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Abstract 

This paper describes the implementation and pellfor- 
mance of a parallel platform for solving partial differen- 
tial equations (PDEs) on distributed systems. The platform 
has been implemented using PVM for a network of work- 
stations. A't allows the inclusion of a wide range of param- 
eters and programming aids. The PDEs are specified in 
the form offinite difSerence equations. With a given set of 
parameters and a partitioning strategy, the platform pro- 
vides facilities to record and predict the pellformance of an 
application before running it. The pellformance prediction 
model helps the user to identib the major bottlenecks of 
the plaform such that by reducing them, the speedup can 
be improved. We also present analysis of various factors 
that can have drastic efSect on the speedup, which allows 
the user to tune a number of parameters to maximize the 
pe flormance. 

1 Introduction 
The use of cluster of networked workstations as a 

virtual parallel computer has become an effective and 
economical alternative to expensive supercomputers. 
Workstation cluster usually provides a powerful aggregate 
of computing power. Moreover, the emergence of high- 
bandwidth networks also improves the scalability of exe- 
cuting parallel applications. 

We have implemented a parallel platform for solving 
time-dependent partial differential equations (PDEs) on 
distributed systems. Solving PDEs is generally regarded 
as one of the most computationally intensive tasks. PDEs 
are encountered in numerous problems in science and 
engineering which involve rates of change with respect to 
several independent variables [6]. For example, the heat 
equation deals with the conduction of heat in solids and 
fluids with respect to time [6]. Numerical weather predic- 
tion also requires the solution of parabolic PDEs to model 
the time-dependent climate behavior [8]. Sequential 
numerical methods for solving time-dependent PDEs 
have been explored extensively [4], [SI. On the other 
hand, only a few attempts have been made toward parallel 
solutions using either transputers [7] or distributed-mem- 
ory MlMD machines [2]. However, these parallel solu- 

tions are specific to particular kinds of problems and are 
not general in nature. 

Our platform can be used to solve any application 
that requires the solution of time-dependent PDEs. It also 
provides facilities to predict the performance of the given 
application accurately. Moreover, the user can tune vari- 
ous system parameters, employ various partitioning strate- 
gies and load balancing schemes to obtain maximal perfor- 
mance. 

The rest of the paper is organized as follows. Section 
2 presents the functional description of our parallel plat- 
form. Section 3 presents the user interface while Section 4 
presents the parallel implementation of the platform re- 
spectively. Section 5 describes the experimental results 
and the performance prediction model. Finally, in Section 
6 we present some concluding remarks. 

2 Functional Description 
The platform allows the specification of PDEs using 

thefinite diffeerence method in which the derivatives are ap- 
proximated by difference quotients over small intervals 
[5]. Each grid point in the domain is given an initial value 
and is updated according to the finite difference equations. 
This regular relationship among the grid points is where 
the parallelization can be captured using a data-parallel 
computing paradigm [3]. 

The PVM system has been used in implementing the 
platform [l]. The platform views PVM as a parallel com- 
puting resource where individual processors communicate 
via message passing. The single program multiple data 
(SPMD) paradigm is adopted, in which the whole applica- 
tion consists of a host process and a number of node pro- 
cesses so that each processor is associated with a node pro- 
cess. The host process computes the data partition scheme 
and spawns the node processes while the node processes 
compute the results in different regions in the domain. The 
user is required to describe the solutions of the PDEs in the 
application specification. The parallel implementation 
consists of a number of steps, which include data partition- 
ing, processor allocation, load balancing, data I/O, compu- 
tation and communication. The platform estimates the per- 
formance of a given application through a number of sta- 
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tistical modules including computation time, 
communication time, processor idle time, total execution 
time, speedup and system overhead. If the result is not sat- 
isfactory, the user can redefine the partitioning scheme, 
load balancing strategy and/or the I/O methodology to re- 
duce system overheads. The platform is decomposed into 
several components and each of then1 is modeled by a sep- 
arate formula. Any change on a particular component does 
not affect the other components. This makes the platform 
more portable to different hardware configurations. 

3 User Interface 
The PDEs are specified in the application specifica- 

tion. The platform then parses the application specification 
and builds the executable programs. The application spec- 
ification is divided into three categories which are the pa- 
rameter section, the definition section and the auxiliar)' 
section. It is flexible enough to allow the user to define C- 
style parameters, variables and functions. 

3.1 The Parameter Section 

The parameter section allows the user to define all 
global data structures and constant parameters needed by 
the platform. These include the following: 

Structure of the data aoint: A number of variables must 
be maintained at each data point such as the temperature in 
the heat equation. These variables are specified in the 
structure point. 

Initial data at the mid Doints: The names of the data files 
containing the initial data for all grid points in  the domain 
must be supplied. 

Dimensionalitv and resolution of the domain: The di- 
mensionality are defined by DIMSIZEn where n is the di- 
mension of the problem. The resolution of the domain is 
defined by DIMINFO with the following format 

D I M I N F O  = { d , ,  d,, , . _ ,  d,} 

where dl is the number of grid points in the i-th. dimension. 

In the current implementation, the value of n is at most 3. 

Data Dependencv: In order to calculate the value of a grid 
point, say P = @,, p , )  at time t ,  the values of some sur- 

rounding grid points in the previous time steps must be re- 
ferred. This dependency is specified by two parameters 
L E V E L  and CALINFO. LEVEL specifies the number of 
the previous time steps in which the domain must be kept 
in  order to calculate P at time t. Given a particular value of 
LEVEL, the domain at time steps (t - LEVEL), ... , and ( t  - 
I )  are kept at time step 1. CALINFO dictates the range of 
the surrounding grid points in the previous time steps that 
point P requires. It has the following format 

CALINFO = { R , ,  R,, ..., R,] 

where R .  is an integer that specifies the maximal distance 

in the i-th. dimension of the required grid points from P .  
For instance, if CALINFO = { 1,1}, nine points are needed 
as shown in Figure 1. 

t - - r - l - - i  
I I I I  
L -  
I 
I P 
r -  
I I I I  
I - - L - - l - - l  

Figure 1 : The nine points needed by P when CALINFO = 
{l$ l} .  

The user may want to see 
intermediate results at different checkpoints. Two parame- 
ters CPSIZE and CP serve this purpose. CPSIZE is an in- 
teger depicting the number of checkpoints, while CP has 
the following format 

c p  = { C , , C Z ,  . . . > C ( y S , Z E )  . 
Intermediate results are stored at ci for all i. The platform 
terminates when the time step reaches ccPsIzE 
Output files: The final results are written to a number of 
files. These files are generated both by the host process and 
the node processes for providing the final results as well as 
error messages in case of abnormal execution. 

3.2 The Definition and the Auxiliary Sections 

In the definition section, the user must provide four 
functions to define the computation and U 0  procedures, 
including readsoint ( ) ,  writesoint ( 1 ,  
init-compute ( ) and compute ( ) . The platform in- 
vokes r e a d s o i n t  ( ) to input the initial grid points and 
writesoint ( ) to output the final results. Before the 
computation process begins, it calls init-compute ( ) 
to initialize the variables. On the other hand, it calls com- 
pute  ( ) to calculate the values of the new grid points. The 
auxiliary section contains user supplied sub-programs that 
are required by the functions defined in the definition sec- 
tion. The sub-programs should be self-contained. 

4 Implementation 
The platform carries out a number of tasks to solve 

PDEs, which include processor allocation, domain parti- 
tioning, load balancing, computation, communication and 
disk I/O. It distributes the regions among the processors 
and monitors the flow of the grid points across processor 
boundaries. The reader is referred to [9] for detailed de- 
scriptions of the platform implementation. 

Two algorithms are implemented to compute the V a l -  
ues of the grid points in the domain. They are the two- 
phase algorithm and the pre-computation algorithm. 

To calculate the values of grid points at time t, the two- 
phase algorithm performs alternating communication and 
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computation phases. In the communication phase, the node 
processles wait until all boundary points in time ( t  - LEV- 
EL) to tiime ( t  - 1 )  are arrived. In the computation phase, the 
node processes compute the values of the grid points at 
time t .  The boundary grid points at time t are then sent to 
its neigrhbor node processes at the beginning of the next 
communication phase. Since there is no overlap between 
the comlputation phase and the communication phase, the 
node process must wait until it receives all the required 
grid points from its neighbors. In an environment where 
workstations are connected by a shared bus, the communi- 
cation time tends to become a dominant factor, and algo- 
rithms like this may become inefficient. 

To reduce the waiting time in the two-phase algorithm, we 
implement the pre-computation algorithm: For each node 
process, if the boundary grid points from time (t  - LEVEL) 
to time ( t  - 1) have not yet arrived, it computes the grid 
points i n  time t which do not need the boundary grid 
points. ‘This process is repeated until no data can be pre- 
computed anymore. 

5 Performance Prediction 
The platform provides facilities to record and predict 

the performance of a given application. The performance 
prediction model helps the user to identify the major bot- 
tlenecks of the platform such that by reducing them, the 
speedup can be improved. A set of equations are derived in 
this section to predict the performance of the platform. Ex- 
periments were conducted to obtain the timings of various 
components of the total elapsed times using different num- 
ber of pirocessors. Regression analyses were then carried 
out to model the experimental sample data with minimal 
errors. 

Our distributed computing environment consists of 
20 SPARCstation IPX workstations connected by an 
Ethernet network. A single file system is being shared by 
all workstations in the network. The 2-D heat equation was 
used to perform experiments in this paper. It has the format 

with the Finite difference equation 
k i -  1 k k k 
1, .I Y r 3 . /  

U .  = rxui-  + rxui+ ,,,; + ( I  - 2r, - 2r  ) U .  . 
k k 

+ ‘yUi , , j  - I + S u i , . ;  + I 

2 2 k  where r = A t I ( A x )  , r = A t I (Ay) and u , , denotes the 
temper6w-e at grid point (ij) at time tk = I + k x A t. The 
number of time steps was set to 500, the size of the domain 
was chos(en to be 3800 x 100 and the temperature outside 
the domain was defined to be zero. Notice that the domain 
was partitioned into region along one dimension only. 

Y ‘J 
0 

5.1 Modeling 
In this section, different time symbols have different 

meanings: T stands for the total elapsed time, F stands for 
the fixed elapsed time that is independent of the number of 
processors, D stands for the computation elapsed time that 
can be shared by different node processes, and A4 stands 
for the elapsed time that increases as the number of node 
processes increases. The main purpose of these definitions 
is to make the equations more readable. 

The total elapsed time for solving the PDEs consists 
of the time spent in the host process as well as the node 
processes. The host process is responsible for performing 
data partitioning and setting up the node processes, while 
the node processes perform disk 110, computation and 
communication. The total elapsed time using N node pro- 
cesses for s time steps can be described by the following 
equation 

TtOtU[ ( N >  s) = qetu,, ( N )  + Tl(, (NI + 

TC(,,/, (N s) * T,,,, (N $1 

where Ts tup(IV) is the time used by the host process in set- 
ting up tke node processes and exchanging control infor- 
mation between the node processes, T.  (N) is the time 
spent by the node processes in reading tfe initial data do- 
main and writing final results, T (N,s) is the time spent 
by the node processes in setting up tire buffers and comput- 
ing the results, and T,,,,<N,s) is the time spent by the 
node processes in processing and waiting the messages. 
Here, T,,, I(N,s) and Tretup(N) are measured in the host 
process wkle Tio(N), 1“ ( N J )  and Tcom,(N,s) are the 
average values measure6’uZ’the node processes. 

Host Setup Time: The host setup time using N nodes is 
modeled by the equation 

com 

T s e t u p  ( N )  = F.setup + M s e t u p  ’ 

and Msetup are From the curves shown in  Figure 2,  Fsetup 

found to be 0.55s and 0.23s respectively, which are the 
same for both the two-phase algorithm and the pre-compu- 
tation algorithm. The major task that constitutes T is 

setting up the node processes which is relatively constant 
for different applications. 

setup 

‘0 16 10 
Hun~,dP,asms 

t o  I J  m 0 
Hvniriolpaaroa 

Figure 2: Plots of host setup times 
versus the number of processors 
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Disk U 0  time: The disk VO time is represented by the 
equation 

fixed overhead for each time step, and Dcomp is the time 

used in performing calculation of the region for each time - 
U 

Tlo ( N )  = F l o  + -3 - M l o  X N N 
where F,() is the operating system overhead which includes 

the time to maintain the file pointers and the file buffers, 
and Dlo is the time that is used to perform disk U0 on the 

data domain sequentially. Interestingly, there is a reduc- 
tion factor Mlo as N increases. This is due to the overlap- 

ping of the disk VO processing among the processors. Al- 
though the file server can only process one U 0  request at 
anytime, the N node processes can buffer, read and write 
the file system simultaneously. 

From the curves in Figure 3, FIO, D, and MI(, are 
found to be equal to 9.403s, 6.3418s and 6.172s for the 
two-phase algorithm, and 8.4867s, 6.144s and 0.1343s for 
the pre-computation algorithm. The curves are close to 

;I , , , 1 , , , 1 
0 

>I  $ 5  211 
k * pm- 

10 t i  *o 0 
N"mbr*. .r .~r 

Figure 3: Plots of disk I/O times 
versus the number of processors 

each other, implying that the two algorithms have no sig- 
nificant difference in disk 110. 

Commtation Time: The computation time using N nodes 
for s time steps is represented by the equation 

+>IXS 
TLomp (N '  = FfUedLOmp -b ( F L O R l [ l  N 

is the system overhead for manipulating 

the region buffers and setting up the variables, Fcomp is a 
where Fflxedcomp 

Figure 4: Plots of computation times 
versus the number of processors 

step. In our experiments, s is equal to 500. From Figure 4, 
and DcOmp are equal to 0.122s, 0.0041 13s 

and 1.1062s for the two-phase algorithm, and are equal to 
0.2635s, 0.009516s and 1.1005s for the pre-computation 
algorithm. Therefore, it can be shown that the pre-compu- 
tation algorithm incurs additional overhead over the two- 
phase algorithm. 

Communication Time: The communication time using N 
nodes for s time steps is given by the equation 

Ffixedcomp' Fcomp 

T,,," (N, s) = ( M P " M  + s x Mco" (NI ) X f c o m m  ( N )  

where M c o m m ( ~  describes the elapsed time used by each 

internal node process' in processing and waiting for the 
messages for one time step, and M is a constant de- 

scribing the overheads that the PVM system incurs in ex- 
changing messages. Under the shared bus architecture, the 
value of Mcomm(N) is proportional to the volume of the 

boundary grid points to be sent. In our experiment, each in- 
ternal node process sends and receives 200 points to and 
from its neighboring node processes on each time step, and 
so Momm(N) is a constant independent of the value of N. 
For all applications, M (4 can be estimated by the 

data partitioning scheme accurately. 

The function fcomm(N) is incorporated to consider the 
effect of the global boundary surrounding the data domain. 
It is defined as the ratio of the cross-section area of the data 
partitioning scheme over the sum of the area of the global 
boundary plus the cross-section area. In the experiment, 

PVM 

conim 

N- 1 
N f,,,, (N) = - 

since the temperature outside the domain is always zero 
and the leftmost and rightmost node processes have only 
one neighbor. In general, f omm(N) is application specific. 
As depicted in Figure'S, hpvM is equal to 0.1311s and 

,m+W8$.mh Pr*rrmpM"ennm 

ou 
10 ,I 20 

Numtartlo~irm 
IO 15 LO 0 

-ipm%iac 

Figure 5: Plots of communication times 
versus the number of processors 

I .  An internal node is not adjacent to the global boundary, and thus 
needs to exchange all the boundary points with its neighbour nodes 
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M c,mm(N) is confirmed to be constants for both algo- 
rithms. It is equal to 0.026s for the two-phase algorithm 
and is equal to 0.01238s for the pre-computation algo- 
rithm. 'We can see that M omm(N> is substantially smaller 
for the pre-computation ajgorithm, which means that the 
pre-computation algorithm can successfully reduce the 
communication time by overlapping with the computation 
time. 

5.2 Performance Analysis and Validation 

fined as 
The speedup for N processors and s time steps is de- 

The corresponding speedup plots are shown in Figure 6. 
i*qhlulljahn Pm.mprdmllpnhn 

"r- ' I 1 

Figure 6: Plots of speedup versus 
the number of processors. 

As shown in the diagrams, the pre-computation algorithm 
has higher speedup. Although it incurs additional compu- 
tational overhead due to buffer management and variable 
set up, an overall gain can be obtained as long as the saving 
in communication time is larger. As a result, it can be 
claimed that the pre-computation scheme is efficient in im- 
proving ithe speedup for problems having sufficiently large 
communication requirements. 

In order to validate the performance prediction mod- 
el, extra experiments were carried out for the pre-compu- 
tation case using 100 time steps. As shown in Figure 7, the 
experimental and predicted results closely match each oth- 
er. 

5.3 Impact of the Number of Processors 
NOW, we want to use our prediction model to find the 

number of processors that yields the maximal speedup for 
the equation. T(N,s) can be rewritten as 

T ( N ,  s) = a (s) + P ( N ,  s) + Y ( N  s) 

o 5 10 I 5  ?o 
Number 01 P imaoi l  

Figure 7: Plot of speedup versus number of 
processors (pre-computation case with s = 100). 

where 

and 

The above three functions represent different aspects 
of the total elapsed time. The effects of these three func- 
tions are shown in Figure 8. Obviously, a(s) does not vary 

Figure 8: Plot of a (500) , 
versus number of processors (pre-computation case). 

(x, 500) and ~ ( n ,  500) 

with N ,  P(N,s) decreases with N indicating that the compu- 
tations are shared by the node processes, whereas y(N,s) in- 
creases with N indicating that the communication cost in- 
creases as the number of processors increases. 

the optimal value of N such that the platform 
produces t te  minimum total elapsed time is obtained when 

NoprL u 1 9  

' rotul  (Noptimulj  S )  ' ' t o f u [  ( N u p t r m u l +  1, S )  . 

Since a(s) is a constant on N ,  P(N,s) is a decreasing func- 
tion of N and y(N,s) is an increasing function of N ,  Equa- 
tion 13 is satisfied when 

P (Noptimul' S )  = Y(NoptimuL7 S )  
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For the heat equation, this is a quadratic equation and can 
be solved without difficulty. When s = 500, for instance, 
N 
568) = 13.13. 

imul = 37 and the maximum speedup attainable is S(37, 

5.4 Impact of the Number of Time Steps 
We want to obtain the theoretical speedup when the 

problem size of the heat equation is infinitely large and in- 
finite workstations are available. The speedup with infinite 
number of time steps can be deduced as 

S ( N , - )  = hm S ( N , s )  
\ - + -  

- - Fromp+’Lom/’+MLomm(’) X f c o m m ( l )  

F c o m p  + 7 + Mcomm (‘1 X f i o m m  (’1 
Dcomp 

< N  ~ 

Due to the non-negligible Fcoml,, Mcomm ( N )  and 
f,,,, (N) , the speedup curves converge as s increases. 

The ultimate speedup given infinite number of pro- 
cessors and time steps is 

.S(-,-) = iim S ( N , - )  
N + -  

where 

and 
f,,,, (-1 = 1’ f c o m m  ( N )  

N+- 

For the heat equation, S(m,-) converges to a constant. For 
instance, the ultimate speedup for the pre-computation al- 
gorithm is 

0.004113 + 1.1062+0.012380 
0.0041 13 + 0.012381 

S(-,m) = 

= 67.32 - 
5.5 Major Bottleneck and Possible Improvement 

In Figure 8 it is known that the major overhead dif- 
fers for different values of N.  For N < 37, a($) is larger than 
y(N,s). Therefore, better speedups can be achieved by re- 
ducing a ( ~ )  instead of y(N,s). Hence, it may be concluded 
that the fixed system overhead also limits the speedup sub- 
stantially, especially when the number of workstations is 
small. Consequently, the programmer should be very care- 
ful in  tuning the platform even when a faster communica- 
tion mechanism is available. 

6 Conclusion 
A parallel platform for solving time-dependent par- 

tial differential equations is designed and implemented. 
Detailed investigations of all the time components that 
make up the total elapsed time have been approximated ex- 

perimentally and closely verified by a performance predic- 
tion model. The performance prediction model helps the 
programmer to estimate the performance and identify the 
major bottlenecks of the platform for a given problem. In 
a networked workstation environment, it is always be- 
lieved that the major bottleneck that limits the speedup is 
the communication overhead. However, in our implemen- 
tation, it is found that the major bottleneck of the platform 
is the fixed software overhead which includes the time to 
setup the system and the buffers. By reducing this over- 
head, it is possible to achieve better speedups than by just 
improving the communication overhead itself. This effect 
is significant especially when using a small number of 
workstations. 
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