
Ocean Circulation on the Intel Paragon:
Modeling and Implemerntation

Ka-Cheong Leung, Ishfaq Ahmad
Department of Computer Science

Hong Kong University of Science and Technology
Clear Water Bay, Kowloon, Hong Kong

{kcleung, iahmad}@cs.ust.hk

Abstract
In this paper, we present the modeling and implementa-

tion of a grand-challenge problem in the jield oj scientific
computation: the Primitive-Equation Numerical Ocean Cir-
culation Model. We present the mathematical formulation
of the model and propose a scheme for its parallel imple-
mentation. Optimization8 are made through collective com-
munications and various partitioning schemes. In our ex-
periments using up to 100 processors on the Intel Paragon
parallel computer, the proposed strategy yields an encour-
aging speedup and exhibits a sustained scalability with in-
creasing both the problem and machine sizes. We consider
barotropic continental shelj waves in a periodic channel as
a test problem. The model has numerous applications in
environmental studies and ocean sciences.

1 Introduction

Massively parallel processors (MPP) are becoming a use-
ful and practical tool for studying a wide range of pre-
viously unsolved problems. A. class of these problems in-
cludes three-dimensional time-dependent numerical models
for studying various physical world phenomena. Tradition-
ally, these problems have been solved on vector supercom-
puters consisting of a few processors. However, the recent
trend of scalable design for the modern MPPs has generated
a new wave.

Scalability determines whether an application is feasible
on a larger parallel computer without sacrificing efficiency.
Practically, a program can be made large enough to operate
efficiently on a scalable computer with a given granularity.
However, scaling a problem may produce no better results
because of the non-productive message-passing calls and
synchronization among processors. The scalability prop-
erty of distributed-memory multicomputers which belong
to a class of MPPs has made it possible to study large-scale
numerical models related to real-world problems, most of
which are classified as the so-called grand-challenge prob-
lems. Although distributed-memory parallel computers are
harder to program than their shared-memory counterparts,
the advantage of scalability means that a sustained perfor-
mance is possible while increasing both the problem and

1063-7133/96 $5.00 0 1996 IEEE
Proceedings of ZPPS ‘96

Hsiao-Ming Hsu
National Center for Atmospheric Research

Mesoscale and Microscale Meteorology Division
Eloulder, Colorado, U.S.A.

hsu@ash.mmm.ucar.edu

machine sizes. This provides new hopes for environmental
problems such as prediction of weather, climate and global
changes, and ocean sciences.

The objecti.ve of this paper is to present the state of our
on-going project for studying the ocean circulation. For this
purpose, we have developed and implemented an ocean cir-
culation model on the Intel Paragon. The model is fully
operational and is intended to be a vehicle for environmen-
tal studies.

This paper is organized as follows. Section 2 introduces
the primitive-equation numerical ocean circulation model
calculated through a second-order finite-difference approx-
imation numerical scheme. Section 3 briefly describes the
architecture and the programming environment of the Intel
Paragon parJle1 computer. Section 4 presents our imple-
mentation scheme for the ocean model. Section 5 examines
the experimental results of the proposed scheme and makes
some constructive inferences about the effectiveness of the
implementatio:n. Section 6 gives some conclusions and dis-
cusses some possible extensions to our work.

2 The MFodel

Like other branches of geophysical fluid dynamics, ana-
lytical solutions to most ocean dynamics problems are not
readily obtainable because the problems are nonlinear [7].
Historically, three-dimensional time-dependent numerical
models for ocean circulation are based on the numerical
approximations to the governing partial differential equa-
tions of the ocean dynamics and thermodynamics. Both
horizontal and vertical gradients are explicitly represented
by various finite-difference methods. The classical model
of Bryan [3] is the very first of this kind. Over the last
30 years, this <approach has been applied to various ocean
numerical models for either basin-scale, regional-scale, or
coastal oceans. Due to the explicit nature of the model,
different physical processes can be included in a relatively
straight-forward manner. Continuous improvements made
by many researchers have demonstrated the flexibility and
usefulness of this approach. In fact, most of the ocean cir-
culation numerical models currently being used belong to
this class.

47

Proceedings of the 10th International Parallel Processing Symposium (IPPS '96)
1063-7133/96 $10.00 © 1996 IEEE

Because of the long-term nature of the stable stratifi-
cation in the large-scale ocean, theoreticians simplify the
ocean into layers when they try to understand the funda-
mental mechanisms to drive the ocean circulation. Few
numerical models have been built based on this analytic
method; for example, see [2]. Even though this approach is
conceptually easier than the previous one to be understood,
methods to solve the technical difficulty in representing the
mixed layer just beneath the ocean surface have only re-
cently been tested [a]. Numerical models for coastal ocean
employ mainly the geometric vertical coordinate with a ver-
tical coordinate transformation to accommodate the bot-
tom topography which is considered important and neces-
sary. Some recent developments have been included in [13].

The numerical model used in this study is based on a
combination of a finite-difference scheme in horizontal di-
rections and a spectral scheme in the vertical direction. The
basic model is described in Haidvogel et al. [12]. In fact,
they discussed six different examples in channel, coastal,
and basin-scale oceans. Obviously, the vertical specifica-
tion of spectral modes determines the vertical resolution.
A transformation algorithm [15] has been developed to
overcome this restriction. The model has been applied to
coastal studies, such as coastal trapped waves [18], shelf-
break fronts [9], [lo], eastern boundary current [14], bottom
density front [6], coastal up-welling and down-welling [16].
Isolated topography in ocean is another interesting topic.
Studies of flow over isolated sea-mount were conducted in
[1], [4], [5], and [ll]. An investigation of wind forcing over
a circular bank was carried out in [8]. The water mass
and circulation in the polar region have strong impacts in
the change of our climate through the thermohaline circula-
tion between polar, mid-latitude, and tropical oceans. The
formations of the wintertime dense water and summertime
halocline water have been reported in [15].

Table 1. List of symbols used in the Ocean Circulation Model.

Coriolis parameter
gravitational acceleration
bottom topographic height
scale factors in the horizontal curvilinear
coordinate transformation time
time
horizontally averaged vortiaty
total forcing terms in equation (1)
total forcing terms in equation (2)
horizontal components of velocity
vertical velocity in a-coordinate
Cartesian coordinate
horizont,ally transformed r-coordinate
horizontally transformed y-coordinate
vertically transformed +-coordinate
dynamic pressure (pressure/density)
density
viscous coefficient for momentum
diffusive coefficient for density
vertically averaging stream-function
vertical velocity in o-coordinate

The model is based on a set of primitive equations in
time and in the three-dimensional Euclidean space. Ta-
ble 1 includes the list of symbols and their meanings used
in describing the model. The equations of motion are de-
rived from the principle of the conservation of momentum

with approximation of the hydrostatic balance in the verti-
cal direction and are given below.

(a)

(3)

By the assumption of incompressibility, conservation of
mass gives the continuity equation,

The equation of density can be obtained from the con-
servation of thermal energy,

Because there is an unknown contribution to the depth-
averaged component of the pressure field arising due to the
rigid lid, the vertically averaged stream-function is intro-
duced by equations (6) and (7)

a* h - = -u -
81 0

(6) n

a$’
G (7)

With the aid of the vertically integrated continuity equa-
tion, equation (8) requires horizontal non-divergence.

(8)

Moreover, a horizontal vorticity equation may be ob-
tained by vertically integrating equations (1) and (2). The
result is shown as

a,=m at = {$[(p+$[(~)~]} (9)

48

Proceedings of the 10th International Parallel Processing Symposium (IPPS '96)
1063-7133/96 $10.00 © 1996 IEEE

where R, and R, are the vertical averages of R, and R,.
Under the definition of the vertically averaged vorticity,

P = .5(I)-;(E) (10)

a non-separable elliptic partial differential equation for the
stream-function can be derived

There are a total of seven partial differential equations
(PDEs), equation (l), (2), (3), (4), (5), (9) and (ll), which
form a complete set of governing equations. We name Equa-
tion (l), (a), (3), (4), (5), (9) and (11) as u-Equation,
PEquation, phi-Equation, W-Equation, rho-Equation, p
Equation, and p&Equation, respectively. Four of these
equations, u-Equation, u-Equation, @Equation and rhe
Equation, are mixed hyperbolic-parabolic PDEs, while psi-
Equation is an elliptic PDE and the rest are vertical ordi-
nary differential equations. The dependent variables to be
solved are the three components of velocity (21, V, and a),
density (p), dynamic pressure (d), vertically averaged vor-
ticity (q), and vertically averaged stream-function ($). For
this version of the model, the lateral boundary is assumed
to be periodic, and both top and bottom boundaries are
rigid, In particular, model can be forced by either imposed
wind stresses or thermal fluxes. Initial conditions are easily
supplied prior to run.

The PDEs of the model are approximated by various
numerical schemes. In the vertical direction, the scheme is
pseudo-spectral and the basis set is a modified set of Cheby-
sheu poZynomi&. Not only are the Chebyshev polynomials
accurate in the computational sense, but they also give high
resolution near both top and b’ottom boundaries.

For the model equations in the horizontal plane,
a method based on the tradlitional second-order finite-
difference method with the Ara.kawa-C grid is employed [i’].
For each partial differential term, say am, where m is a
function of z, y and z, if we want to differentiate it along
z-direction, we take the difference between m(x f Ax, y, z)
and m(x, y, z) as a result of am at (2, y, 2). Note that
Az is a constant value. It d.epends on how we set the
grid on the function. Usually, Ax is equal to the width
of each fringe. Lastly, time-;stepping is carried out us-
ing a predictor-corrector technique based on the leapfrog-
trapezoidal scheme.

3 Overview of the 1:ntel Paragon

The Paragon XP/S from Intel Corporation is a
distributed-memory multiple instruction stream multiple
data stream (MIMD) machine in which the nodes are
connected through a fast 2-dimensional mesh network.
Each node operating at a clock speed of 50 MHz is a
self-contained computer board with a 75-MFLOPS Intel
iSSO/XP processor and 32 MB alf main memory. The system
consists of three types of nodes: compute nodes, which are
used for the execution of parallel programs; service nodes,

which olifer capabilities of a UNIX system, including compil-
ers and progratm development tools; and I/O nodes, which
provide interfaces to mass storage and LANs.

We can think of the nodes of the Intel Para.gon as physi-
cally separate computers, but all the nodes function identi-
cally. Each nolde can also run different programs. To obtain
a better performance from the system, users can program
several nodes to cooperate on a single application.

Paragon Mesh Routing Chips (MRCs), connected by
high-speed channels, are the basis of the communication
network, where nodes may be attached. There are two in-
dependent channels - one for each direction - between any
two neighboring nodes. The channels are 16 bits wide and
have a bandwidth of 175 Mbps. The MRCs can route mes-
sages autonomously and are independent of the attached
nodes. In order to avoid deadlocks, communication uses
deterministic wormhole routing. Messages are sent first in
the horizontal direction and then in the vertical direction.
The pipelined nature of the wormhole routing allows the
usable bandwidth to be nearly independent of the distance
between any two communicating nodes.

The Intel Paragon provides a flexible programming en-
vironment for developing parallel programs [17]. The
Paragon’s operating system is called Paragon OSF/l, which
provides an OSF/l-compatible application interface. The
NX library is designed for message-passing among cooperat-
ing nodes. While support is provided for both synchronous
and asynchronmous messages as well as interrupt-producing
messages, glob’al operations such as global sum etc. are
also available. For our experiments, we have used a 140-
node Paragon at the Hong Kong University of Science and
Technology.

4 Parallel Implementation

In this section, we describe our implementation scheme
for the ocean circulation model. The computational flow
and dependencies among the equations of the ocean model
are shown in Figure 1. Here each solid box represents a
major computational function of various equations; equa-
tion numbers a.re described in Section 2. Some of the solid
boxes show calculations for only a part of the equation, and
others for the entire equation. RHS and LHS denote the
right-hand-side and the left-hand-side of each equation, re-
spectively. PAR and SEQ indicate the corresponding com-
putation to be executed in parallel and sequential fashion,
respectively. E,ach dashed box indicates that data commu-
nication and synchronization need to be performed to sat-
isfy the data dtependencies between computational phases.

The fundamental principle behind an efficient implemen-
tation of such a model is to find the portion of the code
which can be parallelized and partition it into smaller exe-
cution pieces. The parallel part may be executed with the
smaller amount of program execution times by using more
processors, implying a finer granularity of the problem. The
data communication can play an important role in affecting

49

Proceedings of the 10th International Parallel Processing Symposium (IPPS '96)
1063-7133/96 $10.00 © 1996 IEEE

Figure 1. Computational flow of the parallelized ocean model.

the performance of the program - especially when the gran-
ularity is small - since all partial results need to be sent to
the shared variables during each time step. Clearly when
the problem granularity is coarse, communication overhead
is smaller but the degree of parallelism is reduced.

Theoretically, any of the three spatial dimensions can
be partitioned into sub-domains, each of which can be ex-
ecuted independently by one of the processors. However,
because of the usage of the pseudo-spectral scheme in the
vertical direction, partitioning in the vertical direction be-
comes highly cumbersome. Thus, the entire computation
domain has been partitioned in the both horizontal direc-
tions. Given a data block with dimensions 1 by m by n
along 5, y, and z directions respectively, indices start from
1 to 1 along x-direction, from 1 to m along y-direction, from
0 to n - 1 along z-direction, respectively. Under the pro-
posed scheme, data can be partitioned along either z or y
direction, or both.

The majority of the sequential code comes from the cal-
culation of the horizontal stream-function solved by a non-
separable elliptic PDE, psi-Equation, as mentioned in Sec-
tion 2. This elliptic solver was provided by Dr. John Adams
of the National Center for Atmospheric Research, and is not
yet readily parallelizable.

The general algorithm for the parallelization of each sin-
gle block of the computational function for all equations is
shown as follows:

Parallel algorithm for a single computational block

for k from 0 to n - 1

for j from y-start to y-stop
for i from z-start to z-stop

perform numerical computations

end-for i

end-for j

end-for k

According to the algorithm, each node requires to store
only a subset of the whole data with dimension from ~start
to z-stop along x-direction, from y-start to y-stop along y
direction, from 0 to n- 1 along z-direction, where each node
has its own set of x-start, x-stop, y-start, and y-stop.

Since most of the computations require data from the
boundary of neighboring processors in the entire three-
dimensional domain, such kind of data partitioning in-
volves substantial amount of data communication of dif-
ferent types among processors for computing the data at
the domain boundaries.

To minimize the communication overheads during com-
putation, we examined the portion of data required dur-
ing different computations. Our implementation strategy
also includes collective communication, by grouping differ-
ent types of data into combined messages as much as pos-
sible. This means the updates are done once during each
time step and therefore communication overhead is drasti-
cally reduced.

The peripheral data around a local partition may be re-
quired for calculation, but this data is stored into the local
memories of the neighboring processors. Hence, data com-
munication is required to receive the relevant data from the
neighboring nodes in order to perform the correct computa-
tion. To further reduce the amount of communication, we
examined the computational path in details to decide which
part of the data communication could be eliminated. Ac-
cording to our analysis, there are only five major variables,
U, ‘u, p, 4 and R, that are modified in each iteration using
some data not present locally. Figure 2 shows, for each
such variable, the portion of the data within the bound-
aries to be required for computation and updated for each
iteration.

In the ocean model, as mentioned above, the majority of
the sequential code comes from the calculation of the ellipti-
cal PDE stream-function. At present, it is not clear how to
execute this equation in parallel. Also, referring to Figure
1 and the equations in Section 2, solving equations (l), (2)
and (5) in parallel will not cause any conflict. Figure 3 de-
picts the task graph, indicating the dependencies and par-
allelism among various equations, for the ocean circulation
model. Thus, it is possible to exploit functional parallelism

50

Proceedings of the 10th International Parallel Processing Symposium (IPPS '96)
1063-7133/96 $10.00 © 1996 IEEE

by solving multiple equations simultaneously and by using
data parallelism within each equation. However, in order
to extract meaningful improvements from such a scheme,
a further careful analysis of the communication overhead
is required. Moreover, a parallelization strategy for the se-
rial elliptical solver would be required. Currently, we are
exploring these possibilities.

L

“,“,QPaO

FcHS of rho-Equation

RR

RHS of u-Equatkm RHS of “-Eq”atlon

R” R”

q-Equation

Rz

psi-&quatian

LHS of rho-Equa”o”

phi-Equation

LHS of u”EquaUon L.HS of v-Equation
” ”

w-Equatlo”

Figure 3. Task graph for the Ocean Circulation Model.

5 Experimental Results

In our experiments, we considered barotropic continen-
tal shelf waves in a periodic channel as a test problem. Such
waves are solutions of a simplified linear version of the non-
linear primitive-equation ocean circulation model described
in Section 2. To obtain the numerical solution, the imposed
wave amplitude was small so that the nonlinear terms be-
came negligible. The vertical structure was represented by
the barotropic mode and the first four vertical baroclinic
modes in the Chebyshev wavenumber space, although only
the barotropic mode was actually necessary. The time step
was chosen to be 0.01 of the wave period, and the bottom
topography varied exponentially across the channel. Fur-
thermore, the total number of time steps for each run was
chosen to be 50.

The horizontal grid sizes of the numerical model for
both z and y directions were chosen to be (1 x m), where
1, m E {21,41,61}. The verticd dimension of the grid was
kept fixed as 5 points. Hence, there were altogether 6 com-
binations for the problem grid. The parallel code was run
on the Intel Paragon with 1, i!, 4, 8, 16, 32, 64 and 100
processors, corresponding to 48 test cases using the 6 grids.
For determining the effect of data partitioning in the two
horizontal dimensions, the processors were used in various
combinations of two-dimensional meshes. For those exper-
iments, a total of 36 processor configurations were used,
and therefore, using 6 grids, the number of test cases cor-
responded to 196.

In order to collect timing data about the program ex-
ecution, software timers were placed within several parts
of the code to measure the elapsed time for each relevant
section of the program code. To raise the accuracy of the
result obtained, the same set of experiment was performed
a total of 12 times.

The results are provided in four sets. The first set pro-
vides the measured total elapsed times, speedups, the serial
times, and the average communication overhead, for each
of the 48 test cases (6 grids and 8 processor configurations).
The second set includes the results showing the fraction of
time spent on ,various equations. The third set consists of
the plots showing the impact of data partitioning in the two
horizontal directions for 196 test cases (6 grid and 36 pro-
cessor configurations). The fourth set includes a template
showing the states of the ocean at different times.

Table 2. EilaDsed times fin seconds) for various arids.

kid size

21x21

41x21

41x41

61x21

61x41
61x61

-.

Number of nodes
-1 2 4 8 16 32 64 100 -

55.8.2 29.69 15.82 9.20 5.83 4.79 4.35 4.61

112.81 58.59 31.15 17.57 20.82 7.64 6.78 6.69

229.115 119.34 62.17 34.71 20.38 14.,X1 11.lJ5 10.27

170.6.7 88.53 47.40 26.66 16.61 12.06 lfJ.23 9.71)

345.51 182.63 94.89 53.21 31.65 22.50 17.61 16.21

521.2:; 272.92 143.10 79.53 47.33 33.39 25.97 23.01

-

We first examine the first set of experiments. Table 2
shows the total elapsed times for the 6 grid sizes using 1,
2, 4, 8, 16, 32, 64 and 100 processors. The processor grid
configurations in these cases were 1x1, 2x1, 2x2, 4x2, 4x4,
8x4, 8x8, and 119x10. As can be seen, for each grid size, the
total elapsed time was steadily decreased with an increase
in the number of processors. One can also be noticed -
comparing the top and bottom entries in the first column -
that the serial t:ime was increased 9 times when the problem
size was increased 9 times (from 21x21 to 61x61). However,
this ratio starts decreasing as the number of processors was
increased gradually. For example, this ratio was approxi-
mately 8 when .the number of processors was 16. This ratio
dropped to 7, 6 and then 5 when the number of processors
was 32, 64 and 100, respectively.

Table 3. Soeeduos for various arids.

21x21

41x21

41x41

61x21
61x41
61x61

1.,X1 1.88 3.53 6.07 9.57 11.66 12.84 12.11
I

1.*1 1.93 3.62 6.42 10.43 14.69 16.64 16.87

I.*1 1.92 3.69 6.M) 11.24 16.37 20.74 22.31

101 1.93 3.6fJ 6.40 10.28 14.15 16.68 1759

1.m 1.89 3.64 6.49 10.92 15.36 19.62 21.32

I.,81 1.91 3.65 6.55 11.01 15.61 20.07 22.65

The corresponding values of speedup for the same set
of experiments are shown in Table 3. These values are
quite encouraging and one can notice an increasing trend
in speedup with increasing number of processors. The in-
crease in speedup was very rapid up to 64 processors after
which the amount of improvement became smaller. This

51

Proceedings of the 10th International Parallel Processing Symposium (IPPS '96)
1063-7133/96 $10.00 © 1996 IEEE

is despite the fact that, while the parallel times for the
other components became smaller, there was a substantial
amount of serial computations in the elliptical solver which
was proved to be the bottleneck.

Table 4. Serial times (in set) for various grids.

Grid size Number of nodes
1 2 4 6 16 32 64 100

21x21 0.82 0.81 0.82 0.82 0.82 0.81 0.83 "85

41x21 2.22 2.22 2.22 2.23 2.26 227 2.24 2.28

41x41 4.41 4.41 4.42 4.42 4.42 4 47 4 4.5 4.42

61x21 4.36 4.36 4.37 4.37 4.38 4.46 4.46 4.54

61x41 8.67 8.83 8.67 8.68 8.69 8.84 8.85 9.m

61x61 12.89 12.87 12.87 1288 13.22 LS.lZ 1336 1335

We also calculated separately the times for the serial
part. These times are provided in Table 4. The serial times
were almost constant for a fixed grid size. However, one
can also observe that the fraction of the serial component
became much larger for large grids - for example, the serial
time increased by a factor ranging from 15.7 to 16.2 when
the grid size was increased from 21x21 to 61x61. While the
parallel part steadily decreased, this notorious serial part
remained the main hurdle in improving the speedup fur-
ther. For example, using 100 processors, the serial fraction
constituted more than 58% of the total running time.

Table 5. Average communication overheads (in set) for various grids.

Grid size
2

Number of nodes
4 0 16 32 64 100

21x21 0.20 0.64 0.60 0.68 1.30 1.77 2.18

41x21 0.21 083 0.74 0.76 0.99 1.84 224

41x41 0.35 1.07 1.M 0.83 I.15 1.77 2.20

61x21 0.23 1.06 0.85 1.03 1.43 2.22 2.44

61x41 1.27 1.38 1.18 1.00 1.88 2.26 2.54

61x61 0.58 1.76 1.36 1.41 2.80 3.32 3.11

The times spent on communication are given in Table 5.
These times represent the sum of all communication over-
heads incurred by the processors performing the parallel
computation. The values in this table were determined by
taking the averages across all processors except the pro-
cessor 0 which was performing the serial part. Clearly,
the communication times increased with an increase in the
problem size and the number of processors. Comparing
these value in this table with the total elapsed times shown
earlier in Table 2, we can notice that the fraction of com-
munication overheads out of the total elapsed times was as
large as 0.47 (for the 21x21 grid using 100 processors) but
decreased when the problem size is large (61x61 grid using
100 processors).

The results for the next set of experiments are given
in Figure 4, Figure 5, and Figure 6. In each of these fig-
ures, we provide four plots. The first three plots show the
fraction of the time spent on the three most computation-
ally intensive equations, using a variable number of proces-
sors. These equations are u-Equation, *Equation and rho-
Equation. The fourth plot shows the fraction of the time

o-
0 M 1w Ol---;6---1 0 1w

ntir Of mds* “umber Of cods*

Figure 4. Distributions of elapsed times on the Paragon for 21x21 grid.

spent on all equations (serial as well as parallel). This time
was taken across the processor 0 which executed the parallel
computation - like all other nodes - and also executed the
serial elliptical PDE solver. In other words, this fraction
includes the time for computing u-Equation, Y-Equation,
rho-Equation, and all other equations. The fraction of the
communication and synchronization time is thus simply 1
minus this fraction. An inspection of Figure 4 reveals that
the fraction for all three equations as well as the cumula-
tive Equation component dropped rapidly as the number of
processors was increased.

One reason for the increased communication and syn-
chronization overhead was that the problem size was fixed
and therefore granularity decreased with increasing num-
ber of processors. The excessive amount of this overhead,
however, was largely due to the fact that all nodes needed
to send the relevant data to a single processor before the
execution of the serial equation. Similarly, the processor 0
needed to send all of the relevant computed results back to
all other processors upon the computation of that equation.
Since this indeed induced a contention on the processor 0
as well as a large amount of communication data, the per-
formance of the parallel program deteriorated rapidly.

Figure 5. Distributions of elapsed times on the Paragon for 41x41 grid.

From Figure 5 and Figure 6, where we used 41x41 and
61x61 grid sizes, we can notice a similar trend. In par-
ticular, we can observe that the three compute-intensive

52

Proceedings of the 10th International Parallel Processing Symposium (IPPS '96)
1063-7133/96 $10.00 © 1996 IEEE

equations yielded the same fraction of time as in the case
of Figure 4 (when the data size was 21x21). This implies
that these equations were proplerly parallelized. We can also
notice that the fraction of the cumulative Equation Com-
ponent was larger when the grid size was increased. This
confirms with the earlier results which indicated that the
larger problem sizes exhibited better speedup and smaller
communication and synchronixation overheads.

I
5

I
““nlb2f ix&s

100 OS- 0
““Inbe% rrcdsa

1w

Figure 6. Distributions of elapsed times on the Paragon for 61x61 grid.

The third set of results show the effect of partitioning
in the two horizontal dimensions. For this purpose, as
mentioned earlier, we used 36 configurations for processor
meshes, ranging from linear arrays to rectangles - such as
4x2, 2x4, 6x2, 2x6, 8x2, 2x8, 10x2 and 2x10 - to perfect
squares - such as 2x2, 4x4, 6x6, 8x8 and 10x10. These
results for 6 different grid sizes are illustrated through 3-
dimensional plots in Figure 7. From this figure, we can
see that speedups for partitioning in pdirection in general
outperformed those in z-direction. This is particularly true
when the grid was square. However, when the grid was
large in the *dimension such as 61x21, this was not always
the case. This is perhaps due to the nature of some of
the computationally-intensive (equations which require less
communication in the y-dimemion. However, in almost all
cases, we observed that partitioning in both dimensions was
better than partitioning in just one direction. For example,
when the grid size was 61x61, the speedup using a 4x4 pro-
cessor grid was 11.013. On the other hand, the speedup
was 10.294 using 8x2 processor grid and was 10.604 using
2x8 processor grid. Similar observations can be made about
other cases.

Our fourth set of result (Figure 8) is a template showing
the state of the ocean at different times. The state of the
ocean is described by observing the horizontal velocity com-
ponents (u, V) and the vertically averaging stream-function
($). The grid size in this case was 61x61. In order to ob-
serve these variables, we set tlhe vertical velocity (0) and
density (p) and dynamic pressure (4) equal to 0. This was
done to remove the effect of the height. Observations were
made at time steps 0, 10, 20, 30, 40 and 50. This figure
indicates the smooth movements of variables at different
times.

(a) Speedupfor 21x21 grid. (b) Speedupfor4lx21 grid.

(c) Speedupfor41x41 grid. (d) Speedupfor61x21grid.

(e) Speedupfor 61x41 grid. (f) Speedup for 61x61 grid.

Figure 7. Speedup plots for various grids.

6 Conclusions

In this paper, we described the parallel implementation
of a grand-challenge problem, the Primitive-Equation Nu-
merical Ocean Circulation Model, on the Intel Paragon.
In our experiments, we considered barotropic continental
shelf waves in at periodic channel as a test, problem. Results
show that the problem scaled very well and yielded a good
speedup despite a large fraction of the serial computation.

While reasonable speedup was obtained by partitioning
the domain in either direction, it is better to have an evenly-
partitioned processor mesh in order to minimize the relative
wastage in both mesh directions. This is because for a
sufficiently large problem size, it is possible to obtain a
further improvmements in speedup by partitioning in both
dimensions wlhen the number of nodes is very large, say,
100.

There are several possible extensions to our work some
of which are listed below:

l devise a scheme to parallelize t!he elliptical PDE
solver;

53

Proceedings of the 10th International Parallel Processing Symposium (IPPS '96)
1063-7133/96 $10.00 © 1996 IEEE

(a) Horizontal (b) Horizontal
velocity corn- velocity com-
ponent 21 at ponent v at
time step 0. time step 10.

(c) Horizontal
velocity COIU-

ponent u at
time step 20.

(d) Horizontal (e) Horizontal (f) Horizontal
velocity com- velocity com- velocity com-
ponent 21 at ponent 2, at ponent v at
time step 30. time step 40. time step 50.

Figure 6. States of the horizontal velocity component 21 at differenttimes.

exploit control parallelism in addition to the data
parallelism;
heterogeneous scheduling techniques may be em-
ployed to run the serial part on a fast workstation
while the fine-grained computations are executed on
the parallel processors;
obtain further improvement by possibly partitioning
the domain in the z-direction.

The model has numerous applications. The water mass
and circulation in the polar region have strong impact in the
change of our climate through the circulation between po-
lar, mid-latitude, and tropical oceans. The model can also
be used for various other studies, such as coastal trapped
waves, shelf-break fronts, eastern boundary current, bottom
density front, coastal up-welling and down-welling, and iso-
lated topography.

References

[l] A. Beckmann and D. B. Haidvogel. Numerical Simu-
lation of Flow Around a Tall Isolated Seamount. Part
I: Problem Formulation and Model Accuracy. Journal
of Physical Oceanography, 23:1736-1753, 1993.

[a] R. Bleck and D. B. Boudra. Wind-Driven Spin-Up in
Eddy-Resolving Ocean Models Formulated in Isopyc-
nit and Isobaric Coordinates. Journal of Geophysical
Research, 91:7611-7621, 1986.

[3] K. Bryan. A Numerical Investigation of Nonlinear
Model of a Wind-Driven Ocean. Journal of Atmo-
spheric Sciences, 20:594-606, 1963.

[41

151

[61

PI

181

[91

[101

[Ill

PI

1131

[I41

[I51

[I61

D. C. Chapman and D. B. Haidvogel. Formation of
Taylor Caps over a Tall Isolated Seamount in a Strat-
ified Ocean. Geophysical and Astrophysical Fluid Dy-
namics, 64:31-65, 1992.
D. C. Chapman and D. B. Haidvogel. Generation of
Internal Lee Waves Trapped over a Tall Seamount.
Geophysical and Astrophysical Fluid Dynamics, 69:33-
54, 1993.
D. C. Chapman and S. Lentz. Trapping of a Coastal
Density Front by the Bottom Boundary Layer. Journal
of Physical Oceanography, 24:1464-14’79, 1994.
T. L. Freeman and C. Phillips. Parallel Numerical
Algorithms. Prentice Hall, 1992.
G. Gawarkiewicz. Steady Wind Forcing of a Density
Front over a Circular Bank. Journal of Marine Re-
search, 51:109-134, 1993.
G. Gawarkiewicz and D. C. Chapman. Formation and
Maintenance of Shelfbreak Fronts in an Unstratified
Flow. Journal of Physical Oceanography, 21:1225-
1239, 1991.
G. Gawarkiewicz and D. C. Chapman. The Role of
Stratification in the Formation and Maintenance of
Shelf-Break Front. Journal of Physical Oceanography,
221753-772, 1992.
D. B. Haidvogel, A. Beckmann, D. C. Chapman, and
R. Q. Lin. Numerical Simulation of Flow Around a
Tall Isolated Seamount. Part II: Resonant Generation
of Trapped Waves. Journal of Physical Oceanography,
23:2373-2391, 1993.
D. B. Haidvogel, J. L. Wilkin, and R. Young. A
Semi-Spectral Primitive Equation Ocean Circulation
Model using Vertical Sigma and Orthogonal Curvilin-
ear Horizontal Coordinates. Journal of Computational
Physics, 94:151-185, 1991.
N. E. Heaps. Three-Dimensional Coastal Ocean Mod-
els. American Geophysical Union, 208, 1987.
E. E. Hoffmann, K. S. Hedstrom, J. R. Moisan, D. B.
Haidvogel, and D. L. Mackas. Use If Simulated Drifter
Tracks to Investigate General Transport Patterns and
Residence Times in the Coastal Transition Zone. Jour-
naZ of Geophysical Research, 96:15041-15052, 1991.
H. Hsu. Numerical Studies of Arctic Shelf Circulation
for Wintertime Dense Water and Summertime Light
Water (Invited). In Arctic System Science (ARCSS)
- Ocean Atmosphere Ice Interaction (OAII) Modelling
Workshop, Monterey, CA, July 13-14, 1992.
H. Hsu, R. C. Beardsley, and J. F. Price. Includ-
ing Surface and Bottom Boundary Layer Physics in
a Primitive-Equation Model to Study Coastal Circu-
lations. In AGU 1992 Ocean Science Meeting, New
Orleans, LA, January 27-31, 1992.

[17] Intel Supercomputer Systems Division. Paragon
User’s Guide. Intel Corporation, June 1994.

[18] J. L. Wilkin and D. C. Chapman. Scattering of
Coastal-Trapped Waves by Irregularities in Coastline
and Topography. Journal of Physical Oceanography,
20:396-421, 1990.

54

Proceedings of the 10th International Parallel Processing Symposium (IPPS '96)
1063-7133/96 $10.00 © 1996 IEEE

