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Abstract 
The use of a network of workstations as  a single unit 

for  speeding up computationally intensive applications is 
becoming a cost-eflective altemative to traditional paral- 
lel computers. In this paper, we present the implementa- 
tion of an application-driven parallel platform for  solving 
partial differential equations (PDEs) on this computing 
environment. The platform provides a general and e@- 
cient parallel solution for  time-dependent PDEs and an 
easy-to-use intelface that allows the inclusion of a wide 
range of parallel programming tools. We have used two 
different parallelization methods in this platform. The first 
method is a two-phase algorithm which uses the conven- 
tional technique of alternating computation and communi- 
cation phases. The second method uses a novel pre-com- 
putation technique which allows overlapping of computa- 
tion and communication. Both methods yield signzjicant 
speedup. However, the pre-computation technique is 
shown to be more efSicient and scalable. 

1 Introduction 
Parallel computing environments based on networks 

of workstations have recently become effective and eco- 
nomical platforms for high-performance computing. This 
is due to a number of reasons. First, by providing con- 
trolled access to a much larger and richer computational 
resource, network environments can increase application 
performance by significant amounts. Second, the incre- 
mental enhancement of a network based concurrent com- 
puting environment is usually straightforward because of 
the availability of high-bandwidth networks. Third, many 
existing and projected applications are composed of heter- 
ogeneous sub-algorithms. On typical networks with a 
variety of architectures and capabilities, such applications 
can benefit by executing appropriate subalgorithms on the 
best suited processing elements. 

In this paper, we use this computing environment for 
the implementation of a parallel platform for the solution 
of time-dependent PDEs which are generally regarded by 
scientists as one of the most computationally intensive 
tasks. Generally, PDEs can be classified as elliptic, hyper- 
bolic or parabolic [2], [ 111. For example, the Poisson equa- 

tion is elliptic, while the Wave equation is hyperbolic, and 
the Heat equation is parabolic [9], [16]. The different 
classes of PDEs are typically solved using different numer- 
ical methods. In this paper, we will concentrate on parabol- 
ic PDEs which are also known as time-dependent PDEs. A 
parallel solution of such equations is not a straight-forward 
task. This is because the traditional methods of paralleliza- 
tion cannot be used due to the inherent recursive nature of 
time-stepping where the solution at the current step de- 
pends on the solution of the previous step [17]. Sequential 
numerical methods for solving time-dependent PDEs have 
been explored extensively [8], [ l l ] .  Attempts have also 
been made towards parallel solutions on distributed-mem- 
ory MIMD machines [l], [3], [4], [lo], [14], [16]. Howev- 
er, these parallel solutions are specific to particular kinds 
of problems and are not general in nature. 

The prime objective of our platform is not to be spe- 
cific to one problem, rather it should be able to solve a 
wide variety of time-dependent PDEs for various applica- 
tions. The platform is interactive, portable, and scalable. 
The parallel solution in this platform uses one of the nu- 
merical approaches known as the finite-dzrerence approx- 
imation [12]. The platform has been developed with a 
number of objectives in mind which are outlined below: 

To provide a general solution that solves a system of 
PDEs using the finite difference method. In the current 
implementation, the system is capable of solving sys- 
tems of PDEs with a complexity of up to 3 spatial di- 
mensions and 1 temporal dimension which is capable 
of solving most practical problems. Our implementa- 
tion has been developed using the Parallel Virtual Ma- 
chine (PVM) parallel programming environment [6] 
and is running on a cluster of SUN workstations. 

To provide an easy-to-use interface that includes a 
number of parallel programming tools including data 
partitioning and load balancing. 

To provide an efficient and effective parallel computa- 
tion and communication design such that the speedup 
gained is as high as possible without sacrificing the 
generality of the platform. 

To obtain a thorough understanding of the overheads of 
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the system (both software and hardware). 
The rest of the paper is organized as follows. Section 

2 presents a general overview of our parallel platform. Sec- 
tion 3 details the parallel methods used for the solution of 
PDEs. In Section 4, we present our experimental results. 
Finally, Section 5 provides some concluding remarks. 

2 System Overview 
The platform uses the finite difference method which 

provides approximate solutions of PDEs, such that the de- 
rivatives at a point are approximated by difference quo- 
tients over a small interval. In solving the initial-boundary 
value problems, this method determines approximations at 
a finite number of points (grid points) in the domain. Each 
data point in the grid is given an initial value at the begin- 
ning of the execution. As time goes by, the value at each 
grid point is updated according to the PDEs provided. 
Based on the time step used in time differentiation and the 
order used in spatial differentiation, different dependen- 
cies among the grid points are resulted. Typically, the data 
at each grid point is updated at each time step by the sur- 
rounding points in the past time steps, as depicted in Figure 
1. This regular relationship among the data points is where 
data parallelization can be captured. 
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Figure 1. The centra1 shaded point is the location of the point P 
that needs to be calculated. 

One common area involving the use of parabolic 
PDEs is the theory of heat conduction [ 1 11. The so called 
heat equation which is the fundamental component of the 
theory of heat conduction is one of the troublesome equa- 
tions to deal with in scientific computing. In our experi- 
mental results, we use this equation to analyze our plat- 
form. In its generic form, the heat equation is defined as 

au  a% 
ax; at 

- = A u = c -  . 
j = 1  

One simple example of the heat equation is the tem- 
perature distribution u(x,y,t) of a two-dimensional grid as 
a function of ,the coordinates x ,  y and the time t .  

au a2u a2u 
at ax2 ay2 
- = - + -  . 

Using an explicit forward difference approximation 
to the equation, we obtain the following solution 

where rx = A t I (A x)~, r = A t I (A y)* and u k i .  
denotes the value of the temperature at grid point ( i ,  j) and 
time t k = t o  + k x A t .  

Our parallel processing environment consists of SUN 
IPX workstations connected by an Ethernet network. A 
single file system is being shared by all the workstations in 
the network. The PVM system has been used in the imple- 
mentation of the platform. The parallel programming mod- 
el used is SPMD (Single Program Multiple Data). The par- 
allelization process consist of a number of steps. This in- 
cludes data partitioning, processor allocation, load 
balancing, YO scheduling, overlapped computation and 
communication routines, and message-passing proce- 
dures. 

3 The Parallel Platform Design 
One of the main objectives of the platform is to make 

it flexible enough to accommodate a wide variety of appli- 
cations. The specifications of the PDEs are given through 
the user interface which are then fed into a parser. The 
parser parses the specification and builds the corrhpond- 
ing executable programs. The user specifications are divid- 
ed into 3 categories, which are the parameter section, the 
definition section, and the auxiliary section. The interface 
is flexible enough to allow the user to define C-style pa- 
rameters, variables and functions inside the appropriate 
sections. The parameter section includes the structure of a 
data point, initial values, dimension of the grid, data de- 
pendency, checkpointing options, computational mode, 
and boundary conditions. In the definition section, the user 
needs to define the function which is used by the platform 
to perform iterative updates of the grid points. The auxilia- 
ry section contains any user supplied sub-programs that are 
needed by the three functions defined in the definition sec- 
tion. Moreover, the platform carries out a number of tasks 
including processor allocation, data partitioning, load bal- 
ancing, computation, communication and disk YO. These 
are elaborated below. 

3.1 Data YO 
As mentioned earlier, all workstations share a single 

file system. The platform takes advantage of this to drasti- 
cally reduce the amount of communication. Since the pro- 
gramming model is SPMD model, there is a host process 
which sets the parallel processing environment. Based on 
the data partitioning scheme, the node processes are in- 
formed of the region of grid points assigned to them. Each 
node process can read the corresponding portion of the ini- 
tial data file concurrently because the file system is shared. 
Similarly, the results of computations are also written back 
into the data files concurrently. Then, the results are com- 
bined to get the required solution. 

+ ryuki ,  - , + yki, + 
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3.2 Processor Allocation and Data Partitioning 
The number of processors used by the platform is de- 

termined by two factors. The first is the user-stated muxi- 
mum which must be less than or equal to the number of 
processors the PVM system is started with. The second 
factor is that of data dependency. Since the grid points are 
distributed across different processors, communication is 
needed to pass the grid points at the processors’ boundaries 
so that computations can be performed for the boundary 
grid points. However, in order to reduce the communica- 
tion cost, it is better if the computation in a processor does 
not depend on data from more than one processor from a 
side along a dimension. The above factors limit the maxi- 
mum number of processors to be used. The minimum of 
these two maximum is used to determine the number of 
processors. 

The data is distributed in a load balanced fashion into 
approximately equal-sized blocks. A simple cost function 
is used to decide the processors allocation scheme. The 
function considers the size of the cross-sections when the 
grid is split into regions. The size of the cross-sections is 
minimized as it is directly proportional to the amount of in- 
terprocessor communication. The method of computing 
the cost is straight-forward. Given the number of proces- 
sors N and the dimensionality d, we find all possible fac- 
torizations of N into d integers, i.e. n, x n2 x ... x n = N .  
For each factorization, we can easily compute the size of 
the cross-section. The cross-section will be a point, a line 
and a plane for 1-D, 2-D and 3-D problems, respectively. 
As an example, consider the two allocation schemes for a 
3-D grid shown in Figure 2. The resolution of the grid is 4 
x 4 x 4 and the number of processors used is 4. Two pos- 

4 

cost function would allocate the processors in scheme 1’s 
fashion. The cost function keeps track of the cost of differ- 
ent allocations (factorizations of N) and selects the one 
that gives the minimum. 

3.3 Computation 
A simple methodology for computing the point val- 

ues is a two-phase algorithm. This algorithm uses altemat- 
ing phases of computation and communication. 

3.3.1 The Two-Phase Algorithm 

In order to calculate the points at time t ,  the following 
steps apply: 

The nodes wait until all bound- 
ary data in time (t - LEVEL) to time ( t  - 1) arrive, where 
LEVEL correspond to the number of time steps used up to 
that point. 

The nodes compute the values at 
time t .  

Since the time used in each computation phase and 
communication phase may be different and there is no 
overlap between them, a node must wait until it receives all 
of the required data from other nodes. Consequently, this 
algorithm is inefficient since part of the elapsed time is 
used in just waiting. This is illustrated in the left diagram 
of Figure 3. As can be noticed from this figure, processor 
2 is slower than other processors. As a result, processors 1 
and 3 must wait until all the boundary data from processor 
2 have arrived. The communication phase consists of two 
parts: 1) sending and receiving messages, and 2) waiting 
for the messages to arrive. 

. .  

time 

4 4 

Scheme One Scheme Two 
(Without PreComputation) (With Recomputation) 

4 4 
(a) Scheme 1 (b) Scheme 2 

Figure 2. Two possible schemes for distributing the data across 
4 processors and the corresponding communication costs. 

sible partitioning schemes are shown in this figure. The 
communication cost is reflected by the cross-sectional ar- 
eas in the above schemes. For first scheme, the total shaded 
area is 4 x 4 + 4 x 4 = 32, while for the second scheme , the 
total shaded area is 4 x 4 + 4 x 4 + 4 x 4 = 48. Hence, the 

Computation at time step t 
I Computation at time step (t+l) 

Send data obtained at time step t 

Figure 3. Comparison of the elapsed times for the two- 
phase and pre-computations methods. 



3.3.2 The Pre-Computation Algorithm 

In order to alleviate the problems of the two-phase 
algorithm, we use the technique of pre-computation. For 
each node, if the boundary data from time (t - LEVEL) to 
time (t - 1) have not yet arrived, the node computes part of 
the points in time t which do not make use of the boundary 
data. This can be noticed from Figure 3 by contrasting the 
right diagram with the left diagram. In this case, processors 
1 and 3, instead of waiting for the data from processor 2, 
utilize the idle time to pre-compute portions of data at time 
step (t+l). The idea of pre-computation can be further ex- 
plained by considering Figure 4 which shows the data al- 
located to a node represented by solid lines. This is a 2-di- 
mensional region with size 8 x 8. We call it the local re- 
gion. The extent of points that a node needs to receive in 
this case is represented by the dotted boundary. Figure 4(a) 
shows that in order to calculate the point values at time t, 
and the node has not yet received all the boundary points it 
needs, it can still calculate the point values in the central 6 
x 6 region (it is assumed that the calculation of each point 
depends on itself and its surrounding points only, see Fig- 
ure 1). This region is shown as the shaded region in Figure 
4(b). This technique is calledpre-computation since a por- 
tion of points in time t are calculated before all the bound- 
ary points have arrived. 
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(a) The local (b) The shaded (c) The lightly shaded 
region and extent region indicates the region indicates the 
of data required in points which can be points at time (t- 
computation. computed with pre- LEVEL) that are no 

computation. longer required. 
,..~....I ..._,.,.......,.. . . . , , . , . , . ,  

Extra points Extra points Final content of 
at time step t the extra region 

(d) The concept of extra regions: points resulted in different level of 
pre-computations can be stored. 

Figure 4. The data management schemes during the pre- 
computation method. 

at time step (t+l) 

When the pre-computation is completed at time t and 
the boundary data have not yet arrived, the node can pre- 
compute the data at time (t + 1) using the available data 
from time (t - LEVEL + 1) to time t. This process is repeat- 
ed until no data can be pre-computed anymore. In the im- 
plementation of the pre-computation algorithms, it is nec- 
essary to allocate additional memory to hold the pre-com- 
puted results. However, the size of additional memory 
after a number of steps can grow very large. Consequently 

the memory may eventually run out. To deal with this 
problem, we free a region of the memory that holds the 
data which is no longer required. This is shown in Figure 
4(c) where the lightly shaded region shows the data that is 
not required at time step t and is freed. Note that the freed 
region (with size 4 x 4) is slightly smaller than the pre- 
computed region (with size 6 x 6). However, the extents of 
these extra points shrink as the level of pre-computation 
increases, and more importantly, they do not overlap. 
Thus, it is possible to allocate a region with size equal to 
the local region and place all the pre-computed points into 
that region. This region is called the extra region. See Fig- 
ure 4(d) for an illustration. 

In the following, it is shown that only 1 level of pre- 
computation is sufficient such that a maximal overall re- 
duction in elapsed time can be achieved. For the two-phase 
algorithm, the total time used in time step n, TJn) ,  is giv- 
en by 

where T is the computation time, Ts, is the time 
used in sendir$&essages, TWqit is the time usegby the plat- 
form in waiting for the incoming messages, and T,, is the 
time used in processing the incoming messages. dearly, 
there is a period of idle time during the Twai$n) period, and 
it is possible to perform pre-computation so as to overlap 
Tw ,(n) and TGomp(n+l). It is impossible to overlap Twai$n) 
and Trem(n) since the platform cannot process the incom- 
ing message before they arrive. Similarly, it is impossible 
to overlap Twai$n) and TSed(n+l) since the data required to 
be sent in time (n+l) is not ready. This is shown in Figure 
5 where two cases are considered: 

Case 1. Twait (n) 5 Tprecompute ( n  +- 1 ) : After pre- 
computation at time step (n+l) is completed, the message 
at time step n arrives. Thus, no waiting time is needed for 
incoming messages, and the elapsed time is: 

T best ( n )  = T p o s t c o m p u t e  (4 + Tsend (4 
( n + 1 )  + r  (n) 

r e c v  
+ T  

p r e c o m p u t e  

= T c o m p  (d + Tsend (4 + Trecv (.I 
(n) is the computation time of the 

points in time sfep n that cannot be computed during the 
pre-computation phase. Note that the term 
does not appear in the equation because it is decomposed 

where T p q s t c o m  ute 

Tcompute ( n )  

into two terms, Tprecompute ('1 and Tp0stcomput.e ('1 . 
The above time is the shortest elapsed time achievable 
since all the three components involve computations and 
thus cannot be overlapped. 
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Case 2. 'wait ( n )  > Tprecompute ( n  + 1) : In this case, 
the computation time is less than the waiting time. The 
shortest time achievable in each time step is: 

T best = ' send (4 +Twoif 

+ recv (n) + Tpostcompute (4 
Here, T Iecompute ( n )  
while (n) remains distinct. Although it is 
possible to perform more levels of pre-computation 
during the Twait (n) period, this waiting period cannot 
be reduced further since the incoming messages arrive 
only after this period (i.e., Trecv (n) cannot be started 
before Twoit (n) ends). 

Following the above argument, it is easy to see that 1 
level of pre-computation is sufficient to obtain the shortest 
elapsed time since performing more than 1 level of pre- 
computation can only shift some computations earlier as 
is illustrated by the right diagram of Figure 5. 

is included into Twoit ( n  - 1 )  

f- 

time step t finishec 

Figure 5. The effect of number of levels used in pre- 
computation on the elapsed time. 

3.4 Load Balancing 

Our platform can provide a load balancing scheme 
which can be used, to perform even or uneven distribution. 
Even distributions, such as those described in Section 3.2, 
are required if all processors are identical and are equally 
loaded. When the workloads on processors are different, 
load balancing is performed to migrate some of the work- 
load from heavily loaded processors to lightly loaded ones. 
The load balancing scheme is designed in such a manner 
that it can also be used in a heterogenous environment 
where the speeds of processors are not identical. In order 
to minimize the complexity of the buffer management 
scheme and interprocessor communication scheme, the lo- 
cal regions kept by the nodes are always rectangular in 
shape. This way, our load balancing scheme considers a 

grid to be a collection of planes and columns in a 3-dimen- 
sional Cartesian space. Partitioning along the x-axis parti- 
tions the grid into planes. Partitioning along the y-axis fur- 
ther partitions these planes into blocks. Figure 6 illustrates 
one simple example where the grid consists of two planes 
and each plane is divided among two processors. With load 

After 

Load- 
alancin 

- 
~~ 

plane0 plane1 plane0 plane1 

Figure 6. The load balancing scheme partitions the data 
across two dimensions. 

balancing, the division of data can be unequal. If the grid 
is very large and there are large number of processors 
available, load balancing allows further partitioning of 
data along the z-axis. This is shown in Figure 7 where the 
grid is divided along all three dimensions. Here the planes 
can be viewed as collections of columns. 

3.5 Interprocessor Communication 

To accommodate the load balancing schemes de- 
scribed above, the platform is designed to have communi- 
cation in interplane, intercolumn and interblock directions 
for problems up to 3 dimensions. Interplane communica- 
tion deals the communication between each processor and 
the processors of the plane in front and the plane behind. 
Whereas, intercolumn communication is for communica- 
tion between processors in the same plane but neighboring 
columns of processors. For interblock communication, it 
deals with communication of each processor and its neigh- 
boring processors in the same column. For example, as il- 
lustrated in Figure 7, for the interplane communication, 
processor 11 at location of plane 1, column 0 and block 1 
needs to communicate with neighboring processors in 
plane 0 and plane 2. The communication process is com- 
posed of the sending and receiving steps. 

Dim.:! 

Figure 7. The load balancing scheme partitions the data 
across three dimensions. 
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3.5.1 Send Procedure 

In the sending step, the location of the processor is 
determined in terms of its plane, column and block num- 
ber. The sending routine determines the grid point values 
needed by the neighboring processors in each plane, col- 
umn and block, packs the data into messages and sends 
them to each processor. Note that the same data may be re- 
quired to be sent to more than one processor due to over- 
lapping regions. This can be seen from Figure 8, where 
processor A needs to send different chunks of data to each 
of the neighboring processors. The sending process is done 
in the 3 communication steps mentioned above to ensure 
that the grid point values on each face of the block are sent 
systematically. 

,... ............................. 

,...- ........................ ,.. ................. -..., 

No.of Setup vo Comp. Comm. 
Nodes Time Time Time Time 

1 0.78 16.26 555.26 0.18 
8 

Elapsed Speedup 
Time 
572.48 1.00 

L ................................ 
0 Data to be sent from Processor A to 1 neighbouring processor 
EL4 Data to be sent from Processor A to 2 neighbouring processors 
I Data to be sent from Processor A to 3 neighbouring processors 
Figure 8. The flow of data from a processor to its surrounding 
processors. 

3.5.2 Receive Procedure 

In the receiving step, a counter is initialized as the to- 
tal number of grid point values needed to perform calcula- 
tion of all grid points. The counter then keeps track of the 
number of grid points that have not yet arrived. When the 
counter becomes zero, data are sufficient for completing 
computation for the next time step. During the communi- 
cation phase, computation and communication are execut- 
ed alternatively depending on when the data arrives. First, 
the sending procedure for all the processors is called. 
Then, the computation process starts for the points where 
sufficient data exist for completing the calculation. During 
the computation, non-blocking receive is called from time 
to time to receive data from neighboring processors. Com- 
putation continues until no more points at the next time 
step can be calculated. At this time, blocking receive is 
used to wait for arrival of all the grid points. The process 
continues until all the data needed has arrived. Then the 
computation for the grid points at the boundary of the pro- 
cessor can be started for the next time step. 

Table 11. Timing results (in seconds) for the 2-D heat 
equation using the pre-computation method for a 3800 X 100 
grid and 500 time steps. 

Comp. Comm. Elapsed 
Time Time Time Speedup 

The major difference between the two-phase method 
and the pre-computation method is in the computation time 
and the communication time. The computation time is the 
time spent in actual computation including the time spent 
in setting up buffers and actual calculations. Typically, this 
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time is smaller for the two-phase method because the pre- 
computation method incurs higher overhead because of 
additional needed buffer management due to the overlap- 
ping of computation and communication. Figure 9 illus- 
trates the computation time of the two-phase method and 
the pre-computation method. The communication time is 

2-D n d  solvor: Elapsed Computation Tim. 

0 1  I 
0 5 10 15 20 

Number of proce~om 

Figure 9. The computation times in seconds for the two- 
phase method and the pre-computation method. 

the time that a node spends in communication including 
processing the messages and waiting for the messages. The 
communication time of the pre-computation method is 
smaller than that of the two-phase method since it reduces 
the waiting time to a minimum by overlapping computa- 
tion and communication. This is illustrated in Figure 10. 

2-0 Heal Solver: Elawed COmmunlcanon Tlme 

Two-phllse memod c 
Precomputetion method -+- 

0 5 10 15 20 
Number 01 processors 

Figure 10. The communication times in seconds for the 
two-phase method and the pre-computation method. 

Thus, as long as the time saved in communication time by 
using the pre-computation method is bigger than the addi- 
tional time for buffer management when compared to the 
two-phase method, using the pre-computation method 
would result in a smaller total elapsed time and a better 
speedup. Figure 11 shows the speedup curves of the two- 
phase method and the pre-computation method, where the 
precomputation method compares favorably on this mea- 

sure especially when using a large number of nodes. How- 
ever, both methods record significant speedups. Hence, 

2-D Heat Solvor: Spndup Cuwo 
20 

Two-ph- mothod +’ 
Pr- uution mmthod .+I--. 

~d..Yop..dup wtyn’.--’- 

Figure 11. The speedup curves of the two-phase 
method and the pre-computation method. 

whenever the communication time is crucial in determin- 
ing the overall elapsed time of the application, using the 
pre-computation method in our platform would be pre- 
ferred over the two-phase method. This would usually be 
the case using a network of workstations where the net- 
work (e.g. Ethernet) has a low communication bandwidth. 

Table III and Table IV show the timing results for 
solving the 3-D heat equation using a grid of lo00 x 20 x 
20 points and 500 time steps for both the two-phase meth- 
od and the pre-computation method. The setup times and 

Table 111. Timing results (in seconds) for the 3-D heat 
equation using the two-phase method for a lo00 x 20 x 20 grid 
and 500 time steps. 1 1 r,: I 15.41 935.58 1 0.20 1 951.611 1.00 1 

10.86 240.76 16.91 269.32 3.53 

3.04 10.2 123.00 20.10 156.35 6.09 
I I I I I I I 

I I I I I I I 

the I/O times are the same for both methods as expected. 
However, the difference in computation times and commu- 
nication times between the two methods is even greater 
than that of the 2-D heat equation. However, the same con- 
clusions for solving 2-D PDEs hold when solving 3-D 
PDEs using both methods. That is, if the gain in communi- 
cation time by the pre-computation method is bigger than 
the gain in computation time by the two-phase method, 
then the pre-computation method would be the preferred 
method in our platform. 



Table n! Timing results (in seconds) for the 3-D heat 
equation using the pre-computation method for a lo00 x 20 x 
20 grid and 500 time steps. 
- 
No. of 
Nodes 

1 

4 

8 

12 

16 

- 

- 

- 

Setq 
Time 
1.44 

1.05 

1.93 

4.35 

3.08 

- 
- 
- 
- 
- 

Comm. 
Time 

0.29 

6.71 

7.61 

8.44 

8.64 

I 20 I 2.741 6.221 60.95 I 9.61 I 79.521 12.01 I 
5 Conclusions 

A parallel platform for solving time-dependent PDEs 
is designed and implemented on a network of worksta- 
tions. The platform is general in such a way that different 
applications can be easily developed through a very effec- 
tive user interface. Significant speedups were achieved us- 
ing two parallel methods, a two-phase method and a pre- 
computation method. The pre-computation method is an 
efficient technique that allows the overlapping of compu- 
tation and communication. It has been shown that it can 
outperform the traditional two-phase method especially 
when the communication time is significant and/or the 
number of nodes used is large. On the other hand, the two- 
phase scheme is simple and easier to implement. We have 
presented the detailed timing of all the components that 
contribute to the total elapsed time. This is important as it 
helps the programmer identifying the major bottlenecks in 
the system, and gives himher guidance on where an im- 
provement is needed most. 
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