
A Software Platform for Solving PDEs on Distributed Systems:
Implementation Issues and Performance Prediction

Chi-Chung Hui, Mounir Hamdi and Ishfaq Ahmad

Department of Computer Science, Hong Kong University of Science and Technology
Clear Water Bay, Kowloon, Hong Kong

Abstract

This paper describes the implementation and pellfor-
mance of a parallel platform for solving partial differen-
tial equations (PDEs) on distributed systems. The platform
has been implemented using PVM for a network of work-
stations. A't allows the inclusion of a wide range of param-
eters and programming aids. The PDEs are specified in
the form offinite difSerence equations. With a given set of
parameters and a partitioning strategy, the platform pro-
vides facilities to record and predict the pellformance of an
application before running it. The pellformance prediction
model helps the user to identib the major bottlenecks of
the plaform such that by reducing them, the speedup can
be improved. We also present analysis of various factors
that can have drastic efSect on the speedup, which allows
the user to tune a number of parameters to maximize the
pe flormance.

1 Introduction
The use of cluster of networked workstations as a

virtual parallel computer has become an effective and
economical alternative to expensive supercomputers.
Workstation cluster usually provides a powerful aggregate
of computing power. Moreover, the emergence of high-
bandwidth networks also improves the scalability of exe-
cuting parallel applications.

We have implemented a parallel platform for solving
time-dependent partial differential equations (PDEs) on
distributed systems. Solving PDEs is generally regarded
as one of the most computationally intensive tasks. PDEs
are encountered in numerous problems in science and
engineering which involve rates of change with respect to
several independent variables [6]. For example, the heat
equation deals with the conduction of heat in solids and
fluids with respect to time [6]. Numerical weather predic-
tion also requires the solution of parabolic PDEs to model
the time-dependent climate behavior [8]. Sequential
numerical methods for solving time-dependent PDEs
have been explored extensively [4], [SI. On the other
hand, only a few attempts have been made toward parallel
solutions using either transputers [7] or distributed-mem-
ory MlMD machines [2]. However, these parallel solu-

tions are specific to particular kinds of problems and are
not general in nature.

Our platform can be used to solve any application
that requires the solution of time-dependent PDEs. It also
provides facilities to predict the performance of the given
application accurately. Moreover, the user can tune vari-
ous system parameters, employ various partitioning strate-
gies and load balancing schemes to obtain maximal perfor-
mance.

The rest of the paper is organized as follows. Section
2 presents the functional description of our parallel plat-
form. Section 3 presents the user interface while Section 4
presents the parallel implementation of the platform re-
spectively. Section 5 describes the experimental results
and the performance prediction model. Finally, in Section
6 we present some concluding remarks.

2 Functional Description
The platform allows the specification of PDEs using

thefinite diffeerence method in which the derivatives are ap-
proximated by difference quotients over small intervals
[5]. Each grid point in the domain is given an initial value
and is updated according to the finite difference equations.
This regular relationship among the grid points is where
the parallelization can be captured using a data-parallel
computing paradigm [3].

The PVM system has been used in implementing the
platform [l]. The platform views PVM as a parallel com-
puting resource where individual processors communicate
via message passing. The single program multiple data
(SPMD) paradigm is adopted, in which the whole applica-
tion consists of a host process and a number of node pro-
cesses so that each processor is associated with a node pro-
cess. The host process computes the data partition scheme
and spawns the node processes while the node processes
compute the results in different regions in the domain. The
user is required to describe the solutions of the PDEs in the
application specification. The parallel implementation
consists of a number of steps, which include data partition-
ing, processor allocation, load balancing, data I/O, compu-
tation and communication. The platform estimates the per-
formance of a given application through a number of sta-

383
0730-3157/!35 $04.00 0 1995 IEEE

tistical modules including computation time,
communication time, processor idle time, total execution
time, speedup and system overhead. If the result is not sat-
isfactory, the user can redefine the partitioning scheme,
load balancing strategy and/or the I/O methodology to re-
duce system overheads. The platform is decomposed into
several components and each of then1 is modeled by a sep-
arate formula. Any change on a particular component does
not affect the other components. This makes the platform
more portable to different hardware configurations.

3 User Interface
The PDEs are specified in the application specifica-

tion. The platform then parses the application specification
and builds the executable programs. The application spec-
ification is divided into three categories which are the pa-
rameter section, the definition section and the auxiliar)'
section. It is flexible enough to allow the user to define C-
style parameters, variables and functions.

3.1 The Parameter Section

The parameter section allows the user to define all
global data structures and constant parameters needed by
the platform. These include the following:

Structure of the data aoint: A number of variables must
be maintained at each data point such as the temperature in
the heat equation. These variables are specified in the
structure point.

Initial data at the mid Doints: The names of the data files
containing the initial data for all grid points in the domain
must be supplied.

Dimensionalitv and resolution of the domain: The di-
mensionality are defined by DIMSIZEn where n is the di-
mension of the problem. The resolution of the domain is
defined by DIMINFO with the following format

D I M I N F O = { d , , d,, , . _ , d,}

where dl is the number of grid points in the i-th. dimension.

In the current implementation, the value of n is at most 3.

Data Dependencv: In order to calculate the value of a grid
point, say P = @,, p ,) at time t , the values of some sur-

rounding grid points in the previous time steps must be re-
ferred. This dependency is specified by two parameters
L E V E L and CALINFO. LEVEL specifies the number of
the previous time steps in which the domain must be kept
in order to calculate P at time t. Given a particular value of
LEVEL, the domain at time steps (t - LEVEL), ... , and (t -
I) are kept at time step 1. CALINFO dictates the range of
the surrounding grid points in the previous time steps that
point P requires. It has the following format

CALINFO = { R , , R,, ..., R,]

where R . is an integer that specifies the maximal distance

in the i-th. dimension of the required grid points from P .
For instance, if CALINFO = { 1,1}, nine points are needed
as shown in Figure 1.

t - - r - l - - i
I I I I
L -
I
I P
r -
I I I I
I - - L - - l - - l

Figure 1 : The nine points needed by P when CALINFO =
{l$ l} .

The user may want to see
intermediate results at different checkpoints. Two parame-
ters CPSIZE and CP serve this purpose. CPSIZE is an in-
teger depicting the number of checkpoints, while CP has
the following format

c p = { C , , C Z , . . . > C (y S , Z E) .
Intermediate results are stored at ci for all i. The platform
terminates when the time step reaches ccPsIzE
Output files: The final results are written to a number of
files. These files are generated both by the host process and
the node processes for providing the final results as well as
error messages in case of abnormal execution.

3.2 The Definition and the Auxiliary Sections

In the definition section, the user must provide four
functions to define the computation and U 0 procedures,
including readsoint () , writesoint (1 ,
init-compute () and compute () . The platform in-
vokes r e a d s o i n t () to input the initial grid points and
writesoint () to output the final results. Before the
computation process begins, it calls init-compute ()
to initialize the variables. On the other hand, it calls com-
pute () to calculate the values of the new grid points. The
auxiliary section contains user supplied sub-programs that
are required by the functions defined in the definition sec-
tion. The sub-programs should be self-contained.

4 Implementation
The platform carries out a number of tasks to solve

PDEs, which include processor allocation, domain parti-
tioning, load balancing, computation, communication and
disk I/O. It distributes the regions among the processors
and monitors the flow of the grid points across processor
boundaries. The reader is referred to [9] for detailed de-
scriptions of the platform implementation.

Two algorithms are implemented to compute the V a l -
ues of the grid points in the domain. They are the two-
phase algorithm and the pre-computation algorithm.

To calculate the values of grid points at time t, the two-
phase algorithm performs alternating communication and

384

computation phases. In the communication phase, the node
processles wait until all boundary points in time (t - LEV-
EL) to tiime (t - 1) are arrived. In the computation phase, the
node processes compute the values of the grid points at
time t . The boundary grid points at time t are then sent to
its neigrhbor node processes at the beginning of the next
communication phase. Since there is no overlap between
the comlputation phase and the communication phase, the
node process must wait until it receives all the required
grid points from its neighbors. In an environment where
workstations are connected by a shared bus, the communi-
cation time tends to become a dominant factor, and algo-
rithms like this may become inefficient.

To reduce the waiting time in the two-phase algorithm, we
implement the pre-computation algorithm: For each node
process, if the boundary grid points from time (t - LEVEL)
to time (t - 1) have not yet arrived, it computes the grid
points i n time t which do not need the boundary grid
points. ‘This process is repeated until no data can be pre-
computed anymore.

5 Performance Prediction
The platform provides facilities to record and predict

the performance of a given application. The performance
prediction model helps the user to identify the major bot-
tlenecks of the platform such that by reducing them, the
speedup can be improved. A set of equations are derived in
this section to predict the performance of the platform. Ex-
periments were conducted to obtain the timings of various
components of the total elapsed times using different num-
ber of pirocessors. Regression analyses were then carried
out to model the experimental sample data with minimal
errors.

Our distributed computing environment consists of
20 SPARCstation IPX workstations connected by an
Ethernet network. A single file system is being shared by
all workstations in the network. The 2-D heat equation was
used to perform experiments in this paper. It has the format

with the Finite difference equation
k i - 1 k k k
1, .I Y r 3 . /

U . = rxui- + rxui+ ,,,; + (I - 2r, - 2r) U . .
k k

+ ‘yUi , , j - I + S u i , . ; + I

2 2 k where r = A t I (A x) , r = A t I (Ay) and u , , denotes the
temper6w-e at grid point (ij) at time tk = I + k x A t. The
number of time steps was set to 500, the size of the domain
was chos(en to be 3800 x 100 and the temperature outside
the domain was defined to be zero. Notice that the domain
was partitioned into region along one dimension only.

Y ‘J
0

5.1 Modeling
In this section, different time symbols have different

meanings: T stands for the total elapsed time, F stands for
the fixed elapsed time that is independent of the number of
processors, D stands for the computation elapsed time that
can be shared by different node processes, and A4 stands
for the elapsed time that increases as the number of node
processes increases. The main purpose of these definitions
is to make the equations more readable.

The total elapsed time for solving the PDEs consists
of the time spent in the host process as well as the node
processes. The host process is responsible for performing
data partitioning and setting up the node processes, while
the node processes perform disk 110, computation and
communication. The total elapsed time using N node pro-
cesses for s time steps can be described by the following
equation

TtOtU[(N > s) = qetu,, (N) + Tl(, (NI +

TC(,,/, (N s) * T,,,, (N $1

where Ts tup(IV) is the time used by the host process in set-
ting up tke node processes and exchanging control infor-
mation between the node processes, T. (N) is the time
spent by the node processes in reading tfe initial data do-
main and writing final results, T (N,s) is the time spent
by the node processes in setting up tire buffers and comput-
ing the results, and T,,,,<N,s) is the time spent by the
node processes in processing and waiting the messages.
Here, T,,, I(N,s) and Tretup(N) are measured in the host
process wkle Tio(N), 1“ (N J) and Tcom,(N,s) are the
average values measure6’uZ’the node processes.

Host Setup Time: The host setup time using N nodes is
modeled by the equation

com

T s e t u p (N) = F.setup + M s e t u p ’

and Msetup are From the curves shown in Figure 2, Fsetup

found to be 0.55s and 0.23s respectively, which are the
same for both the two-phase algorithm and the pre-compu-
tation algorithm. The major task that constitutes T is

setting up the node processes which is relatively constant
for different applications.

setup

‘0 16 10
Hun~,dP,asms

t o I J m 0
Hvniriolpaaroa

Figure 2: Plots of host setup times
versus the number of processors

385

Disk U 0 time: The disk VO time is represented by the
equation

fixed overhead for each time step, and Dcomp is the time

used in performing calculation of the region for each time -
U

Tlo (N) = F l o + -3 - M l o X N N
where F,() is the operating system overhead which includes

the time to maintain the file pointers and the file buffers,
and Dlo is the time that is used to perform disk U0 on the

data domain sequentially. Interestingly, there is a reduc-
tion factor Mlo as N increases. This is due to the overlap-

ping of the disk VO processing among the processors. Al-
though the file server can only process one U 0 request at
anytime, the N node processes can buffer, read and write
the file system simultaneously.

From the curves in Figure 3, FIO, D, and MI(, are
found to be equal to 9.403s, 6.3418s and 6.172s for the
two-phase algorithm, and 8.4867s, 6.144s and 0.1343s for
the pre-computation algorithm. The curves are close to

;I , , , 1 , , , 1
0

>I $ 5 211
k * pm-

10 t i *o 0
N"mbr*. .r .~r

Figure 3: Plots of disk I/O times
versus the number of processors

each other, implying that the two algorithms have no sig-
nificant difference in disk 110.

Commtation Time: The computation time using N nodes
for s time steps is represented by the equation

+>IXS
TLomp (N ' = FfUedLOmp -b (F L O R l [l N

is the system overhead for manipulating

the region buffers and setting up the variables, Fcomp is a
where Fflxedcomp

Figure 4: Plots of computation times
versus the number of processors

step. In our experiments, s is equal to 500. From Figure 4,
and DcOmp are equal to 0.122s, 0.0041 13s

and 1.1062s for the two-phase algorithm, and are equal to
0.2635s, 0.009516s and 1.1005s for the pre-computation
algorithm. Therefore, it can be shown that the pre-compu-
tation algorithm incurs additional overhead over the two-
phase algorithm.

Communication Time: The communication time using N
nodes for s time steps is given by the equation

Ffixedcomp' Fcomp

T,,," (N, s) = (M P " M + s x Mco" (NI) X f c o m m (N)

where M c o m m (~ describes the elapsed time used by each

internal node process' in processing and waiting for the
messages for one time step, and M is a constant de-

scribing the overheads that the PVM system incurs in ex-
changing messages. Under the shared bus architecture, the
value of Mcomm(N) is proportional to the volume of the

boundary grid points to be sent. In our experiment, each in-
ternal node process sends and receives 200 points to and
from its neighboring node processes on each time step, and
so Momm(N) is a constant independent of the value of N.
For all applications, M (4 can be estimated by the

data partitioning scheme accurately.

The function fcomm(N) is incorporated to consider the
effect of the global boundary surrounding the data domain.
It is defined as the ratio of the cross-section area of the data
partitioning scheme over the sum of the area of the global
boundary plus the cross-section area. In the experiment,

PVM

conim

N- 1
N f,,,, (N) = -

since the temperature outside the domain is always zero
and the leftmost and rightmost node processes have only
one neighbor. In general, f omm(N) is application specific.
As depicted in Figure'S, hpvM is equal to 0.1311s and

,m+W8$.mh Pr*rrmpM"ennm

ou
10 ,I 20

Numtartlo~irm
IO 15 LO 0

-ipm%iac

Figure 5: Plots of communication times
versus the number of processors

I . An internal node is not adjacent to the global boundary, and thus
needs to exchange all the boundary points with its neighbour nodes

386

M c,mm(N) is confirmed to be constants for both algo-
rithms. It is equal to 0.026s for the two-phase algorithm
and is equal to 0.01238s for the pre-computation algo-
rithm. 'We can see that M omm(N> is substantially smaller
for the pre-computation ajgorithm, which means that the
pre-computation algorithm can successfully reduce the
communication time by overlapping with the computation
time.

5.2 Performance Analysis and Validation

fined as
The speedup for N processors and s time steps is de-

The corresponding speedup plots are shown in Figure 6.
i*qhlulljahn Pm.mprdmllpnhn

"r- ' I 1

Figure 6: Plots of speedup versus
the number of processors.

As shown in the diagrams, the pre-computation algorithm
has higher speedup. Although it incurs additional compu-
tational overhead due to buffer management and variable
set up, an overall gain can be obtained as long as the saving
in communication time is larger. As a result, it can be
claimed that the pre-computation scheme is efficient in im-
proving ithe speedup for problems having sufficiently large
communication requirements.

In order to validate the performance prediction mod-
el, extra experiments were carried out for the pre-compu-
tation case using 100 time steps. As shown in Figure 7, the
experimental and predicted results closely match each oth-
er.

5.3 Impact of the Number of Processors
NOW, we want to use our prediction model to find the

number of processors that yields the maximal speedup for
the equation. T(N,s) can be rewritten as

T (N , s) = a (s) + P (N , s) + Y (N s)

o 5 10 I 5 ?o
Number 01 P imaoi l

Figure 7: Plot of speedup versus number of
processors (pre-computation case with s = 100).

where

and

The above three functions represent different aspects
of the total elapsed time. The effects of these three func-
tions are shown in Figure 8. Obviously, a(s) does not vary

Figure 8: Plot of a (500) ,
versus number of processors (pre-computation case).

(x, 500) and ~ (n , 500)

with N , P(N,s) decreases with N indicating that the compu-
tations are shared by the node processes, whereas y(N,s) in-
creases with N indicating that the communication cost in-
creases as the number of processors increases.

the optimal value of N such that the platform
produces t te minimum total elapsed time is obtained when

NoprL u 1 9

' rotul (Noptimulj S) ' ' t o f u [(N u p t r m u l + 1, S) .

Since a(s) is a constant on N , P(N,s) is a decreasing func-
tion of N and y(N,s) is an increasing function of N , Equa-
tion 13 is satisfied when

P (Noptimul' S) = Y(NoptimuL7 S)

887

For the heat equation, this is a quadratic equation and can
be solved without difficulty. When s = 500, for instance,
N
568) = 13.13.

imul = 37 and the maximum speedup attainable is S(37,

5.4 Impact of the Number of Time Steps
We want to obtain the theoretical speedup when the

problem size of the heat equation is infinitely large and in-
finite workstations are available. The speedup with infinite
number of time steps can be deduced as

S (N , -) = hm S (N , s)
\ - + -

- - Fromp+’Lom/’+MLomm(’) X f c o m m (l)

F c o m p + 7 + Mcomm (‘1 X f i o m m (’1
Dcomp

< N ~

Due to the non-negligible Fcoml,, Mcomm (N) and
f,,,, (N) , the speedup curves converge as s increases.

The ultimate speedup given infinite number of pro-
cessors and time steps is

.S(-,-) = iim S (N , -)
N + -

where

and
f,,,, (-1 = 1’ f c o m m (N)

N+-

For the heat equation, S(m,-) converges to a constant. For
instance, the ultimate speedup for the pre-computation al-
gorithm is

0.004113 + 1.1062+0.012380
0.0041 13 + 0.012381

S(-,m) =

= 67.32 -
5.5 Major Bottleneck and Possible Improvement

In Figure 8 it is known that the major overhead dif-
fers for different values of N. For N < 37, a($) is larger than
y(N,s). Therefore, better speedups can be achieved by re-
ducing a (~) instead of y(N,s). Hence, it may be concluded
that the fixed system overhead also limits the speedup sub-
stantially, especially when the number of workstations is
small. Consequently, the programmer should be very care-
ful in tuning the platform even when a faster communica-
tion mechanism is available.

6 Conclusion
A parallel platform for solving time-dependent par-

tial differential equations is designed and implemented.
Detailed investigations of all the time components that
make up the total elapsed time have been approximated ex-

perimentally and closely verified by a performance predic-
tion model. The performance prediction model helps the
programmer to estimate the performance and identify the
major bottlenecks of the platform for a given problem. In
a networked workstation environment, it is always be-
lieved that the major bottleneck that limits the speedup is
the communication overhead. However, in our implemen-
tation, it is found that the major bottleneck of the platform
is the fixed software overhead which includes the time to
setup the system and the buffers. By reducing this over-
head, it is possible to achieve better speedups than by just
improving the communication overhead itself. This effect
is significant especially when using a small number of
workstations.

References
[l] G. A. Geist and V. M. Sunderam, “Network-based

Concurrent Computing on the PVM System,” Con-
currency: Practice and Experience, 1992, pp. 293-
311.

[2] Z. Cvetanovic, E.G. Freeman and C. Nofsinger, “Ef-
ficient Decomposition and Performance of Parallel
PDE, FFT, Monte Carlo Simulations, Simplex and
Sparse Solvers,” Proceedings of Supercomputing

[3] G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon
and D. Walker, Solving Problems on Concurrent
Processors, Vol. I: General Techniques and Regular
Problems, Prentice Hall, 1988.

[4] M.A.H. MacCallum, “An Ordinary Differential Equa-
tion Solver for REDUCE,” International Symposium

[SI J. Noye, Finite Difference Methods for Partial Differ-
ential Equations, Numerical Solutions of Partial Dif-
ferential Equations, North Holland Pub. Co., pp3-
137.
M.A. Pinsky, Introduction to Partial Differential

Equations with Applications, McGraw-Hill Publish-
ing CO., 1984.
E. Verhulst, “A Prototype of a User Friendly Partial
Differential Equation Solver on a Transputer Net-
work,” Proceedings of the User I Working Confer-
ence, 1988, pp. 232-239.

[SI G.R. Wightwick, L.M. Leslie, “Parallel Implementa-
tion of a Numerical Weather Prediction Model on a
RISC System/6000 Cluster,” Fifth Australian Super-
computing Conference, Oct. 12, 1992, pp.135-142.

[9] C.-C. Hui, G. K.-K. Chan, M. M.-S. Yuen, M. Hamdi
and I. Ahmad, “Solving Partial Different Equations
on a Network of Workstations”, in Proceedings of
the Third IEEE International Symposium on High
Performance Distributed Computing, Aug. 2-5,

‘90, NOV., 1990, pp. 465-474.

ISSAC’88, pp. 115-123.

[6]

[7]

1994, pp. 194-201.

388

