methods record significant speedups. Hence,

2-D Heat Solvor: Spndup Cuwo
20

Two-ph- mothod +’
Pr- uution mmthod .+I--.

~d..Yop..dup wtyn’.--’-

Figure 11. The speedup curves of the two-phase
method and the pre-computation method.

whenever the communication time is crucial in determin-
ing the overall elapsed time of the application, using the
pre-computation method in our platform would be pre-
ferred over the two-phase method. This would usually be
the case using a network of workstations where the net-
work (e.g. Ethernet) has a low communication bandwidth.

Table III and Table IV show the timing results for
solving the 3-D heat equation using a grid of lo00 x 20 x
20 points and 500 time steps for both the two-phase meth-
od and the pre-computation method. The setup times and

Table 111. Timing results (in seconds) for the 3-D heat
equation using the two-phase method for a lo00 x 20 x 20 grid
and 500 time steps. 1 1 r,: I 15.41 935.58 1 0.20 1 951.611 1.00 1

10.86 240.76 16.91 269.32 3.53

3.04 10.2 123.00 20.10 156.35 6.09
I I I I I I I

I I I I I I I

the I/O times are the same for both methods as expected.
However, the difference in computation times and commu-
nication times between the two methods is even greater
than that of the 2-D heat equation. However, the same con-
clusions for solving 2-D PDEs hold when solving 3-D
PDEs using both methods. That is, if the gain in communi-
cation time by the pre-computation method is bigger than
the gain in computation time by the two-phase method,
then the pre-computation method would be the preferred
method in our platform.

Table n! Timing results (in seconds) for the 3-D heat
equation using the pre-computation method for a lo00 x 20 x
20 grid and 500 time steps.
-
No. of
Nodes

1

4

8

12

16

-

-

-

Setq
Time
1.44

1.05

1.93

4.35

3.08

-
-
-
-
-

Comm.
Time

0.29

6.71

7.61

8.44

8.64

I 20 I 2.741 6.221 60.95 I 9.61 I 79.521 12.01 I
5 Conclusions

A parallel platform for solving time-dependent PDEs
is designed and implemented on a network of worksta-
tions. The platform is general in such a way that different
applications can be easily developed through a very effec-
tive user interface. Significant speedups were achieved us-
ing two parallel methods, a two-phase method and a pre-
computation method. The pre-computation method is an
efficient technique that allows the overlapping of compu-
tation and communication. It has been shown that it can
outperform the traditional two-phase method especially
when the communication time is significant and/or the
number of nodes used is large. On the other hand, the two-
phase scheme is simple and easier to implement. We have
presented the detailed timing of all the components that
contribute to the total elapsed time. This is important as it
helps the programmer identifying the major bottlenecks in
the system, and gives himher guidance on where an im-
provement is needed most.

References
M. Berger, J. Oliger and G. Rodrigue, “Predictor-Cor-
rector Methods for the Solution of Parabolic Prob-
lems on Parallel Processors,” in Elliptical Problem
Solvers, Ed. M. Schultz, Academic Press, New York,

K. Black, “Polynomial Collocation Using a Domain
Decomposition Solution to Parabolic PDEs via the
Penalty Method and Expliciflmplicit Time March-
ing,” Journal of Scientific Computing, vol. 7, no. 4,

Z. Cvetanovic, E.G. Freeman and C . Nofsinger, “Ef-
ficient Decomposition and Performance of Parallel
PDE, FFT, Monte Carlo Simulations, SImplex and
Sparce Solvers,” Proceedings of Supercomputing

A. Fijany, “Time Parallel Algorithms for Solution of
Linear Parabolic PDEs,” in Proc. of lnt’l Con6 on
Parallel Processing, 1993, vol. 111, pp. 51-55.

198 1, pp. 197-202.

1992, pp. 313-338.

’90, NOV. 1990, pp, 465-474.

G. Fox, M. Johnson, G. Lyzenga, S . Otto, J. Salmon
and D. Walker. Solving Problems on Concurrent
Processors, Vol. I: General Techniques and Regular
Problems. Prentice Hall, 1988.
G. A. Geist and V. M. Sunderam, “Network-based
Concurrent Computing On The PVM System,” Con-
currency: Practice And Experience, 1992, pp. 293-
311.
M. A. H. MacCallum, “An Ordinary Differential

Equation Solver for REDUCE,” International Sym-
posium ISSAC’88, pp. 115-123.
S. McFaddin and J.R. Rice, “RELAX: a Software
Platform for Partial Differential Equation Interface
Relaxation Methods,” Proceedings of the 2nd IM-
ACS International Conference on Expert Systems for
Numerical Computing (1992), pp. 175-194.
M. A. Pinsky, lntroduction to Partial Diffferentiul
Equations with Applications, McGraw-Hill Publish-
ing CO., 1984.

[IO] A. Schuller, “Parallelizing Particle Simulations
based on the Boltzmann Equation,” Parallel Com-
puting vol. 18, no.3, (March 92), pp. 269-279.

[1 11 G. D. Smith, Numerical Solution of Partial Differen-
tial Equations: Finite Difference Methods, 3rd Edi-
tion, Oxford Applied Mathematics And Computing
Science Series.

[121 J. Noye: Finite Difference Methods for Partial Dif-
ferential Equations, Numerical Solutions of Partial
Differential Equations. North-Holland Pub. Co., pp.

H. A. Riphagen, “Numerical Weather Prediction,
Numerical Solution of Partial Differential Equations:
Theory, Tools and Case Studies,” pp. 246-274.

[141 3. Saltz and V. Nail, “Towards Developing Robust
Algorithms for Solving Partial Differential Equations
on MIMD Machines,” Parallel Computing, vol. 6,
1988.

[15] E. Verhulst, “A Prototype of a User Friendly Partial
Differential Equation Solver on a Transputer Net-
work,” Proceedings of the User 1 Working Confer-
ence, 1998, pp. 232-239.

[161 G. R. Wightwick and L. M. Leslie, “Parallel Imple-
mentation of a Numerical Weather Prediction Model
on a RISC Systed6000 Cluster,” Fifh Australian
Supercomputing Conference, Oct 12, 1992, pp. 135-
142.

[17] D. Womble, “A Time-Stepping Algorithm for Paral-
lel Computers,” SIAM Journal of Sci. & Stat. Com-
puting, vol. 11(5), pp. 824-837, 1990.

[181 E. Zirman, M. Rao and Z . Segall, “Performance Ef-
ficient Mapping of Applications to Parallel and Dis-
tributed Architectures,” 1990 lnternationul Confer-
ence on Parallel Processing, 1990, pp. 147-154.

3-137.
[131

201

