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Abstract 
In this paper, we propose a semi distributed ap- 

proach, for load balancing in large parallel and dis- 
tributed systems. The proposed scheme is a two level 
hierarchical scheme which partitions the intercon- 
nection structure of a multiprocessor system into in- 
dependent symmetric regions. We consider intercon- 
nection structures belonging to the classical infinite 
families of distance transitive graphs. The proposed 
scheme uses the partitioning property of these graphs 
by employing Hadamard matrices. The performance 
of systems consisting of these interconnection struc- 
tures with varying sizes is evaluated through simula- 
tion and compared with a fully distributed scheme. 
Simulation results indicate that the performance of 
the proposed scheme improves with the increase in 
system size. 

1. Introduction 
When designing a distributed system, the roblem 

of load balancing on the computing nodes ofthe sys- 
tem becomes an important issue. The problem be- 
comes more challenging with a system consisting of 
hundred or thousands of nodes due to the overhead 
resulting from collection of state information, com- 
munication delays, saturation effect, high probability 
of node failures etc. Dynamic load balancing tech- 
niques have gained wide attention, in recent years, for 
providing improved performance in comparison with 
static load balancing techniques [6] since the unpre- 
dictable fluctuations in the load patterns across the 
system need to be balanced dynamical1 . Several d - 
namic load balancing techniques [2], [4, [4], [SI, [&, 
[ll], [16] have been proposed in the literature, but 
most of these techniques employ centralized [ 131 or 
fully distributed models [4], [5],  [14], [15] which do 
not prove efficient for very large systems. It is, there- 
fore, expected that there exists a trade-off between 
centralized and fully distributed load balancing mech- 
anisms. The aim of this aper is to resent a new ap- 
proach exploiting the afmntages or both centralized 
and fully distributed models. 

For designing and developing very large multipro- 
cessor system, both arallel and distributed, we pro- 
pose a new scheme For task scheduling and load bal- 
ancing. Our approach, which is semi-distributed in 
nature, partitions a very large system into indepen- 
dent and symmetric regions with control points cen- 
tered at each region or sphere. The center of each 
sphere is, generally, at equal distance from all other 

centers. Load balancing and exchange of state infor- 
mation is carried out by the set of nodes at control 
points. The work load submitted to the system, which 
is characterized by arrival of tasks, is optimally bal- 
anced within and among these sphere. The control 
points, called schedulers, execute efficient schedul- 
ing and information building algorithms which have 
low overheads. Through simulation study, we show 
that for large systems, the pro sed strategy yields a 
better performance than an efgient fully distributed 
scheme. The proposed scheme also incurs less over- 
head resulting from message exchanges. 

scheme. At the first level, load is shared between dif 
ferent regions of the system providing a distributed 
environment among spheres. At the second level, 
scheduling takes place within individual spheres 
where the scheduler of each sphere acts as a central- 
ized controller for its own sphere. The design of such a 
scheme involves the following steps: 
(1) Formulate a network partitioning strategy for 
creating symmetric s heres, (2) Identlfy the control 
nodes (schedulers) 8 r  controlling their individual 
spheres, (3) Design an algorithm for performing opti- 
mal task scheduling and load balancing within the 
sphere as well as between spheres and (4) Develop ef- 
ficient means for collecting state information at inter 
sphere and intra sphere level that should result in less 
message traffic. 

For designing and developing large systems which 
can meet these design objectives, we propose an ap- 
proach using a combinatorial structure. This ap- 
proach is believed to be the first attempt towards de- 
veloping such a methodology. We consider a class of 
graphs known as Distance-Transitive (DT) Graphs. 
The reason for analyzing DT graphs is not only they 
possess many useful properties, but most of the pre- 
viously proposed topologies such as hypercube and 
bisectional graphs, are indeed distance-transitive. 
We show that distance-transitivity is a highly desir- 
able property since these graphs are shown to be no- 
de-symmetric which helps in designing parallel and 
distributed systems with semi-distributed control. 
These DT networks are shown to possess a remark- 
able partitioning property based on a combinatorial 
structure known as Hadamard matrix. In this paper, 
we focus on a class of DT graphs, belonging to alge- 
braic structures known as the Hamming [1],[9] 
Schemes. 

The proposed scheme is a two level load balancin 
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We first provide a few definitions from graph 
theory. An interconnection network is representedby 
an undirected graph, A = < U, E > where U rep- 
resents the set of nodes and E represents the set of 
edges joining the nodes. Each node represents a com- 
bination of a processing unit and a message switching 
element through which the rocessor is connected to 
the network. The degree ofwch node represents the 
number of edges incident on it. It is assumed to be 
constant and is denoted as A . A path is a sequence of 
connected nodes. The length of the shortest path be- 
tween nodes i and j is called thegraphical distance and 
is represented as L ,  . Given U = N ,  let 
k = MML,IVi, j ,  0 I i,J, I N- 11 where k is 

called the diameter of the network. 
Definition: Let G(A) be the automorphism group 

of A . A is said to be distance-transitive, if for each 
quartet of vertices U ,  v ,  x, y, E A such that 
L,,v = Lxy , there is some automorphism g in 
G(A) satisfying &U) = x and &v) = y .  

Definition: A Hadamard matrix M is a J by J matrix 
with 2 1 entries, such that Mw = jl ,  where lis the 
identity matrix and w is the transpose of M. If we 
multiply, all the entries of M with -1, we obtain the 
complementary Hadamard matrix denoted as fl . If 
we replace 1 by 0, and -1 by 1, the matrix is said to be in 
0-1 notation. Hadamard matrices exist for order up to 
268 and only if the order is a multiple of 4 . Figure 1 
shows an untruncated 7 x 7 Hadamard matrix, us- 
ing 0-1 notation. The truncated matrix is obtained by 
discarding the first row and first column. 

2. Interconnection Structures based 
on Hamming Schemes 

These scheme describe algebraic structure of a 
well-known multiprocessor architecture, namely the 

, explained below. 

Qn , a binary n-cube network (Hypercube), which 
consists of 2” nodes, is represented as a binary vector 
where two nodes with binary codewords x and y are 
connected if the Hamming distance Hxy = 1. For 
these graphs, Lxy = Wry. For Q n  , k = n .  
m o r k  B, 

A Bisectional Network is analogous to a Hyper- 
cube and possesses some of the similar algebraic char- 
acteristic. A nodex in a Bisectional network with con- 
stant degree n is connected to a neighbory if Hv = n 
-I [9]. We will denote a Bisectional network as B,. A 
B, network has 2”-’nodes which is equal to the 
number of nodes in a network. For Bn , k = (n  
- 1 )/2 and Lxy = Min(Hxy , H . )  where 
HG = n-H,.  

. .  

The odd graph 0, has for vertex set the binary 
words of length 2k - l and Hamming weight k - 1 

where two vertices are connected if and only if the 
Hamming distance between them is 2k - 2.  The 
0, graphs are selected due to their higher density 
than various other interconnection networks: they 
have degree k, diameter k - I and ( k - 3 nodes. 24- 1 

3. The Partitioning Scheme 
Definition: Given a set of nodes C, its graphical 

coveringradiusr in the graph A is defined as: 
r = ~4a.q E u(Min,, XLij)) 

Definition: Let 4 be the number of nodes which 
are at a graphical distance i from a node;. This num- 
ber is a constant for Vj E U and is called the i-th va- 
lency. 

Let C be the desired set of scheduling nodes. 
There are various ssible options to devise a semi 
distributed scheduEg strategy based on this set, but 
the performance of such a strategy depends on the 
“graphical locations” of the scheduler nodes (dis- 
tances between them) of C in Q,, and the range of 
scheduling used by these nodes. The range of sched- 
uling quantifies the graphical distance within which a 
scheduler assigns tasks to the nodes of the sphere. 

Definition: Let the sphere assigned to a node 
j E C , be denoted by $6) , where i is the radius of 
this sphere. The number of nodes in &(i) is the total 
number of nodes lying at graphical distances 0 
through i ,  from J. Since the number of nodes at the 
graphical distance i is given by valency 4 , the total 

size of the sphere is given as 
Definition: Auniform set C, of centez, E t\e maxi- 

mal set of nodes in A , such that the graphical dis- 
tance among these centers is at least 6 and I si01 I is 
constant (uniform) Vj E C,  where i is the covering 
radius of C. 

The reason for selecting Hadamard code is first- 
ly because this is a code with rate approaching zero, 
asymptotically [ 121. This results in the size of a Hada- 
mard code bemg considerably smaller than the sue of 
a Hamming code, even for large values of n. Roughly 
the size of Hadamard code is proportional to the log- 
arithm of the size of the network. The second reason 
for selecting Hadamard Code is that the range of val- 
ues of n for which a Hadamard code exists, is larger 
than the range of n for which a Hamming code exists. 

Thirdly, If n is an even power of two the covering 
radius of C is known Ill. Finally, Hadamard code can 
easily be extended. Smce, an untruncated Hadamard 
code exists only whenn is a multiple of 4, selection of 
the set C can be made by modifymg this untruncated 
code in the following ways. 

wth n mod 4 = L First we consider the set Cob- 
tained from untruncated Hadamard matrices M and 
fl (in 0-1 notation) of size n-1. By appending an all 
0’s and an all 1’s column, to M and @ respectively, 
at any fixed position, say at extreme left, we generate 
the modified set C for the network under consider- 
ation. 

I .  
= 
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4 = 2. This case is treated the same 
W v e  case, except that the set C is ob- 
tained from untruncated Hadamard matrices (in 0-1 
notation) of size n-2. We, then append two columns 0 
and 1 to M and 1 and 0 to p . However, the all 0’s row 
in M is augmented with bits 00 rather than with bits 
01. Similarly, the all 1’s row in M is augmented with 
bits 11 rather than with bits 10. 

od 4 = 3. The set C, for this case consists 
of the rows of the truncated matrices M and fl in 
0-1 notation. 

A truncated Hadamard matrix (the one without 
all 1’s column) can also be generated by usin S - 
metric Balanced Incomplete Block Design ( S b I g )  
[9]. For this purpose, all the blocks (which corre- 
sponds to all the elements of the set C, besides code- 
words with all 0’s and all 1’s) can be generated by tak- 
ing n-1 cyclic shifts of a single generator codeword. 
Such generators, for different values of n-1 can be 
found by using the differenceset approach [12]. Bble I 
illustrates the generator codewords for various values 
of n-1. The set of C nodes for Q, can be obtained by 
first constructing codewords for Q7 . The generator 
codeword for Q, is 0010111. Hadamard matrix M is 
formed by taking these 7 codewords plus a row with all 
0’s. The complete set C, for Q, , therefore consists of 
matrix M and its complement & . The set Cfor oth- 
er en’s are generated by the methods described 
above. Similarly the generator codeword for 0 6  is 
10111OOO101. The additional 10 codewords generated 
by taking 10 left cyclic shifts of this generator, consti- 
tute the set C for O6 . The set C for Bisectional net- 
works can be generated using the Symmetric Bal- 
anced Incomplete Block Design techniques except 
that we do not take the fi matrix as the addresses of 
schedulers. Therefore in a B,, network the set C is 
half the size of that for Q,, . 

4. Semi Distributed System Model 
Figure 2 shows a logical view of the semi distrib- 

uted model with the interconnection between 
spheres, and with each sphere consisting of a number 
of nodes. The system consists N identical processing 
nodes connected by a communication network. The 
work load entering in the network consists of inde- 
pendent rogram modules or tasks. Tmsks are gener- 
ated at a{ nodes of the network and the nodes send 
them to their respective schedulers (in case a node is a 
shared among schedulers, one scheduler is randomly 
chosen). In the roposed semi distributed scheme, 
we assume that tRe operating system routes a newly 
generated task to a scheduler. Therefore tasks are as- 
sumed to originate at schedulers. 

Tmsk migration takes lace from schedulers to 

passing takes places between schedulers for exchang- 
ing the information about the accumulative loads of 
spheres. 

nodes and among schedu P ers. In addition, message 

4.1. State Information exchange 
The state information maintained by a schedulers 

is the accumulative load of its sphere which in turn is 
the total number of tasks being serviced in that sphere 
at that of time. This load index is adjusted every time a 
task enters a sphere or finishes execution. In addition, 
a linked list, maintained in a non decreasing order, 

ints to the nodes of sphere according to thelr loads. 
Re first element of the list points to the most lightly 
loaded node. The list is adjusted whenever a task is 
scheduled at a node or a task finishes its execution. It 
is possible that a node is shared by more than one 
scheduler. In that case, the scheduler that assigned 
the task to shared node informs the other schedulers 
to update their linked lists and load entries. Similarly, 
a node has to inform all of its schedulers whenever it 
finishes a task. 

4.2. The Load Balancing Algorithm 
As mentioned earlier, at the second level, load 

balancing is done optimally within the spheres by 
schedulers. A task is always scheduled at a node with 
the lowest load. At the higher level, load balancing is 
achieved by migrating tasks between spheres so that 
the accumulative load between spheres is equalized. 
Whenever a scheduler receives a task from the out- 
side world or from another scheduler, it executes the 
scheduling algorithm. Associated with the scheduling 
algorithm are two parameters, namely threshold-1 
and threshold-2. Threshold-1 is the load of the most 
lightly loaded node within the sphere. Threshold-2 is 
the drfference between the accumulative load of the 
local sphere and the accumulative load of the remote 
sphere. The load balancing algorithm executed by the 
schedulers is described below. 
Step 1. Check the load entry inted by the first ele- 
ment of the linked list (the E d  of the most lightly 
loaded node in the sphere). 
Step 2. If the load entry of that node is less than or 
equal to the threshold-1, then go to step 3. Otherwise 
o to ste 6. 

Rtep 3. fchedule the task at the most lightly loaded 
node pointed by the linked list, withm the local 

E e p  4. Updated the linked list. 
Step 5. Update the accumulative load of the sphere. 

Step 6. Check the accumulative load of other spheres. 
Step 7. If the difference between the accumulative 
load of the local sphere and the accumulative load of 
the most lightly loaded remote sphere is less than 
threshold-2, send the task to that remote sphere. 
Otherwise go to step 3. Stop. 

Threshold-1 determines whether the task should 
be scheduled in the local sphere or the scheduler 
should consider remote spheres for transferring task. 
Suppose the load threshold is set to one. Then if an 
idle node is available in the here, then that node is 
obviously the best possible zoice. Even if the most 
lightly loaded node already contains one task in its lo- 
cal queue, the probability of that node becoming idle, 
during the time task migrates from the scheduler to 
that node, is high. The scheduler considers sending a 
task to another sphere only if the load of the most 
lightly loaded node in its sphere is greater than the 

here. Go to step 4. 

stop. 
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load threshold. Threshold-2 determines if there is 
enough difference between the accumulative load of 
the local sphere and that of the remote sphere. One 
of the remote spheres, which meet the threshold cri- 
teria, is randomly selected. The reason for selecting a 
sphere randomly is to avoid the most lightly loaded 
sphere becoming a victim of task dumping from other 
spheres. Choice of the load thresholds should be 
made according to the system load and the task trans- 
fer rate. Values for threshold-1 were varied between 
1 and 2 and for threshold-2 was varied from 1 to 4. 

5. Simulation Results 
For the performance analysis of the proposed 

scheme, we have simulated Q7 ,Qe , Qg , Qg , B7 , 
B9 and 0 6  networks. The topological characteristics 
and semi distributed structure for these networks are 
given in 'Itrble 11 which shows the number of nodes N, 
the degree d of each node, the distance between 
schedulers 6 .  cardinality of the set C, the covering 
radius r, valencies 4 and the size of sphere &(I]. For 
comparison we have selected the no load balancing 
scheme and a fully decentralized scheme. The fully 
distributed was proposed in an other study [5 ] .  In this 
scheme the control is fully decentralized and every 
node executes the scheduling algorithm. Thsks can 
migrate between nodes depending U n the decision 
taken by the algonthm at each indwigal node. When 
a task arrives at a node, that node gets the load status 
from its immediate neighbors. The load status of a 
node is the number of tasks scheduled at that node. If 
the local load is less than the load of the most lightly 
loaded neighbor, the task is executed locally. Other- 
wise the task is considered for mi ration. In that case, 
the neighbor with the lowest loafis selected. A task is 
allowed to make man migrations until it finds a suit- 
able node or the numger of migrations made exceed a 
predefined transfer limit. 

For simulation, task load was modeled as a Pois- 
son process with average arrival rate A taskdunit- 
time, and was identical for all the nodes. The execu- 
tion and communication times of tasks were also as- 
sumed to be exponentially distributed with a mean of 
l /ps time-unitsltask and l /pc time-units/task, re- 
spectively. Extensive simulation was carried out to 
analyze and compare the performance of the above 
mentioned networks. The performance measures se- 
lected were mean response time of a task and average 
number of control messa es generated per task. In 
each simulation run, z0,d to 100,OOO tasks were en- 
erated depending upon the size of the network. %he 
steady-state results are presented with 95 percent 
confidence interval, with the size of the interval vary- 
ing up to 5 percent of the mean value. 

5.1. The Response Time Perform- 
ance 

The mean response time of a task is the major per- 
formance criteria. To analyze the impact of system 
load, which is described as the ratio of task arrival rate 
to task service rate, on mean response time, the sys- 
tem load was varied from 0.1 to 1.0. Figure 3. shows 

the curves of mean response times versus system load 
with all three strategies for Qlo network. Both fully 
and semi distributed schemes yield a significant im- 
provement in response time over the no load balanc- 
mg scheme at all loading conditions. The parameters 
selected in simulation, were those that produced the 
best achievable performance for the both schemes. 
The task transfer limit, for instance, was chosen as 12 
which provided the best results through simulation. 
'hsk transfer rate was selected as 20 taskhime-unit 
compared to service rate of 1 taskltime-unit. Thresh- 
old-1 and threshold-2 were set for 1 and 3 for the 
semi distniuted scheme. 

The average response time of the proposed semi 
distriiuted scheme is superior to the fully distributed 
scheme as shown in Figure 3. It is to be noted that for 
utilization ratio below 0.8, the response time curve 
with semi-distniuted scheme is rather smooth and is 
almost equal to 1.0, which is the average service time 
of a task. It im lies that with the semi distributed 
scheme the loaxbalancing is optimal and tasks get 
serviced, virtually, without any queuing delays. This 
is due to the fact that under low loading conditions, a 
scheduler is usually able to find a node whose load in- 
dex is less than or equal to the load threshold which is 
set to one in this case. For el,, , the sphere size is 176 
and the robability of finding an idle node in a sphere 
is very Eigh. In other words, the scheduler always 
makes use of an idle node in its own sphere. The only 
delay incurred before a task ets executed is the com- 
munication delay resulting from task transfer from a 
scheduler to a node. At slightly higher load levels, the 
inter-sphere task migrations occur. At a very high 
load, the tasks migrations among spheres take place 
more frequently and the load is balanced between 
heavily and lightly loaded regions of the network. 

When load balancing among spheres takes lace, 
extra delays are incurred due to migrations oftasks 
between the schedulers. In the proposed semi-distri- 
buted design, all schedulers are at e ual distance 
from each other except for hypercube wtere a sched- 
uler's a n t i - p l  node (the scheduler whose binary 
address is t e com lement of this scheduler) is also 
present. The schecklers of the anti-podal pair are lo- 
cated at a distance equal to diameter of the network. 
Therefore, with a IC1 = 2n, each scheduler is at 
equal distance from 2n -2 schedulers (all except itself 
and its complement). This results in an inter sphere 
load migration in a symmetric manner. For B~ and 
06,  all schedulers are at equal distance from each 
other. As shown in Figure 4 and Figure 5, the re- 
sponse times curves obtained for the three schemes 
for and 06,  exhibit similar patterns, with semi 
distributed scheme outperforming the fully distrib- 
uted scheme. 

5.2. The Performance Comparison 
of Different Networks 

In order to analyze the impact of network size, the 
number of schedulers and the sphere size on the per- 
formance of semi distniuted and fully distributed 
schemes, we compare the average response times 
yielded by B7 , Q7 , Q8 , & , O6 , Qg and Qlo, net- 
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works. mble 111 shows the percentage improvement 
in average response time yieldedby semi and fully dis- 
tributed schemes over the no load balancing scheme, 
for these networks. Three different loading condi- 
tions, low, medium and hi h were chosen correspond- 
ing to system loads of 0.6,8.8 and 0.9 respectively. The 
task transfer rate for all these results was chosen as 20 
taskdunit-time and transfer limit for fully distributed 
scheme was vaned between 8 and 12. The most inter- 
esting observation is the increase in performance of 
semi distributed scheme with the increase in system 
size. On the other hand the performance of fully dis- 
tributed scheme drops as as the system sue increases. 
These observations are valid for all loading condi- 
tions. We, therefore reach to the conclusion that the 
proposed semi distniuted scheme is more suitable 
or large systems. This is obvious from the difference 

in response time improvements of both schemes 
which is the maximum for el,,. When comparing the 
performance Q,, and &, which have identical num- 
ber of nodes but different number of schedulers and 
sphere sizes, we note that outperforms Q,, at 
medium load. This is due to larger here size which 
results in an increased probability ofTinding a suitable 
node within the local sphere. The performance of the 
semi distributed scheme was slightly better than the 
fully distributed scheme for Q, at medium load. 
However, the fully distributed scheme outperforms 
the semi distributed scheme for B, at high load. This 
is due to the high connectivity of the network which is 
more suitable for the fully distributed scheme for 
making task migrations. 

5.3. The Cotrol Overhead Due to 
Message Exchange 

The average number of messages generated per 
task were evaluated for all seven networks to com- 
pare the impact of size and other topological parame- 
ters on this overhead. A node belonging to one sphere 
has to send only one message to its scheduler when it 
finishes a task. The messages are generated in order 
to keep the load entries in different spheres consis- 
tent or to exchange state information among schedul- 
ers. If a node is shared among more than one spheres, 
then the scheduler assigning the task to that node 
needs to send messages to the spheres sharing that 
node. Similarly, upon finishing a task, a node has to 
inform all of its schedulers. At the sphere level, a 
scheduler communicates with other schedulers only 
when it considers a task migration. The number of 
messages for exchanging state information among 
schedulers is small since the number of schedulers is 
only of the order of log N, whereas with fully distrib- 
uted environment, the scheduling decision for every 
task is critically dependent on the precise information 
about neighboring nodes and a node has to get such 
information for each of its neighbors, every time a 
task is to be scheduled. Figures qa), Figure 6 (b) and 
Figure 6(c) show the average number of messages er 
task ( this was calculated by dividing the total numger 
of messages by the total number of tasks) for all seven 

networks at low, medium and high loading conditions, 
respectively. 

At low load, the message overhead for the semi 
distniuted scheme is much lower than that of fully 
distributed scheme except for 0, network where the 
degree of each node is small, resulting in less number 
of messages for the fully distniuted scheme. The 
overhead for the semi distributed scheme is higher 
due to node sharing and information exchan e be- 
tween schedulers. As the load increases from !ow to 
medium, the fully distriiuted strategy starts inducing 
high overhead which almost doubles the overhead in- 
curred by the semi distributed strategy. This conclu- 
sion is valid for all networks except Q, where the 
sphere size if very small and with the semi distniuted 
scheme, schedulers need to communicate with each 
other more frequently. The impact of sphere size is 
more apparent when the message overhead for 
Q,, and & is compared. At all loading conditions, 
the overhead for the semi distniuted scheme with 
Q,, is higher than incurred with B~ . This is because 
the number of schedulers in 4 is half the number of 
schedulers for Q,, . This overhead is also less due to 
less sharing of nodes in different spheres (in & a 
node is shared in either 1 or 3 spheres whereas in Q,, , 
a node is shared in 1 or 4 spheres). At hi h load, the 
overhead with the semi distributed is higier but still 
less than that of fully distributed scheme. 

6. Conclusions 
In this paper, we have proposed an approach for load 
balancing in large arallel and distnbuted systems 
and have resentecfthe concept of semi distributed 
control. &e study was centered around a class of @- 
terconnection structures which are dlstance transi- 
tive. The use of Hadamard matrix results in an effi- 
cient scheme for partitioning these stems for load 
balancin . We have evaluated the pegormance of the 
proposef scheme throu h extensive simulation with 
three example graphs ofvarious sizes. By comparing 
with a fully distributed scheme, we have shown that 
the the proposed scheme yields a better performance 
in terms o average response time and the average 
number of control messages generated. These results 
are validated for systems of various sizes. 
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Figure 1. A truncated Hadamard Matrix M 
of order 7. 

1 1 1 1 0 1 0 1 1 0 0 1 0 0 0  

1 0 0 1 1 1 1 0 1 0 1 0 0 0 0 1 1 0 1  

Table 1. Generator Codes for different lengths 

Networl: N d 6 IC1 r 41 d d lSiQ] 
B 7 6 4 7 3 8 1 7 - - 9  

Q7 1 2 8 7  4 1 4 1  8 - - 9 

I Length = n -11 Generator Codewords I 

Qs 

I 7 I 0 0 1 0 1 1 1  I 

2 5 6 8  4 16 2 8 28 - 37 
B 9 2 5 6 9 4 8 2 9 3 6 - 4 6  

~~ 

11 ~ 1 0 1 1 1 0 0 0 1 0 1  1 

I I 
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The percentage improvement (decrease) over no load balancing with 
semi and fully distributed schemes for various networks 
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task for various interconnection at works at 
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