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Abstract' 
The DAG scheduling problem is a rich land of research 

and a plethora of algorithms for solving this problem have 
been reported in the literature. However, designing a 
scheduling algorithm of low complexity without 
sacrificing performance remains a challenging obstacle 
from a practical perspective. In this paper, we present a 
local search-based scheduling algorithm that attempts to 
meet this challenge. The proposed algorithm is called Fast 
Assignment using Search Technique (FAST). Its overall 
time complexity is only 0 ( e )  where e is the number of 
edges in the DAG. The algorithm works by first generating 
an initial solution and then refining it using local 
neighborhood search. The algorithm outperforms 
numerous previous algorithms while taking dramatically 
smaller execution times. The distinctive feature of our 
research is that the performance evaluation is not carried 
out using simulation, rather we have tested our proposed 
algorithm and compared it with other algorithms using a 
parallel compiler with real applications on the Intel 
Paragon. 
Keywords: Local Search, Multiprocessors, Parallel 
Processing, Scheduling, Task Graphs. 

1 Introduction 
To efficiently exploit the tremendous potential of high- 

performance architectures, the tasks of a parallel 
application must be carefully decomposed and scheduled 
to the processors so that the execution time is minimized. 
When the characteristics of the parallel program, such as 
execution times of the tasks, amount of communication 
data, and task dependencies are known a priori, 
scheduling can be done statically. The parallel program, 
with such known information, can be modeled as a node- 
and edge-weighted directed acyclic graph (DAG), in 
which the nodes and edges represent tasks and messages, 
respectively. With such a static model, the scheduler is 
invoked off-line or during compile-time and thus can 
afford moderate time complexity in order to generate a 
better schedule. This form of multiprocessor scheduling 
problem is called static scheduling or DAG scheduling. 

Static scheduling in most cases is NP-complete [3],  [4], 
and optimal solutions exist only in three simple cases: (i) 
scheduling a tree-structured DAG with identical node 
weights to an arbitrary number of processors [3] ,  (ii) 
scheduling an arbitrary DAG with identical node weights 
to two processors [3], and (iii) scheduling an interval- 
ordered DAG to an arbitrary number of processors [3]. 
Thus, heuristic approaches are sought to tackle the 
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problem under more realistic cases. 
There have been a large number of static scheduling 

heuristics reported in the literature [1], [SI, [11], [13]. 
However, while generating good solutions, very few of 
them have a low complexity. Thus, most of the algorithms 
are impractical in a real environment. In a recent study [ 13, 
we compared 21 such algorithms and made a number of 
findings. For example, we observed that an O ( v 3 )  
scheduling algorithm (here v denotes the number of nodes 
in the DAG) can take more than an hour to schedule a 
DAG with 1,000 nodes (typical in many applications). 
Taking such a large amount of time to produce a schedule 
for an application is a major obstacle in using these 
algorithms with parallel compilers. Some algorithms have 
low complexities but their solution quality is not 
satisfactory [ 11. The objective of this study is to propose a 
low complexity DAG scheduling algorithm that can 
produce efficient schedules. 

The most common technique for DAG scheduling is to 
assign priorities to the nodes of the DAG, and allocate the 
higher priority nodes to the appropriate time slots on the 
processors [7]. The solution quality (schedule length) is 
highly dependent on the accuracy of the priorities. To 
determine the priorities more accurately, some algorithms 
spend extra computation steps. Backtracking or 
recalculation of priorities can incur even higher 
complexity. 

While it is understood that static scheduling is off-line 
and some extra time can be afforded in generating a better 
solution, the time complexity of an algorithm is an 
important issue from a practical point of view. In this 
regard, some of the pioneering work done by Yang and 
Gerasoulis [ 181 addressed this problem and proposed some 
novel techniques for reducing the time complexity of the 
scheduling algorithms. The objective of our work is to 
propose an algorithm that has a comparable or lower 
complexity while producing even better solutions. 

We propose a new algorithm using a technique called 
local search [6], [15] which has been successfully applied 
to solve many NP-hard optimization problems [12]. Our 
algorithm has two phases. In the first phase, we generate a 
moderately optimized schedule quickly without spending 
a large amount of time to generate a good schedule at one 
shot. Then, in the second phase, we employ the local 
search technique to refine the schedule. The overall time 
complexity of our algorithm, which is called Fast 
Assignment using Search Technique (FAST), is only 
0 ( e )  where e is the number of edges in the DAG. The 
performance evaluation is carried out not only using 
simulation for randomly generated task graphs, but the 
proposed algorithm is also tested and compared it with 
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other algorithms using an actual parallel compiler with real 
applications on the Intel Paragon. 

The rest of this paper is organized as follows. In the 
next section, we introduce the parallel program model used 
in the DAG scheduling problem. In Section 3, we describe 
some of the related work on DAG scheduling reported in 
the literature. In Section 4, we discuss our proposed 
algorithm. Section 5 contains the performance results, and 
the final section concludes the paper. 
2 Background 

In the static scheduling problem, a parallel program is 
typically modeled by a directed acyclic graph (DAG) 
G = ( V, E )  , where Vis a set of v nodes and E is a set of 
e directed edges. A node in the DAG represents a task 
which is a set of instructions that must be executed 
sequentially in the same processor. The weight on a node 
is called the computation cost of a node ni and is denoted 
by w ( n i )  . The edges in the DAG, each of which is 
denoted by ( n ,  nj)  , correspond to the communication 
messages and precedence constraints among the nodes. 
The weight on an edge is called the communication cost of 
the edge and is denoted by c ( ni, nj)  . The source node of 
an edge is called the parent node while the destination 
node is called the child node. A node with no parent is 
called an entry node and a node with no child is called an 
exit node. A Critical Path (CP) of a DAG is a set of nodes 
and edges constituting a path which has the largest length. 
The length of the CP is the sum of the computation costs 
and communication costs along the path. 

The communication-to-computation-ratio (CCR) of a 
parallel program is defined as its average communication 
cost divided by its average computation cost on a given 
system. A node is not ready (i.e., cannot start execution) 
before it gathers all of the messages from its parent nodes. 
The communication cost among two nodes assigned to the 
same processor is assumed to be zero. If node ni is 
scheduled to processor P, ST(n i ,  P )  and F T ( n ,  P )  
denote the start time and finish time of ni on processor P, 
respectively. After all nodes have been scheduled, the 
overall execution time or schedule length, is defined as 
maxi { F T (  ni, P )  } across all processors. The objective 
of a DAG scheduling algorithm is to assign and schedule 
the nodes to processors such that the schedule length is 
minimized without violating the precedence constraints. 

The CP provides a lower bound on the schedule length 
of the DAG. Thus, nodes on the CP must be given higher 
priorities. To identify a CP node (CPN), two attributes, the 
t-level and 6-level [18], can be used. The t-level of a node 
ni is the length of the longest path from an entry node to 
ni excluding w ( ni) . The b-level of a node ni is the length 
of the longest path from ni to an exit node. The CPNs of a 
DAG are the nodes with the largest sum of t-level and b- 
level. Since the computations of t-level and b-level take 
0 ( e )  time, the CPNs can be identified also in 0 ( e )  
time. 

For scheduling, the t-level and b-level of a node can be 
used in a variety of ways. Some algorithms use t-level as a 

node priority, while some algorithms use b-level. Some 
algorithms use a variant of b-level, called the static b-level 
or simply static level (SL), in which only the computation 
costs and not the communication costs are taken into 
account. There are also two additional attributes called the 
as-soon-as-possible (ASAP) start time and as-late-as- 
possible (ALAP) start time [17]. The ASAP value is just 
the t-level. The ALAP start time is the largest possible start 
time of a node bounded by the CP length. Thus, the ALAP 
value is equal to the CP length minus the b-level of the 
node. Given the ASAP and ALAP values, the CPNs, 
whose ASAP and ALAP values are equal, can be easily 
identified. Notice that the CP can change during the 
scheduling process because some of the edges are zeroed 
if the connected nodes are scheduled to the same 
processors. To overcome this situation, some algorithms 
re-compute the values of t-level and b-level. This increases 
the complexity since, if the scheduling algorithm takes v 
steps to schedule all the nodes, the re-computation of 
priorities can take an overall time of 0 ( ev )  , which can be 
0 ( v3) in the worst case. 

In Figure 1, an example DAG and the values of SL, t- 
level (ASAP), b-level, and ALAP of its nodes are provided. 
The CPNs of the DAG are shown in dark and the edges on 
the CP are shown with thick arrows. 

node SL  t-level b-level ALAP 
12 0 37 0 
8 6 23 14 
8 3 23 14 
9 3 20 17 

5 10 15 22 
5 22 15 22 
5 18 15 22 
1 36 1 36 

*n1 
(b) n2 

n3 
n4 
n5 10 3 30 7 

*n1 

*n9 

"6 

n8 

Figure 1:  (a) A task graph; (b) The static ievels (SLs), r-levels 
(ASAP times), b-levels, and ALAP times of the nodes (CPNs are 
marked by an asterisk). 
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3 Related Work 
A large number of DAG scheduling algorithms have 

been reported in the literature. In this section, we describe 
four related scheduling algorithms: the Mobility Directed 
(MD) algorithm [17], the Earliest Task First (ETF) 
algorithm [SI, the Dynamic Level Scheduling (DLS) 
algorithm [ 141, and the Dominant Sequence Clustering 
(DSC) algorithm [18]. 
3.1 The MD Algorithm 

The MD (Mobility Directed) algorithm selects a node 
ni for scheduling based on an attribute called the relative 
mobility, which is defined as dividing the difference 
between the ALAP and ASAP by w ( ni). At each step, the 
MD algorithm selects the node with the smallest relative 
mobility for scheduling. In finding a processor for the 
node, the MD algorithm schedules the node to the first 
processor that can accommodate the node, The time 
complexity of the MD algorithm is 0 ( v3)  . 
3.2 The ETF Algorithm 

The ETF (Earliest Time First) algorithm computes, at 
each step, the earliest start times for all ready nodes and 
then selects the one with the smallest start time. When two 
nodes have the same value of their earliest start times, the 
ETF algorithm breaks the tie by scheduling the one with 
the higher static level. The time complexity of the ETF 
algorithm is 0 (pv2 )  . 
3.3 The DLS Algorithm 

The DLS (Dynamic Level Scheduling) algorithm uses 
an attribute called dynamic level (DL) which is the 
difference between the static b-level of a node and its 
earliest start time (i.e., t-level) on a processor. The node- 
processor pair that gives the largest value of DL is selected 
for scheduling. The time complexity of the DLS algorithm 
is 0 (pev)  . The high complexity of the algorithm is due 
to the pair-wise matching of the nodes to processors. 
3.4 The DSC Algorithm 

The DSC (Dominant Sequence Clustering) algorithm 
considers the Dominant Sequence (DS) of a graph. The DS 
is simply the CP of the partially scheduled DAG. The 
algorithm is briefly described below. The DSC algorithm 
tracks the CP of the partially scheduled DAG at each step 
by using the composite attribute (6-level + t-level) as the 
priority of a node. The DSC algorithm does not select the 
node with the highest priority for scheduling unless the 
node is ready. This is done in order to lower the time 
complexity of the algorithm because the t-level of a node 
can be computed incrementally and the b-level does not 
change until the node is scheduled. The time complexity of 
the DSC algorithm is 0 ( ( e  + v )  logv). 
4 The Proposed Algorithm 

The local search-based algorithm called Fast 
Assignment using Seqrch Technique (FAST), has two 
phases: 

1) generate an initial schedule using the classical list 
scheduling method in 0 ( e )  time using the given 

number of available processors; 

in O(e )  time. 
2) refine the schedule using local neighborhood search 

In the following, we first describe how to determine 
node priorities and generate an initial schedule in 0 ( e )  
time. Then we describe how the local search technique can 
be applied to improve upon the initial schedule. 
4.1 Determining Node Priorities 

To generate an initial schedule, we employ the 
traditional list scheduling approach --construct a list and 
schedule the nodes on the list one by one to the processors. 
The list is constructed by ordering the nodes according to 
the node priorities. The list is static so that the order of 
nodes on the list will not change during the scheduling 
process. The reason is that as the objective of our 
algorithm is to produce a good schedule in 0 (e) time, we 
do not re-compute the node priorities after each scheduling 
step while generating the initial schedule. Nonetheless, if 
the schedule length of the initial schedule is optimized, the 
subsequent local search process can start at a better 
solution point and thereby, can generate a better final 
schedule. 

In order to construct a static list of nodes ordered in 
accurate priorities, we employ a novel method for the 
arrangement of nodes. As discussed earlier, the CP nodes 
(CPNs) are the more important nodes because their 
scheduling order can have a direct impact on the schedule 
length. Thus, we assign the highest priority to CPNs. 
However, a CPN cannot be scheduled before all of its 
parent nodes are scheduled. To tackle this problem, we 
partition the nodes of the DAG as follows: In a connected 
graph, an In-Branch Node (IBN) is a node, which is not a 
CPN, and from which there is a path reaching a Critical 
Path Node (CPN). An Out-Branch Node (OBN) is a node, 
which is neither a CPN nor an IBN. For the DAG shown 
earlier in Figure 1, the CPNs are shown with dark color, 
the IBNs are uncolored. There is no OBN in this DAG. 

When a CPN is considered for scheduling, all the IBNs 
reaching it as well as its parent CPN must have been 
scheduled. Thus, the IBNs reaching a CPN must occupy 
higher positions on the list than the CPN itself. The OBNs 
are relatively less important nodes so that they can occupy 
lower positions on the list. To further differentiate the 
importance among the IBNs, we order the IBNs in a 
decreasing order of b-levels. The OBNs are also ordered in 
increasing b-levels. Given these observations, we can 
formalize our method of constructing the scheduling list, 
which is called the CPN-Dominate List, as follow. 
CPN-Dominate List: 
(1) Make the entry CPN to be the first node in the list. Set 

Repeat 
(2) If n, has all its parent nodes in the list then 
(3) 
(4) else 
( 5 )  

Post to 2. Let nx be the next CPN. 

Put nx at Post in the list and increment Post. 

Suppose n is the parent node of nz which is not in 
the list anyhas the largest b-level. Ties are broken by 
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choosing the parent node with a smaller t-level. If nr 
has all its parent nodes in the list, put n,, at Post in 
the list and increment Post. Otherwise, recursively 
include all the ancestor nodes of ny in the list so that 
the nodes with larger b-levels are considered first. 

(6) Repeat step (5) until all the parent nodes of n, are in 
the list. Put n, in the list at Post. 

(7) endif 
(8) Make n, to be the next CPN. 
Until all CPNs are in the list. 
(9) Append all the OBNs to the list in a decreasing order 

of b-level. 
It is obvious that the above procedure for constructing 

the CPN-Dominate List takes only 0 ( e )  time since each 
edge is visited once. 
4.2 The Initial Schedule 

Using the CPN-Dominate List, we can schedule the 
nodes on the list one after another to the processors. Again, 
in order not to incur high complexity, we do not search for 
the earliest slot on a processor. Instead, we simply 
schedule a node to the ready-time of a processor. Initially, 
the ready-time of all available processors are zero. After a 
node is scheduled to a processor, the ready-time of that 
processor is updated. By doing so, a node is scheduled to a 
processor that allows the earliest start time, which is 
determined by checking the processor’s ready-time with 
the node’s data arrival time (DAT). The DAT of a node can 
be computed by taking the maximum value among the 
message arrival times across the its parent nodes. If the 
parent is scheduled to the same processor as the node, the 
message arrival time is simply the parent’s finish time; 
otherwise it is equal to the parent’s finish time (on a remote 
processor) plus the communication cost of the edge. Not 
all processors need to be checked in this process. Instead, 
we can examine the processors accommodating the parent 
nodes together with a new processor (if any). The 
procedure for generating the initial schedule can be 
formalized below. 
Initialschedule() 
(1)  Construct the CPN-Dominate List. 
Repeat 
(2) Remove the first node ni from the list. 
(3) Schedule ni to the processor, among the processors 

accommodating the parent nodes of ni together with a 
new processor (if any), that allows the earliest start 
time by checking ni ’s DAT with the ready-times of 
the processors. 

Until the list is empty. 
The time complexity of InitialSchedule() is determined 

as follows. The first step takes 0 ( e )  time. In the repeat 
loop, the dominant step is the procedure to determine the 
data arrival time of a node. The cumulative time 
complexity of this step throughout the execution of the 
repeat loop is also 0 ( e )  . Thus, the time complexity of 
InitialSchedule() is again 0 ( e )  . 

To illustrate how InitialSchedule() works, we can 
consider the DAG shown in Figure l(a) again. The CPN- 
Dominate List is {n , ,  n3, n2, n7, n6, n5, n4, ng,  n9}. Note 

that ng is considered after n6 because n6 has a smaller t- 
level. Using the CPN-Dominate List, we can consider the 
initial schedule produced by InitiulSchedule(). For 
comparison, the schedules generated by the MD, ETF, and 
DLS algorithms are shown in Figure 2. The schedule 
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Figure 2: Schedule generated by (a) the MD algorithm (schedule 
length = 32); (b) the ETF and DLS algorithm (schedule length = 29). 

generated by the DSC algorithm is shown in Figure 3. The 
schedule generated by InitialSchedule() is shown in Figure 
4’(a). Note that the ETF and DLS algorithms generate the 
same schedule. As can be seen, the MD algorithm 
produces the worst schedule. This is due to the fact that the 
MD algorithm does not schedule a node to the earliest 
possible time slots even though it re-computes priorities at 
each step. The MD algorithm schedules the node n4 late 
because it schedules the node n5 too early so that it blocks 
n4 .  The schedule generated by the ETF and DLS 
algorithm is better but is still not satisfactory. The problem 
is that they schedule the node n5 early because it has a 
higher value of static level (SL). But n5 is in fact not as 
important as n2 which should have occupied an earlier 
slot. As a result, n7 also starts late and the schedule length 
cannot be reduced. The DSC algorithm generates a slightly 
better schedule. The problem with the schedule is that the 
node ng is scheduled to a late time slot because its parent 
nq is not scheduled to the same processor due to the 
minimization of n4 ‘s start time. The schedule length of 
generated by InitialSchedule() is the shortest even though 
it does not employ sophisticated (and hence time 
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Figure 3: Schedule generated by the 
DSC algorithm (schedule length = 27). 

PE0 PE1 PE2 PE3 PE0 PE1 PE3 PE3 

Figure 4: (a) Schedules generated by the InirialSchedule() (schedule 
length = 24); (b) The final schedule after the local search process with 
node n6 is transferred to PE 3 (schedule length = 23). 

consuming) strategies to compute priorities and to select 
the best time slots for nodes. However, the initial schedule 
can be further refined to obtain a better solution, as will be 
discussed below. 

4.3 Local Search 
Local search is an old technique for combinatorial 

optimization. It has been applied to solve NP-hard 
optimization problems [6]. The principle of local search is 
to refine a given initial solution point in the solution space 
by searching through the neighborhood of the solution 
point. Recently a number of efficient heuristics for local 
search, i.e., conflict minimization random selection1 
assignment, and pre- and partial selectionlassignment, 
have been developed [5], [15], [16]. 

Sosic and Gu developed four efficient local search 
algorithms for a benchmark problem for constrained 
optimization problems, i.e., the n-queen problem. The 
Queen-Search1 (QS 1) algorithm is a probabilistic local 
search algorithm that runs in approximately O(nlogn) 
time. The QS2 and QS3 are near linear local search 
algorithms with random selection/assignment and partial 
selectiodassignment [ 151. The QS4 algorithms is a linear 
time local search algorithm with pre- and partial random 
selectiodassignment [ 161. 

To apply the local search technique to the DAG 
scheduling problem, we have to define a neighborhood of 
the initial solution point (i.e., the initial schedule). A 
simple neighborhood point of a schedule in the solution 
space is another schedule which is obtained by transferring 
a node from a processor to another processor. 

In the DAG scheduling problem, one method to 
improve the schedule length is to transfer a blocking node 
from a processor to another processor. The notion of 
blocking is simple: a node is called blocking if removing it 
from its original processor can make the succeeding nodes 
to start earlier. In particular, we are interested in 
transferring the nodes that block the CPNs because the 
CPNs are the more important nodes. However, high 
complexity will result if we attempt to locate the actual 
blocking nodes on all the processors. Thus, in our 
approach, we only generate a list of potential blocking 
nodes which are the nodes that may block the CPNs. 
Again, to maintain complexity low, the blocking node list 
is static and is constructed before the search process starts. 
A natural choice of blocking node list is the set of IBNs 
and OBNs because these nodes have the potential to block 
the CPNs in the processors. In the schedule refinement 
phase, the blocking node list defines the neighborhood that 
the local search process will explore. 

To illustrate how the search process works, we can 
consider the initial schedule of the example DAG 
discussed previously. The blocking node list of the DAG 
is {n2,  n3, n4, n5, n6, ns} .  We can notice that the node n6 
blocks the CPN ng . In the local search process, it is highly 
probable that n6 is selected for transferring. Suppose it is 
transferred from PE 1 to PE 3. The resulting schedule is 
shown in Figure 4(b). We can notice that even though the 
start times of the n5 and ng are increased the final 
schedule length is shorten. 
4.4 The Search-Based Scheduling 

Based on the search process mechanisms and the 
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neighborhood for searching, we can formalize the 
proposed FAST (Fast Assignment using Search 
Technique) algorithm below. 
The FAST Algorithm: 
(1) ZnitialSchedule() 
(2) Construct the blocking node list which contains all the 

IBNs and OBNs. 
(3) searchstep = 0; 
(4) do { /* search */ 
(5) Pick a node ni randomly from the blocking node 

list. 
(6) Pick a processor P randomly. 
(7) Transfer n, to P. 
(8) If schedule length does not improve, transfer ni 

back to its original processor. 
(9) } while (searchstep++ < MAXSTEP); 

The time complexity of the FAST algorithm is 
determined as follow. As discussed earlier, the procedure 
ZnitiulScheduZe() takes 0 ( e )  time. The blocking node list 
can be constructed in 0 ( v )  time as the IBNs and OBNs 
are already identified in the procedure ZnitialSchedule(). In 
the main loop, the node transferring step takes 0 ( e )  time 
since we have to re-visit all the edges once after transferred 
the node to a processor in the worst case. For our 
experiments, the constant MAXSTEP can be as small as 
100 even for huge DAGs with tens of thousands of nodes. 
Indeed, for the results to be presented in the next section, 
the value of MAXSTEP is fixed at 64. Thus, the overall 
complexity of the FAST algorithm is 0 ( e ) .  

5 Performance 
In this section, we present the performance results of 

the FAST algorithm and also compare them with those of 
DSC, MD, ETF, and DLS algorithms. We performed 
experiments using real workload generated from serial 
applications by a prototype parallelization and scheduling 
tool called CASCH (Computer Aided SCHeduling) [2]. 
The CASCH tool generates a task graphs from a sequential 
program, uses a scheduling algorithm to perform 
scheduling, and then generates the parallel code in a 
scheduled form for the Intel Paragon. The timings for the 
nodes and edges on the DAG are assigned through a timing 
database that was obtained through benchmarking. 
CASCH also provides a graphical interface to interactively 
run and test various algorithms including the ones 
discussed in this paper. Instead of just measuring the 
schedule length through a Gantt chart, we measure the 
running time of the scheduled code on the Paragon. 
Various scheduling algorithms, therefore, can be more 
accurately tested and compared through CASCH using 
real applications on an actual machine. 

We also performed additional experiments with 
randomly generated large DAGs consisting of thousands 
of nodes. Notice that the MD and DSC algorithms assume 
unlimited number of processors while others do not. Thus, 
to investigate the performance of the algorithms in a fair 
manner, we give more than enough processors to all the 
algorithms. 

5.1 Real Workload 
In our first experiment, we tested the FAST algorithm 

with the DAGs generated from three real applications: 
Gaussian elimination, Laplace equation solver and Fast 
Fourier Transform (FFT) [2], [lo], [17]. The Gaussian 
elimination and Laplace equation solver applications 
operate on matrices. Thus, the number of nodes in the 
DAGs generated from these applications are related to the 
matrix dimension N and is about 0 ( N 2 )  . On the other 
hand, the FFT application accepts the number of points as 
input. We examine the performance in three aspects: 
application execution time, number of processors used and 
the scheduling algorithm running time. 

The results for the Gaussian elimination are shown in 
Figure 5. In the table shown in Figure 5(a), we normalized 
the application execution times obtained through all the 
algorithms with respect to those obtained through the 
FAST algorithm. We can notice that the programs 
scheduled by the FAST algorithm are 3% to 15% faster 
than the other algorithms. Note that the results of the DSC 
algorithm for matrix dimensions 16 and 32 were not 
available because the DSC used more than the available 
Paragon processors in scheduling the parallel program. In 
general, the DSC algorithm uses 0 ( v )  processors. 
Concerning the number of processors used, the FAST, 
ETF and DLS algorithms used about the same amount of 
processors. The number of processors used by all the 
algorithms is shown in Figure 5(b). The scheduling times 
of all the algorithms are shown in Figure 5(c). As can be 
seen, the DSC algorithm is the fastest algorithm and the 
proposed FAST algorithm is very close to it. The ETF and 
DLS algorithms running times are relatively large. The 
MD algorithm is much slower than the other algorithms. 
Indeed, the MD algorithm is about 0 (v) times slower 
than the other algorithms. 

The results for the Laplace equation solver are shown 
in Figure 6. The percentage improvements of the FAST 
algorithm over the other algorithms are up to 25%. The 
number of processors used in tis case are about the same 
for the FAST, MD, ETF and DLS algorithms. The DSC 
algorithm again uses more processors than the other 
algorithms. For the scheduling times, the FAST algorithm 
is the fastest among all the algorithms. The MD algorithm 
is again 0 ( v )  times slower than the other algorithms. The 
results for the F I T  are shown in Figure 7. The FAST 
algorithm is again better than all the other four algorithms 
in terms of execution time and running times. 
5.2 Random DAGs 

To test the scalability and robustness of the FAST 
algorithm, we performed experiments with very large 
random DAGs. These DAGs were synthetically generated 
in the following manner. Given the size of the DAG (i.e., 
v), we first randomly generated the height of the DAG 
from a uniform distribution with mean roughly equal to 
&. For each level, we generated a random number of 
nodes which was also selected from a uniform distribution 
with mean roughly equal to & . Then, we connected the 
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Matrix Dimension 

____ -. 

Matrix Dimension 

Algorithm 4 8 16 32 

FAST 1.00 1.00 1.00 1.00 
DSC 1.05 1.08 N.A. N.A. 
MD 1.00 1.03 1.08 1.10 
ETF 1.00 1.07 110 1.15 
DLS 1.00 1.08 1.10 1.14 

(a) Normalized execution times of Gaussian 
elimination on the Intel Paragon. 

Matrix Dimension 

Algorithm 4 8 16 32 

FAST 1.00 1.00 1.00 1.00 
DSC 1.00 1.09 1.13 1.21 
MD 1.00 1.12 1.15 1.25 
ETF 1.00 1.11 1.14 1.24 
DLS 1.00 1.10 1.13 1.23 

(a) Normalized execution times of Laplace equation 
solver on the Intel Paragon. 

Matrix Dimension 

Algorithm 4 8 16 32 

FAST 4 8 16 32 
Dsc 5 22 95 128 
M D 2 3 4 7  
ETF 3 7 16 32 
DLS 3 7 16 32 

Algorithm 4 8 16 32 

FAST 1 4 7 14 
DSC 1 13 37 64 
MD 1 5 8 13 
ETF 1 5 8 16 
DLS 1 5 8 15 

(b) Number of Processors used for the Gaussian elimination. 

Matrix Dimension (Number of Tasks) 

(b) Number of Processors used for the Laplace 
equation solver. 

Matrix Dimension (Number of Tusks) 

Algorithm 4 (20) 8 (54) 16 (170) 32 (594) 

FAST 0.06 0.09 0.15 0.52 
DsC 0.04 0.06 0.09 0.21 
MD 6.33 6.85 39.54 266.89 
ETF 0.02 0.06 0.24 2.41 
DLS 0.08 0.09 0.42 4.00 

(c) Scheduling times (sec) on a SPARC Station 2 foI 
the Gaussian elimination. 

Figure 5 :  Normalized execution times, number of processors 
used, and scheduling algorithm running times for the 
Gaussian elimination for all the scheduling algorithms. 

nodes from the higher level to lower level randomly. The 
edge weights were also randomly generated. As the real 
workload discussed above consists of mainly sparse 
DAGs, the random DAGs generated were deliberately 
made denser. The sizes of the random DAGs were varied 
from 2000 to 5000 with an increment of 1000. For these 
graphs, we simply measured the schedule length produced 
by an algorithm. The results for the random DAGs are 
shown in Figure 8. Note that the MD algorithm was 
excluded from the comparison because it took more than 8 
hours to produce a schedule for a 2000-node DAG. The 
FAST algorithm performed slightly worse the ETF and 
DLS algorithm but still outperformed the DSC algorithm 
by 7% to 12% margin. From Figure 8(b), we note that the 
DSC algorithm used an unrealistic number of processors. 
Concerning the scheduling times, we can immediately 
note from Figure 8(c) that the ETF and DLS algorithms 
were considerably slower than the FAST and DSC 
algorithms. 

The proposed FAST algorithm outperforms the DSC 
algorithm both in terms of solution quality and complexity. 
It also outperforms the ETF, MD, and DLS algorithms 
most of the time. Furthermore, the ETF, MD, and DLS 
algorithms need a huge amount of scheduling time to 
produce a schedule for a realistically large DAG (note that 
the DAG for the Gaussian elimination application with 
matrix dimension 128 has 8192 nodes). Thus, the FAST 

~~~ ~~ ~~ 

Algorithm 4 (18) 8 (66) 16 (258) 32 (1026) 

FAST 0.05 0.09 0.35 1.28 
DSC 0.07 0.11 0.40 4.29 
MD 6.23 7.64 111.46 768.90 
ETF 0.04 0.05 0.28 3.06 
DLS 0.06 0.11 0.55 5.33 

(c) Scheduling times (sec) on a SPARC Station 2 for 
the Laplace equation solver. 

Figure 6: Normalized execution times, number of processors 
used, and scheduling algorithm running times for the 
Laplace equation solver for all the scheduling algorithms. 

algorithm is more preferable for practical use in parallel 
program scheduling. 
6 Conclusions 

The algorithm complexity and quality of the solution 
can become conflicting goals in the design of efficient 
scheduling algorithms. Our study indicates that not only 
does the solution qualities of existing algorithms differ 
considerably but their running times can vary by even huge 
margins. In this paper, we have presented a new 
scheduling algorithm which takes linear time to generate 
solutions with high quality. We have compared the 
algorithm with a number of well-known reportedly 
efficient scheduling algorithms. The results obtained 
demonstrate that the proposed algorithm is better than the 
other algorithms in terms of both solution quality and 
complexity. The major strength of the algorithm is the 
construction of the CPN-Dominate list in which the 
priorities of nodes are accurately captured. The list is used 
to generate an initial schedule upon which the local search 
process is invoked to refine and produce a final schedule. 
Nonetheless, there can be cases that the initial schedule is 
not good enough so that the local search process may get 
stuck in a poor local minimum point in the solution space. 
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Numer ofPoints 

Algorithm 16 64 128 512 
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Number of Nodes 

Algorithm 2000 3000 4000 5000 

FAST 1.00 1.00 1.00 1.00 
DSC 1.08 1.07 1.11 1.12 
ETF 0.98 0.97 0.97 0.97 
DLS 0.98 0.98 0.97 0.98 

(a) Normalized schedule lengths for random DAGs. 

Number of Nodes 

Algorithm 2000 3000 4000 5000 

FAST 141 195 174 219 
DSC 1577 2253 3036 3758 
ETF 123 139 162 198 
DLS 131 197 166 212 

(b) Number of Processors used for random DAGs. 

Number ofNodes (Number ofEdges) 

2000 3000 4000 5000 
Algorithm (81049) (96847) (140821) (179902) 
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random DAGs. 

Figure 8: Normalized schedule lengths, number of 
processors used and scheduling times for the random DAGs 
for all the scheduling algorithms. 
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