
A Semi Distributed Load Balancing Scheme

for Large Multicomputer Systems

Ishfaq Ahmad
School of Computer and Information Science,

Syracuse University Syracuse, NY 13244
Arif Ghafoor

Department of Electrical and Computer Engineering.,
Syracuse University, Syracuse, NY 13244

Abstract
In this paper, we propose a semi distributed ap-

proach, for load balancing in large parallel and dis-
tributed systems. The proposed scheme is a two level
hierarchical scheme which partitions the intercon-
nection structure of a multiprocessor system into in-
dependent symmetric regions. We consider intercon-
nection structures belonging to the classical infinite
families of distance transitive graphs. The proposed
scheme uses the partitioning property of these graphs
by employing Hadamard matrices. The performance
of systems consisting of these interconnection struc-
tures with varying sizes is evaluated through simula-
tion and compared with a fully distributed scheme.
Simulation results indicate that the performance of
the proposed scheme improves with the increase in
system size.

1. Introduction
When designing a distributed system, the roblem

of load balancing on the computing nodes ofthe sys-
tem becomes an important issue. The problem be-
comes more challenging with a system consisting of
hundred or thousands of nodes due to the overhead
resulting from collection of state information, com-
munication delays, saturation effect, high probability
of node failures etc. Dynamic load balancing tech-
niques have gained wide attention, in recent years, for
providing improved performance in comparison with
static load balancing techniques [6] since the unpre-
dictable fluctuations in the load patterns across the
system need to be balanced dynamical1 . Several d -
namic load balancing techniques [2], [4, [4], [SI, [&,
[ll], [16] have been proposed in the literature, but
most of these techniques employ centralized [131 or
fully distributed models [4], [5], [14], [15] which do
not prove efficient for very large systems. It is, there-
fore, expected that there exists a trade-off between
centralized and fully distributed load balancing mech-
anisms. The aim of this aper is to resent a new ap-
proach exploiting the afmntages or both centralized
and fully distributed models.

For designing and developing very large multipro-
cessor system, both arallel and distributed, we pro-
pose a new scheme For task scheduling and load bal-
ancing. Our approach, which is semi-distributed in
nature, partitions a very large system into indepen-
dent and symmetric regions with control points cen-
tered at each region or sphere. The center of each
sphere is, generally, at equal distance from all other

centers. Load balancing and exchange of state infor-
mation is carried out by the set of nodes at control
points. The work load submitted to the system, which
is characterized by arrival of tasks, is optimally bal-
anced within and among these sphere. The control
points, called schedulers, execute efficient schedul-
ing and information building algorithms which have
low overheads. Through simulation study, we show
that for large systems, the pro sed strategy yields a
better performance than an efgient fully distributed
scheme. The proposed scheme also incurs less over-
head resulting from message exchanges.

scheme. At the first level, load is shared between dif
ferent regions of the system providing a distributed
environment among spheres. At the second level,
scheduling takes place within individual spheres
where the scheduler of each sphere acts as a central-
ized controller for its own sphere. The design of such a
scheme involves the following steps:
(1) Formulate a network partitioning strategy for
creating symmetric s heres, (2) Identlfy the control
nodes (schedulers) 8 r controlling their individual
spheres, (3) Design an algorithm for performing opti-
mal task scheduling and load balancing within the
sphere as well as between spheres and (4) Develop ef-
ficient means for collecting state information at inter
sphere and intra sphere level that should result in less
message traffic.

For designing and developing large systems which
can meet these design objectives, we propose an ap-
proach using a combinatorial structure. This ap-
proach is believed to be the first attempt towards de-
veloping such a methodology. We consider a class of
graphs known as Distance-Transitive (DT) Graphs.
The reason for analyzing DT graphs is not only they
possess many useful properties, but most of the pre-
viously proposed topologies such as hypercube and
bisectional graphs, are indeed distance-transitive.
We show that distance-transitivity is a highly desir-
able property since these graphs are shown to be no-
de-symmetric which helps in designing parallel and
distributed systems with semi-distributed control.
These DT networks are shown to possess a remark-
able partitioning property based on a combinatorial
structure known as Hadamard matrix. In this paper,
we focus on a class of DT graphs, belonging to alge-
braic structures known as the Hamming [1],[9]
Schemes.

The proposed scheme is a two level load balancin

TH0328-5/90/0000/0562/$01 .OO Q 1990 IEEE

We first provide a few definitions from graph
theory. An interconnection network is representedby
an undirected graph, A = < U, E > where U rep-
resents the set of nodes and E represents the set of
edges joining the nodes. Each node represents a com-
bination of a processing unit and a message switching
element through which the rocessor is connected to
the network. The degree ofwch node represents the
number of edges incident on it. It is assumed to be
constant and is denoted as A . A path is a sequence of
connected nodes. The length of the shortest path be-
tween nodes i and j is called thegraphical distance and
is represented as L , . Given U = N , let
k = MML,IVi, j , 0 I i,J, I N- 11 where k is

called the diameter of the network.
Definition: Let G(A) be the automorphism group

of A . A is said to be distance-transitive, if for each
quartet of vertices U , v , x, y, E A such that
L,,v = Lxy , there is some automorphism g in
G(A) satisfying &U) = x and &v) = y .

Definition: A Hadamard matrix M is a J by J matrix
with 2 1 entries, such that Mw = jl , where lis the
identity matrix and w is the transpose of M. If we
multiply, all the entries of M with -1, we obtain the
complementary Hadamard matrix denoted as fl . If
we replace 1 by 0, and -1 by 1, the matrix is said to be in
0-1 notation. Hadamard matrices exist for order up to
268 and only if the order is a multiple of 4 . Figure 1
shows an untruncated 7 x 7 Hadamard matrix, us-
ing 0-1 notation. The truncated matrix is obtained by
discarding the first row and first column.

2. Interconnection Structures based
on Hamming Schemes

These scheme describe algebraic structure of a
well-known multiprocessor architecture, namely the

, explained below.

Qn , a binary n-cube network (Hypercube), which
consists of 2” nodes, is represented as a binary vector
where two nodes with binary codewords x and y are
connected if the Hamming distance Hxy = 1. For
these graphs, Lxy = Wry. For Q n , k = n .
m o r k B,

A Bisectional Network is analogous to a Hyper-
cube and possesses some of the similar algebraic char-
acteristic. A nodex in a Bisectional network with con-
stant degree n is connected to a neighbory if Hv = n
-I [9]. We will denote a Bisectional network as B,. A
B, network has 2”-’nodes which is equal to the
number of nodes in a network. For Bn , k = (n
- 1)/2 and Lxy = Min(Hxy , H .) where
HG = n-H,.

. .

The odd graph 0, has for vertex set the binary
words of length 2k - l and Hamming weight k - 1

where two vertices are connected if and only if the
Hamming distance between them is 2k - 2. The
0, graphs are selected due to their higher density
than various other interconnection networks: they
have degree k, diameter k - I and (k - 3 nodes. 24- 1

3. The Partitioning Scheme
Definition: Given a set of nodes C, its graphical

coveringradiusr in the graph A is defined as:
r = ~4a.q E u(Min,, XLij))

Definition: Let 4 be the number of nodes which
are at a graphical distance i from a node;. This num-
ber is a constant for Vj E U and is called the i-th va-
lency.

Let C be the desired set of scheduling nodes.
There are various ssible options to devise a semi
distributed scheduEg strategy based on this set, but
the performance of such a strategy depends on the
“graphical locations” of the scheduler nodes (dis-
tances between them) of C in Q,, and the range of
scheduling used by these nodes. The range of sched-
uling quantifies the graphical distance within which a
scheduler assigns tasks to the nodes of the sphere.

Definition: Let the sphere assigned to a node
j E C , be denoted by $6) , where i is the radius of
this sphere. The number of nodes in &(i) is the total
number of nodes lying at graphical distances 0
through i , from J. Since the number of nodes at the
graphical distance i is given by valency 4 , the total

size of the sphere is given as
Definition: Auniform set C, of centez, E t\e maxi-

mal set of nodes in A , such that the graphical dis-
tance among these centers is at least 6 and I si01 I is
constant (uniform) Vj E C, where i is the covering
radius of C.

The reason for selecting Hadamard code is first-
ly because this is a code with rate approaching zero,
asymptotically [121. This results in the size of a Hada-
mard code bemg considerably smaller than the sue of
a Hamming code, even for large values of n. Roughly
the size of Hadamard code is proportional to the log-
arithm of the size of the network. The second reason
for selecting Hadamard Code is that the range of val-
ues of n for which a Hadamard code exists, is larger
than the range of n for which a Hamming code exists.

Thirdly, If n is an even power of two the covering
radius of C is known Ill. Finally, Hadamard code can
easily be extended. Smce, an untruncated Hadamard
code exists only whenn is a multiple of 4, selection of
the set C can be made by modifymg this untruncated
code in the following ways.

wth n mod 4 = L First we consider the set Cob-
tained from untruncated Hadamard matrices M and
fl (in 0-1 notation) of size n-1. By appending an all
0’s and an all 1’s column, to M and @ respectively,
at any fixed position, say at extreme left, we generate
the modified set C for the network under consider-
ation.

I .
=

563

4 = 2. This case is treated the same
W v e case, except that the set C is ob-
tained from untruncated Hadamard matrices (in 0-1
notation) of size n-2. We, then append two columns 0
and 1 to M and 1 and 0 to p . However, the all 0’s row
in M is augmented with bits 00 rather than with bits
01. Similarly, the all 1’s row in M is augmented with
bits 11 rather than with bits 10.

od 4 = 3. The set C, for this case consists
of the rows of the truncated matrices M and fl in
0-1 notation.

A truncated Hadamard matrix (the one without
all 1’s column) can also be generated by usin S -
metric Balanced Incomplete Block Design (S b I g)
[9]. For this purpose, all the blocks (which corre-
sponds to all the elements of the set C, besides code-
words with all 0’s and all 1’s) can be generated by tak-
ing n-1 cyclic shifts of a single generator codeword.
Such generators, for different values of n-1 can be
found by using the differenceset approach [12]. Bble I
illustrates the generator codewords for various values
of n-1. The set of C nodes for Q, can be obtained by
first constructing codewords for Q7 . The generator
codeword for Q, is 0010111. Hadamard matrix M is
formed by taking these 7 codewords plus a row with all
0’s. The complete set C, for Q, , therefore consists of
matrix M and its complement & . The set Cfor oth-
er en’s are generated by the methods described
above. Similarly the generator codeword for 0 6 is
10111OOO101. The additional 10 codewords generated
by taking 10 left cyclic shifts of this generator, consti-
tute the set C for O6 . The set C for Bisectional net-
works can be generated using the Symmetric Bal-
anced Incomplete Block Design techniques except
that we do not take the fi matrix as the addresses of
schedulers. Therefore in a B,, network the set C is
half the size of that for Q,, .

4. Semi Distributed System Model
Figure 2 shows a logical view of the semi distrib-

uted model with the interconnection between
spheres, and with each sphere consisting of a number
of nodes. The system consists N identical processing
nodes connected by a communication network. The
work load entering in the network consists of inde-
pendent rogram modules or tasks. Tmsks are gener-
ated at a{ nodes of the network and the nodes send
them to their respective schedulers (in case a node is a
shared among schedulers, one scheduler is randomly
chosen). In the roposed semi distributed scheme,
we assume that tRe operating system routes a newly
generated task to a scheduler. Therefore tasks are as-
sumed to originate at schedulers.

Tmsk migration takes lace from schedulers to

passing takes places between schedulers for exchang-
ing the information about the accumulative loads of
spheres.

nodes and among schedu P ers. In addition, message

4.1. State Information exchange
The state information maintained by a schedulers

is the accumulative load of its sphere which in turn is
the total number of tasks being serviced in that sphere
at that of time. This load index is adjusted every time a
task enters a sphere or finishes execution. In addition,
a linked list, maintained in a non decreasing order,

ints to the nodes of sphere according to thelr loads.
Re first element of the list points to the most lightly
loaded node. The list is adjusted whenever a task is
scheduled at a node or a task finishes its execution. It
is possible that a node is shared by more than one
scheduler. In that case, the scheduler that assigned
the task to shared node informs the other schedulers
to update their linked lists and load entries. Similarly,
a node has to inform all of its schedulers whenever it
finishes a task.

4.2. The Load Balancing Algorithm
As mentioned earlier, at the second level, load

balancing is done optimally within the spheres by
schedulers. A task is always scheduled at a node with
the lowest load. At the higher level, load balancing is
achieved by migrating tasks between spheres so that
the accumulative load between spheres is equalized.
Whenever a scheduler receives a task from the out-
side world or from another scheduler, it executes the
scheduling algorithm. Associated with the scheduling
algorithm are two parameters, namely threshold-1
and threshold-2. Threshold-1 is the load of the most
lightly loaded node within the sphere. Threshold-2 is
the drfference between the accumulative load of the
local sphere and the accumulative load of the remote
sphere. The load balancing algorithm executed by the
schedulers is described below.
Step 1. Check the load entry inted by the first ele-
ment of the linked list (the E d of the most lightly
loaded node in the sphere).
Step 2. If the load entry of that node is less than or
equal to the threshold-1, then go to step 3. Otherwise
o to ste 6.

Rtep 3. fchedule the task at the most lightly loaded
node pointed by the linked list, withm the local

E e p 4. Updated the linked list.
Step 5. Update the accumulative load of the sphere.

Step 6. Check the accumulative load of other spheres.
Step 7. If the difference between the accumulative
load of the local sphere and the accumulative load of
the most lightly loaded remote sphere is less than
threshold-2, send the task to that remote sphere.
Otherwise go to step 3. Stop.

Threshold-1 determines whether the task should
be scheduled in the local sphere or the scheduler
should consider remote spheres for transferring task.
Suppose the load threshold is set to one. Then if an
idle node is available in the here, then that node is
obviously the best possible zoice. Even if the most
lightly loaded node already contains one task in its lo-
cal queue, the probability of that node becoming idle,
during the time task migrates from the scheduler to
that node, is high. The scheduler considers sending a
task to another sphere only if the load of the most
lightly loaded node in its sphere is greater than the

here. Go to step 4.

stop.

564

load threshold. Threshold-2 determines if there is
enough difference between the accumulative load of
the local sphere and that of the remote sphere. One
of the remote spheres, which meet the threshold cri-
teria, is randomly selected. The reason for selecting a
sphere randomly is to avoid the most lightly loaded
sphere becoming a victim of task dumping from other
spheres. Choice of the load thresholds should be
made according to the system load and the task trans-
fer rate. Values for threshold-1 were varied between
1 and 2 and for threshold-2 was varied from 1 to 4.

5. Simulation Results
For the performance analysis of the proposed

scheme, we have simulated Q7 ,Qe , Qg , Qg , B7 ,
B9 and 0 6 networks. The topological characteristics
and semi distributed structure for these networks are
given in 'Itrble 11 which shows the number of nodes N,
the degree d of each node, the distance between
schedulers 6 . cardinality of the set C, the covering
radius r, valencies 4 and the size of sphere &(I]. For
comparison we have selected the no load balancing
scheme and a fully decentralized scheme. The fully
distributed was proposed in an other study [5] . In this
scheme the control is fully decentralized and every
node executes the scheduling algorithm. Thsks can
migrate between nodes depending U n the decision
taken by the algonthm at each indwigal node. When
a task arrives at a node, that node gets the load status
from its immediate neighbors. The load status of a
node is the number of tasks scheduled at that node. If
the local load is less than the load of the most lightly
loaded neighbor, the task is executed locally. Other-
wise the task is considered for mi ration. In that case,
the neighbor with the lowest loafis selected. A task is
allowed to make man migrations until it finds a suit-
able node or the numger of migrations made exceed a
predefined transfer limit.

For simulation, task load was modeled as a Pois-
son process with average arrival rate A taskdunit-
time, and was identical for all the nodes. The execu-
tion and communication times of tasks were also as-
sumed to be exponentially distributed with a mean of
l /ps time-unitsltask and l /pc time-units/task, re-
spectively. Extensive simulation was carried out to
analyze and compare the performance of the above
mentioned networks. The performance measures se-
lected were mean response time of a task and average
number of control messa es generated per task. In
each simulation run, z0,d to 100,OOO tasks were en-
erated depending upon the size of the network. %he
steady-state results are presented with 95 percent
confidence interval, with the size of the interval vary-
ing up to 5 percent of the mean value.

5.1. The Response Time Perform-
ance

The mean response time of a task is the major per-
formance criteria. To analyze the impact of system
load, which is described as the ratio of task arrival rate
to task service rate, on mean response time, the sys-
tem load was varied from 0.1 to 1.0. Figure 3. shows

the curves of mean response times versus system load
with all three strategies for Qlo network. Both fully
and semi distributed schemes yield a significant im-
provement in response time over the no load balanc-
mg scheme at all loading conditions. The parameters
selected in simulation, were those that produced the
best achievable performance for the both schemes.
The task transfer limit, for instance, was chosen as 12
which provided the best results through simulation.
'hsk transfer rate was selected as 20 taskhime-unit
compared to service rate of 1 taskltime-unit. Thresh-
old-1 and threshold-2 were set for 1 and 3 for the
semi distniuted scheme.

The average response time of the proposed semi
distriiuted scheme is superior to the fully distributed
scheme as shown in Figure 3. It is to be noted that for
utilization ratio below 0.8, the response time curve
with semi-distniuted scheme is rather smooth and is
almost equal to 1.0, which is the average service time
of a task. It im lies that with the semi distributed
scheme the loaxbalancing is optimal and tasks get
serviced, virtually, without any queuing delays. This
is due to the fact that under low loading conditions, a
scheduler is usually able to find a node whose load in-
dex is less than or equal to the load threshold which is
set to one in this case. For el,, , the sphere size is 176
and the robability of finding an idle node in a sphere
is very Eigh. In other words, the scheduler always
makes use of an idle node in its own sphere. The only
delay incurred before a task ets executed is the com-
munication delay resulting from task transfer from a
scheduler to a node. At slightly higher load levels, the
inter-sphere task migrations occur. At a very high
load, the tasks migrations among spheres take place
more frequently and the load is balanced between
heavily and lightly loaded regions of the network.

When load balancing among spheres takes lace,
extra delays are incurred due to migrations oftasks
between the schedulers. In the proposed semi-distri-
buted design, all schedulers are at e ual distance
from each other except for hypercube wtere a sched-
uler's a n t i - p l node (the scheduler whose binary
address is t e com lement of this scheduler) is also
present. The schecklers of the anti-podal pair are lo-
cated at a distance equal to diameter of the network.
Therefore, with a IC1 = 2n, each scheduler is at
equal distance from 2n -2 schedulers (all except itself
and its complement). This results in an inter sphere
load migration in a symmetric manner. For B~ and
06, all schedulers are at equal distance from each
other. As shown in Figure 4 and Figure 5, the re-
sponse times curves obtained for the three schemes
for and 06, exhibit similar patterns, with semi
distributed scheme outperforming the fully distrib-
uted scheme.

5.2. The Performance Comparison
of Different Networks

In order to analyze the impact of network size, the
number of schedulers and the sphere size on the per-
formance of semi distniuted and fully distributed
schemes, we compare the average response times
yielded by B7 , Q7 , Q8 , & , O6 , Qg and Qlo, net-

565

works. mble 111 shows the percentage improvement
in average response time yieldedby semi and fully dis-
tributed schemes over the no load balancing scheme,
for these networks. Three different loading condi-
tions, low, medium and hi h were chosen correspond-
ing to system loads of 0.6,8.8 and 0.9 respectively. The
task transfer rate for all these results was chosen as 20
taskdunit-time and transfer limit for fully distributed
scheme was vaned between 8 and 12. The most inter-
esting observation is the increase in performance of
semi distributed scheme with the increase in system
size. On the other hand the performance of fully dis-
tributed scheme drops as as the system sue increases.
These observations are valid for all loading condi-
tions. We, therefore reach to the conclusion that the
proposed semi distniuted scheme is more suitable
or large systems. This is obvious from the difference

in response time improvements of both schemes
which is the maximum for el,,. When comparing the
performance Q,, and &, which have identical num-
ber of nodes but different number of schedulers and
sphere sizes, we note that outperforms Q,, at
medium load. This is due to larger here size which
results in an increased probability ofTinding a suitable
node within the local sphere. The performance of the
semi distributed scheme was slightly better than the
fully distributed scheme for Q, at medium load.
However, the fully distributed scheme outperforms
the semi distributed scheme for B, at high load. This
is due to the high connectivity of the network which is
more suitable for the fully distributed scheme for
making task migrations.

5.3. The Cotrol Overhead Due to
Message Exchange

The average number of messages generated per
task were evaluated for all seven networks to com-
pare the impact of size and other topological parame-
ters on this overhead. A node belonging to one sphere
has to send only one message to its scheduler when it
finishes a task. The messages are generated in order
to keep the load entries in different spheres consis-
tent or to exchange state information among schedul-
ers. If a node is shared among more than one spheres,
then the scheduler assigning the task to that node
needs to send messages to the spheres sharing that
node. Similarly, upon finishing a task, a node has to
inform all of its schedulers. At the sphere level, a
scheduler communicates with other schedulers only
when it considers a task migration. The number of
messages for exchanging state information among
schedulers is small since the number of schedulers is
only of the order of log N, whereas with fully distrib-
uted environment, the scheduling decision for every
task is critically dependent on the precise information
about neighboring nodes and a node has to get such
information for each of its neighbors, every time a
task is to be scheduled. Figures qa), Figure 6 (b) and
Figure 6(c) show the average number of messages er
task (this was calculated by dividing the total numger
of messages by the total number of tasks) for all seven

networks at low, medium and high loading conditions,
respectively.

At low load, the message overhead for the semi
distniuted scheme is much lower than that of fully
distributed scheme except for 0, network where the
degree of each node is small, resulting in less number
of messages for the fully distniuted scheme. The
overhead for the semi distributed scheme is higher
due to node sharing and information exchan e be-
tween schedulers. As the load increases from !ow to
medium, the fully distriiuted strategy starts inducing
high overhead which almost doubles the overhead in-
curred by the semi distributed strategy. This conclu-
sion is valid for all networks except Q, where the
sphere size if very small and with the semi distniuted
scheme, schedulers need to communicate with each
other more frequently. The impact of sphere size is
more apparent when the message overhead for
Q,, and & is compared. At all loading conditions,
the overhead for the semi distniuted scheme with
Q,, is higher than incurred with B~ . This is because
the number of schedulers in 4 is half the number of
schedulers for Q,, . This overhead is also less due to
less sharing of nodes in different spheres (in & a
node is shared in either 1 or 3 spheres whereas in Q,, ,
a node is shared in 1 or 4 spheres). At hi h load, the
overhead with the semi distributed is higier but still
less than that of fully distributed scheme.

6. Conclusions
In this paper, we have proposed an approach for load
balancing in large arallel and distnbuted systems
and have resentecfthe concept of semi distributed
control. &e study was centered around a class of @-
terconnection structures which are dlstance transi-
tive. The use of Hadamard matrix results in an effi-
cient scheme for partitioning these stems for load
balancin . We have evaluated the pegormance of the
proposef scheme throu h extensive simulation with
three example graphs ofvarious sizes. By comparing
with a fully distributed scheme, we have shown that
the the proposed scheme yields a better performance
in terms o average response time and the average
number of control messages generated. These results
are validated for systems of various sizes.

References
[11 E. Bannai and T. Ito. Algebmic Combinatorics and soci-

utwn Schemes. Benjamin-Cummings (1984).
Raymong M. Bryant and Raphael A. Finkel, ”A Stable
Distributed Scheduling Algonthm,” in PIVC. of 2nd
Intl. Conf on Dutnbuted Computing System, April

~~

1981, pp.-314-323.
Thomos L Casavant and John G. Kuhl, ”Analysis of
Three Dynamic Load-Balancing Strategies with Vary-
ing Global Information Requirements,” in PIVC. of
7-th Intl. Con)? on Distributed Computing System,
West Germany, April 1987, pp. 185-192.
Shyamal Chowdhu ”The Greedy %ad Sharing Algo-
rithm” Joumal of?&zIlel and Dutnbuted Computing,
no. 9, May 1990, pp. 93-99.

566

[5] Derek L Eager, Edward D. Lazowska and John Zahor-
jan,”Adaptive p a d Sharing in Homo eneous Distrib-
uted Systems, ZEEE Tmns. on So&m Eng. ,vol.
SE-12, pp. 662-675, May 1986.

[6] Kemal Efe, ”Heuristic Models of Task Assignment
Scheduling in Distributed Systems,” ZEEE Computer,
June 1982, pp. 50-56.

[7l Ahmed K. Ezzat, R. Daniel Bergenon and John L Po-
koski, ”Task Allocation Heuristics for Distributed
Computing Systems, “in Pm. ofZntZ. Conf on Distrib-
uted Computing Systems. pp. 337-346.

[8] G. C. Fox, A. Kolapa and R. Williams, ”The Implemen-
tation of D amic Load Balancer, ”in Pm. of S Z M
Hypxube ~ultipmer.som Conf, 1987, pp. 114-121.

[9] Arif Ghafoor, Theodore Bashkow and Imran Ghafoor,
”Bisectional Fault-Tolerant Commyication Architec-
ture for Supercomputer Systems, ZEEE Ti. on
Computen, vol. 38, no. 10. pp. 1425-1446, October
1989.

[101 Anna Ha’c and Xiaowei Jin, ”Dynamic Load Balanc-
in in Distributed S tem Using a Decentralized Algo-
ritkm,” in Pmc. of &I Zntl. Con$ on Distributed Com-
puting Systems, Wet Germany, April 1987 pp. 170-1 78.

[111 Frank C. H. Lin and Robert M. Keller, ”Gradient Mod-
el: A demand Driven Load Balancing Schem,” in Proc.
of 6 t h Zntl Conf on Distributed Computing Systems,

[12] E J. MacWilliams and N. J. A. Sloane, The Theory of
Emr-Comting Codes, vols. Zand ZZ, New York: North
Holland, 1977.

[131 Lionel M. Ni and Kai Hwang, ”Optimal Load Balanc-
ing in a Multi le Processor System with Many Job
Classes,” IEEE!Tm. on SopVare Eng, vol. SE-11, pp.
491-496, May 1985.

[14] Krithi Ramamritham, John A. Stankovic and Wei
Zhao, ”Distributed Scheduling of Tasks with Deadlines
and Resource R uirements,” IEEE Ti. on Com-
piiten, vol. 38, n?8. pp. 1110-1123, Aug. 1988.

[15] Kang G. Shin, ”Load Sharing in Distributed Real-
Time Systems with State-Chan e Broadcasts,” ZEEE
T m . on Computen, vol. 38, no. 8. pp. 1124-1142,Aug.
1988.

[16] A. M. Van Tilbor and L. D. Wittie, ”Wave Scheduling
- Decentralized $ask force Scheduling of Task Forces
in Multicomputers,” IEEE T m . on Computen, vol.
C-33, no. 9, pp. 835-844, Sept. 1984.

AUg 1986, pp. 329-336. 15

19

0 0 0 1 0 1 1
0 0 1 0 1 1 0
0 1 0 1 1 0 0
1 0 1 1 0 0 0
0 1 1 0 0 0 1
1 1 0 0 0 1 0
1 0 0 0 1 0 1

Figure 1. A truncated Hadamard Matrix M
of order 7.

1 1 1 1 0 1 0 1 1 0 0 1 0 0 0

1 0 0 1 1 1 1 0 1 0 1 0 0 0 0 1 1 0 1

Table 1. Generator Codes for different lengths

Networl: N d 6 IC1 r 41 d d lSiQ]
B 7 6 4 7 3 8 1 7 - - 9

Q7 1 2 8 7 4 1 4 1 8 - - 9

I Length = n -11 Generator Codewords I

Qs

I 7 I 0 0 1 0 1 1 1 I

2 5 6 8 4 16 2 8 28 - 37
B 9 2 5 6 9 4 8 2 9 3 6 - 4 6

~~

11 ~ 1 0 1 1 1 0 0 0 1 0 1 1

I I

567

Local

L

a

a
0

I0

a

a
0

Figure 2. A logical View of Spheres and Semi
Distributed Load Balancing Scheme.

mc units)

t
M
E
A

N

R
E
S
P
0
N
S
E

T
I
M
E

7.8

4.8

3.8

2.8

1.8

NO M ~ a l a ~ ~ i n g

.t%IIy Distributed

8 Semi Distributed

UTILIZATION RATIO d
Figure 4. Mean response time versus system load with three
schemes for the& network.

R 3.8-
E

S

0.8 I , , , , I , 1 I

O!l O!Z 0!3 0!4 0!5 0!6 0!7 0!8 0!9 I

UTILIZATION RATIO 6

Figure 3. Mean response time versus system load with three
schemes for the Qio network.

[time units)

f
M
E
A

N

R
E
S
P
0
N
S
E

T
I
M
E

7.8-

6.8-

5.8-

4.8-

3.8-

2.8-

1.8-

UTILIZATION RATIO -
Figure 5. Mean response time versus system load
with three schemes for the 0 6 network.

568

T
N
U
M
E
R

0
F

M
E
S
S
A
G
E
S

T
N
u
M
E
R

0

M
E
S
S
A
G
E
S

TABLE 111

The percentage improvement (decrease) over no load balancing with
semi and fully distributed schemes for various networks

10

5

O I I I I I I I

t 2o

N
15

E
R

M

: s

S 1 1 1 1 1 1 1
A
G
E o

B7 Q I Qa B9 0 6 Q9 Qio

(4

Figure 6. Average number of messages per
task for various interconnection at works at
low, medium and high loads.

