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Abstract' 
Distributed systems comprising networked 

heterogeneous workstations are now considered to be a 
viable choice for high-performance computing. For 
achieving a fast response time from such systems, an 
eficient assignment of the application tasks to the 
processors is imperative. The general assignment problem 
is known to be NP-hard, except in a few special cases with 
strict assumptions. While a large number of heuristic 
techniques have been suggested in the literature that can 
yield sub-optimal solutions in a reasonable amount of 
time, we aim to develop techniques for optimal solutions 
under relaxed assumptions. The basis of our research is a 
best-Jrst search technique known as the A* algorithm from 
the area of artijicial intelligence. The original search 
technique guarantees an optimal solution but is not 
feasible for problems of practically large sizes due to its 
high time and space complexity. We propose a number of 
algorithms based around the A * technique. The proposed 
algorithms also yield optimal solutions but are 
considerably fastel: The first algorithm solves the 
assignment problem by using parallel processing. 
Parallelizing the assignment algorithm is a natural way to 
lower the time complexity, and we believe our algorithm to 
be novel in this regard. The second algorithm is based on 
a clustering based pre-processing technique that merges 
the high afinity tasks. Clustering reduces the problem size, 
which in tum reduces the state-space for the assignment 
algorithm. We also propose three heuristics which do not 
guarantee optimal solutions but provide near-optimal 
solutions and are considerably fastel: By using our 
parallel formulation, the proposed clustering technique 
and the heuristics can also be parallelized to further 
improve their time complexity. 

Keywords: Best-first search, parallel processing, task 
assignment. mapping, distributed systems. 

1 Introduction 
The fast progress of network technologies and 

sequential processors has made distributed computing 
systems, such as networks of heterogeneous workstations 
or PCs, an attractive alternative to massively parallel 
machines. To exploit the capabilities of these systems for 
an effective parallelism, the tasks of an application must be 
properly assigned to the processors. 

Given a parallel program represented by a task graph 
and a network of processors also represented as a graph, 
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the assignment problem is to find an allocation of the tasks 
to the processors that results in the minimum turnaround 
time. This is usually done by assigning an equal amount of 
load to all processors and by reducing the overhead of 
interaction among them. An assignment can be static or 
dynamic, depending upon on the time at which thie 
allocation or assignment decisions are made. In a static 
assignment the information 'about the tasks and processors 
in the systems is assumed to be known in advance, and the 
tasks are allocated to the processors before starting thle 
execution. The task assignment problem, also known as 
the allocation problem or the mapping problem [4], is well 
known to be NP-hard [6] ,  but continues to be regarded ais 
an interesting and important problem. 

Most of the algorithms proposed in the past yield sub- 
optimal solutions while optimal algorithms exist only for 
restricted cases or small problem sizes. Optimal solutions, 
however, are required in many situations where 
performance is the primary goal. Also, once an optimal 
assignment of a program is determined, one can reuse this 
information for future mappings. 

The simplest approach to finding an optimal solution is 
an exhaustive search. But since there are nm ways for 
assigning m tasks to n processors, an exhaustive search iis 
impractical. Another possibility is to reduce the size of the 
state-space using an informed search. The A* algorithm 
from the area of artificial intelligence is one such informed 
search algorithm. The algorithm, despite guaranteeing an 
optimal solution, is not feasible for problems of practically 
large sizes because of its high time and space complexity. 
Thus, we need ways to either further reduce the size of the 
state-space, or speedup the search process using parallel 
processing - or do both. 

Since a parallel program is executed on multiple 
processors, it is natural to utilize the same processors to 
speedup the mapping of the program. Parallel processing 
can help in reducing the search time and allows to find 
optimal assignments for larger problem sizes, as compared 
to the serial algorithms. Even for a sub-optimal solution, 
parallel processing can help in solving a problem of larger 
size. However, very little work has been done on using 
parallel processing in solving the assignment problem; a 
few exceptions are the parallel heuristic for the scheduling 
problem proposed by Ahmad and Kwok [2] and the 
parallel heuristics for the assignment problem proposed by 
Bultan and Akyanat [SI. To the best of our knowledge, no 
prior work on finding an optimal assignment using parallel 
processing has been reported. 
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We propose a parallel algorithm that generates an 
optimal solution for assigning an arbitrary task graph to an 
arbitrary network of heterogeneous processors. The 
algorithm, running on the Intel Paragon parallel machine, 
gives optimal assignments for small to medium size 
problems, with a reasonable speedup. We also propose a 
clustering based pre-processing algorithm that merges the 
high affinity tasks before starting the search. This reduces 
the problem size whch in turn reduces the size of the state- 
space for the assignment algorithm. We also propose three 
heuristics which do not guarantee optimal solutions but 
yield near-optimal solutions and take considerably less 
execution time. The proposed heuristics and the 
clustering-based approach can also be parallelized using 
the proposed parallel formulation. 

2 Problem Definition 
A parallel program can be partitioned into a set of m 

communicating tasks represented by an undirected graph 
GT = ( V ,  ET) where VT is the set of vertices, { t l ,  t2 ,.., t,,,}, 
and ET is a set of edges labelled by the communication 
costs between the vertices. The interconnection network of 
n processors, {p1,p2,..,pn}, is represented by an n*n matrix 
L, where an entry Lg is 1 if the processors i and j are 
connected, and 0 otherwise. 

A task ti from the set VT can be executed on any one of 
the n processors of the system. In a heterogeneous system 
[16], each task has an execution cost associated with it on 
a given processor. The execution costs of tasks are given 
by a matrix X, where the matrix entry X, is the execution 
cost of task i on processor p .  When two tasks ti and tj 
executing on two different processors need to exchange 
data, a communication cost is incurred. Communication 
among the tasks is represented by a matrix C, where Cq is 
the communication cost between task i andj  if they reside 
on two different processors. The load on a processor is the 
combination of all the execution and communication costs 
associated with the tasks assigned to it. The total 
completion time of the entire program will be the time 
needed by the heaviest loaded processor. 

Task assignment problem is to find a mapping of the set 
of in tasks to n processors such that the total completion 
time is minimized. The mapping or assignment of tasks to 
processors is given by a matrix A, where A, is 1 if task i is 
assigned to processor p and 0 otherwise. The load on a 
processor p is given by 

m n m m  

C X i p  * A i p +  C C C (CijAipAjqLpq). 
i =  1 q = l i = l j =  1 

(P * 4) 

The first part of the equation represents the total 
execution cost of the tasks assigned to processorp, and the 
second part is the communication overhead on p. To find 
the processor with the heaviest load, the load on each of the 
n processors needs to be computed. The optimal 
assignment is the one that results in the minimum load on 
the heaviest loaded processor among all the assignments. 

3 Related Work 
A large number of task assignment algorithms have 

been proposed using various techniques such as network 
flow [17], integer programming [ 121, state-space search 
[14, 15, 181, clustering [3], bin-packing [19], randomized 
optimization [ 1, 5,7, 81, etc. Most of these algorithms can 
be classified according to the taxonomy given in Figure 1. 
At the first level of the hierarchy these algorithms can be 
classified as optimal and sub-optimal categories, where the 
optimal algorithms can be further classified as restricted or 
non-restricted categories. Restricted algorithms yield 
optimal solutions in a polynomial time by restricting the 
structure of the program andor the multicomputer system. 
Non-restricted algorithms, on the other hand, consider the 
problem in a more general context; they give optimal 
solutions but not necessarily in a polynomial time. 

Sub-optimal algorithms can be divided into 
approximate or heuristics classes. Approximate 
algorithms [9] assume the same computational model used 
by the optimal algorithm. But instead of searching the 
complete solution space for optimal solution, approximate 
algorithms guarantee a solution that is within a certain 
range from the optimal solution. Heuristic algorithms 
make use of special parameters which affect the system in 
indirect ways, for example, clustering the groups of 
heavily communicating tasks together. A greedy heuristic 
starts from a partial assignment and assigns one task at 
each step until a complete assignment is obtained; in 
general, backtracking is not allowed. Bin-packing 
techniques use a sizing policy, an ordering policy, and a 
placement policy for the tasks to be assigned. Randomize 
optimization methods start from a complete assignment 
and search for an improvement in the assignment by 
exchanging and moving tasks among different processors. 

Because of the intractable nature of the problem most 
of the research is focused on the development of heuristic 
algorithms. There are also some optimal algorithms 
available either for restricted cases of the problem or for 
very small problem sizes. 

4 Overview of the A* Technique 
The A* algorithm is a bestfirst search algorithm [13]. 

It has been extensively used for problem solving in 
artificial intelligence. The algorithm is used to search 
efficiently in a search-space (which is a tree in our case but 
can be some other type of graph). It searches the nodes of 
the tree starting from the root called the start nude (usually 
a null solution of the problem). Intermediate nodes 
represent the partial solutions while the leaf nodes 
represent the complete solutions or goals. 

Associated with each node is a cost which is computed 
by a cost function f. The nodes are ordered for search 
according to this cost, that is, the node with the minimum 
cost is searched first. The value o f f  for a node n is 
computed as: 

ffn) = gfn) + hfn) 
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Figure 6: A classification of task assignment algorithms. 

where g(n) is the cost of the search path from the start node The A” Algorithm 
to the current node n; h(n) is a lower bound estimate of the 
path cost from node n to the goal node (solution). 
Expansion of a node is to generate all of its successors or 
children and compute the f value for each of them. The 
algorithm maintains a sorted list, called OPEN, of nodes 
(according to their f values) and always selects a node with 
the best cost for expansion. Since the algorithm always 
selects the best cost node, it guarantees an optimal solution. 
Since for a leaf node n, h(n) is 0, we will set the value of 
fln) equal to g(n) for all leaf nodes. 
4.1 Application to Task Assignment 

For the task assignment problem under consideration, 
the search space is a tree. The initial node (the root) is a 
node with null assignment, i.e., no task is assigned; 
intermediate nodes are nodes with partial assignments, i.e., 
some tasks are assigned while others are still unassigned at 
this stage. A solution (goal) node is a node with a complete 
assignment (all task are assigned). For the computation of 
the cost function, g(n) is the cost of partial assignment (A) 
at node n, that is, the load on the heaviest loaded processor. 
For the computation of h(n), two sets Tp (the set of tasks 
which are assigned to the heaviest loaded processor p) and 
U (the set of tasks which are unassigned at this stage of the 
search and have a communication link with any task in set 
Tp) are defined. Now each task ti in U will be assigned to 
either processor p or any other processor q which has a 
direct communication link with p. Thus, there can be two 
kinds of costs associated with the assignment of each ti: 
X l P  (the execution cost of ti on processor p) and the sum of 
communication cost with all the tasks in set T Let cost (ti) 
be the minimum of these two costs, then h(nfis computed 
as; 

h ( n )  = cos t ( t , )  
ti€ U 

The algorithm A* is described as follows: 

(1) Build the initial node s and insert it into the list OPEN 
(2) Setfls) = 0 
(3) Repeat 
(4) 
(5) if (n is not a solution) 
(6) Generate successors of n 
(7) 
(8) if (n’ is not at the last level in the search tree) 
(9) An’) = g(n ’) + h(n ’) 
(1 0) else A n  ’) = g(n ’) 
(1  1) 
(12) endfor 
(13) end if 
(14)if (n is a solution) 
(15) 
(16)Until (n is a Solution) or (OPEN is empty) 

A study by Ramakrishnan et al. [14] showed that the 
order in which the tasks are considered for allocation has 
a great impact on the performance of the algorithm (for the 
same cost function used). Their study indicated that a 
significant performance improvement could be achiewed 
by first considering the tasks with larger weights in the 
computation of the optimal cost at the shallow levels of the 
tree. They proposed a number of heuristics for ordering; the 
tasks. Out of these heuristics the so called m i n i i w  
sequencing heuristic has been shown to perform the best. 
The minimax sequencing works as follows. Consider a 
matrix H of m rows and n columns where m is the number 
of tasks and n is the number of processors. The entry I1 (i, 
k)  of the matrix is given by 

H ( i , k )  = X i , + h ( v ) ,  

Select the node n with the smallestfvalue. 

for each successor node n’ do 

Insert n’ into OPEN 

Report the Solution and stop 

where h(v) is given by 

h ( v )  = min (Xjk,  CV) ,  
j e  U 

where U is the set of unassigned tasks which communicate 
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with ti. The minimax value, mm (ti) of task ti is defined as 

m m ( t i )  = min{H(i,k), 1 I k l n } .  

The minimax sequence is then defined as: 
ll = (rl, r2, ..., r m } ,  mm (ri) 2 mm (ri+,), Vi. 

4.2 An Illustrative Example 
Given a set of 5 tasks, { t ,  t,, t2, t3, t4} and a set of 3 

processors {pa p,, p2} as shown in Figure 2, the algorithm 
first generates the minimax sequence (t* t,, t 2, t4, t3} .  

I Po P1 PZ 
11 9 / \ I l5  
12 8 

t1 I l 4  
Processor graph 13 6 

Execution cost matrix 

Task graph 
Figure 2: An example task graph and a processor and the network, 
execution costs of the tasks on various processors. 

Figure 2 illustrates the search tree for finding the 
assignment for this example. 

A node in the search tree includes the partial 
assignment of tasks to processors as well as the value off 
(the cost of partial assignment). The assignment of m tasks 
to n processors is indicated by an m digit string ‘a@ l...am. 
,’, where a, ( 0 I i I m - 1 ) represents the processor (0 to 
n - 1 ) to which ith task has been assigned. A partial 
assignment means that some tasks are unassigned; the 
value of ai equal to ‘X’ indicates that ith task has not been 
assigned yet. Each level of the tree corresponds to a task, 
thus replacing an ‘X’ value in the assignment string with 
some processor number. Node expansion is to add the 
assignment of a new task to the partial assignment. Thus 
the depth (6) of the search tree is equal to the number of 
tasks m, and any node of the tree can have a maximum of 
n (no of processors) successors. 

The root node includes the set of all unassigned tasks 
‘XXXXX’. For example in Figure 2, the allocations of to to 

are considered by determining the costs of assignments at 
the first level of the tree. The assignment of to to po 
(‘0”) results in the total cost An) being equal to 30. 
The g(n) in this case equals 15 which is the cost of 
executing to on po. The h(n) in this case also equals 15 
which is the sum of minimum of the execution or 
communication costs of t, and t4 (tasks communicating 

PO (‘OXXXX’), to topi (‘lXXXX’), and to top2 (‘2XXXX’) 

with to). The costs of assigning to top, (26) and to to pz (24) 
are calculated in a similar fashion. These three nodes are 
inserted to the list OPEN. Since 24 is the minimum cost, 
the node ‘2XXXX’ is selected for expansion. The search 
continues until the node with the complete assignment 
(‘201 12’) is selected for expansion 

At this point since this is the node with a complete 
assignment and the minimum cost, it is the goal node. 
Notice that all assignment strings are unique. A total of 39 
nodes are generated and 13 nodes are expanded. In 
comparison, an exhaustive search will generate nm = 243 
nodes in order to find the optimal solution. 

5 The Proposed Algorithms 
In this section, we describe our proposed parallel and 

clustering algorithms for optimal solutions. The sub- 
optimal algorithms are also explained in this section. 
5.1 The Parallel Algorithm 

The objective of the parallel algorithm is to divide the 
search tree among the processing elements (PES) as evenly 
as possible and to avoid the expansions of non-essential 
nodes, that is, the nodes which are not expanded by the 
sequential algorithm. A good overview of parallel depth- 
first and best-first search algorithms are given in [lO][ll]. 
To distinguish the processors on which the parallel task 
assignment algorithm is running from the processors in the 
problem domain, we will denote the former with the 
abbreviation PE (processing element which in our case is 
the Intel Paragon processor). We call this parallel 
algorithm the Optimal Assignment with Parallel Search 
(OAPS) algorithm. 
The OAPS Algorithm: 
(1) Init- Partition() 
(2) Setup-Neighborhood() 
(3) Repeat 
(4) 
( 5 )  if (a solution found) 
(6) 
(7) 
(8) else 
(9) 
(10) endif 
(1 1) Record the solution and stop 
(12) end if 
(13) If (OPEN’S length increases by a threshold U) 
(14) Select a neighbor P E j  using RR 
(15) Send the current best node from OPEN to j 
(16) end if 
(17) If (Received a node from a neighbor) 
(18) Insert it to OPEN 
(19) if (Received a solution from a PE) 
(20) Insert it to OPEN 
(21) if (Sender is a neighbor) 
(22) 
(23) endif 
(24)Until (OPEN is empty) OR (OPEN is full) 

Expand the best cost node from OPEN 

if (it’s better than previously received Solutions) 
Broadcast the Solution to all PES 

Inform neighbors that I am done 

Remove this from neighborhood list 
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Figure 3: The search tree for the example problem 
(nodes generated = 39, nodes expanded = 13). 

Initially the search tree is divided statically based on 
the number of processing elements (PES) P in the system 
and the maximum number of successors, S, of a node in the 
search tree. There could be three situations: 

Case 1) P< S: Each PE will expand only the initial 
node which results in S new nodes. Each PE will get one 
node and additional nodes are distributed in a round robin 
(RR) fashion. 

Case 2) P = S: Only the initial node will be expanded 
and each PE will get one node. 

Case 3) P > S: Each PE will keep expanding nodes 
starting from the initial node (the null assignment) until the 
number of nodes in the list is greater than or equal to P. List 
is sorted in an increasing order of cost values of the nodes. 
The first node in the list will go to PEI, the second node 
will go to PEp, the third node goes to PE,, the fourth node 
goes to and so on. Extra nodes will be distributed in 
RR fashion. Although there is no guarantee that a best cost 
node at the initial levels of the tree will lead to a good cost 
node after some expansions, the algorithm still tries to 
distribute the good nodes as evenly as possible among all 
the PES. 

If a solution is found during the search, the algorithm 
terminates. Note that there is no master PE which is 
responsible for generating and distributing nodes among 
the PES. Therefore, the overhead of the static node 
assignment is negligible as compared to the host-node 
style because the whole process is done in parallel. To 
illustrate this, we consider the example of the task 

assignment problem of assigning 10 tasks to 4 proce:ssors 
using 2 PES (PE1 and PE2). Here S is 4 since a node in the 
search tree can have a maximum of 4 successors. Each PE, 
therefore, generates 4 nodes numbered from 1 to 4 (as 
shown in Figure 4 where the number in a box is the f value 
of the node). PE1 will then get the first and third nolde 3, 
while PE2 will get the second and fourth node. 

Figure 4 An initial static assignment. 

If there is no communication among the PES after the 
initial static assignment (i.e., every PE just searches its 
own tree), some of them may work on a good part of the 
search space, while others may expand unnecessary nodes 
(i.e., the nodes which the serial algorithm will not expand). 
This can result in a poor speedup. To avoid this, PES need 
to communicate to share the best part of the search space 
and to avoid unnecessary work. This communicatioin can 
be global (a PE broadcast its nodes to all other PEk) or 
local (a PE communicates only with its neighbors). 

In our formulation we have used a round robin (RR) 
within neighborhood communication strategy. With this 
communication strategy a PE can share the best part of the 
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Figure 5: The operation of the parallel assignment algorithm using three PES. 
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search space. Further, a PE can avoid unnecessary work 
explicitly by communicating with its neighbors and 
implicitly by broadcasting its solution to all other PES. 
Since the Paragon PES are connected together with a mesh 
topology, a PE can have a maximum of 4 neighbors. Since 
most of the time a PE communicates only with its neighbor, 
a low communication overhead is incurred making the 
algorithm more scalable as compared to a global 
communication strategy. 

A PE periodically (when OPEN increases beyond a 
threshold U) selects a neighbor in a RR fashion and then 
sends its best node to that neighbor. As a result, the load is 
balanced and the best part of the search space is shared 
within the neighborhood of a PE. At finding a solution, a PE 
broadcasts it to all the PES, thus helping in avoiding the 
unnecessary work for a PE that is working on the bad part 
of the search space. Once a node receives a better cost 
solution than its current best node, it stops expanding the 
unnecessary nodes. The PE that finds the first solution 
broadcasts its result to all other PES, and from that point 
each PE broadcasts its solution only if its cost is better than 
a previously received solution. 

With an initial partitioning, every PE has one or more 
nodes in its list OPEN. Each PE then determines the PES in 
its neighbor by using its own position in the mesh (topology 
of the Intel Paragon). A PE starts expanding new nodes 
starting from the initial nodes. PES then interact with each 
other for exchanging their best nodes and to broadcast their 
solutions. When a PE finds a solution, it records it in a 
common file (opened by all PES) and stops. The optimal 
solution is the solution with the minimum costs among all 
PES. 

To illustrate the operation (see Figure 5) of the OAPS 
algorithm, we consider the example used earlier for the 
sequential assignment algorithm. Here we assume that the 
parallel algorithm runs on three PES connected together as 
a linear chain. Initially three nodes are generated as in the 
sequential case. Then, through the initial partitioning, these 
nodes are assigned to the three PES. Each PE then goes 
through a number of steps. In each step, there are two 
phases: the expansion phase and the communication 
phase'. In the expansion phase, a PE sequentially expands 
its nodes (the newly created nodes are shown with thick 
borders). It will keep on expanding until it reaches the 
threshold (U) (which is set to be 3 in this example). In the 
communication phase, a PE selects a neighbor and then 
sends its best cost node to it. The selection of the neighbors 
is done in a RR fashion. In Figure 5, the exchange of the 
best cost nodes among the neighbors is shown by dashed 
arrows. In the 5th step, PE1 finds its solution, broadcasts it 
to other PES, and then stops. In the final step, PE0 also 
broadcasts (not shown here for the sake of simplicity) its 
solution to PE2 which finally records its solution and stops. 

1. The synchronous operation of PES shown here is just to 
illustrate the concept; the actual algorithm is fully 
asynchronous and thus may follow a different sequence - 
the final result will of course be the same. 

5.2 The Preprocessing Clustering Algorithm 
The algorithm starts by clustering (or merging) the 

tasks in the task graph. Two tasks are merged if the 
communication cost among them is so high that they will 
never be assigned to two different processors in the 
optimal assignment; Equations 5.1 and 5.2 given below 
ensure that the two tasks under consideration are never 
assigned to two different processors. Clustering reduces 
the size of the task graph and hence the depth (d) of the 
resulting search tree. 

The algorithm first sorts the edges of the task graph, 
and then selects the largest edge (i, 13, where task i and j are 
the tasks connected with the edge. The cost of an edge 
when mapped onto an edge of the processor graph1 is 
defined as the sum of the edge cost and the minimum 
execution cost of task i or j on the processors of the 
processor edge. The cost is computed using the following 
equation: 

min { ( X i p  + Cij) Lps, ( X j q  + Cij) 
min ( min { < X j p  + Cij> Lpq, ( X i ,  + Cij> Lpq> 
p ,  q = 1 to n 

The cost of assigning tasks i and j to the same 
processor is the minimum execution cost of two tasks on 
either of the two processors of the processor edge. This 
cost is given by the following equation. 

L p q l )  (5.1) 

min <Xip  + Xis>, (X iq  + Xjq>l  (5.2) 
p .  q =  1 ton 

A selected edge is merged if the cost of mapping it onto 
all of the processor edges is higher than the cost of 
assigning the two tasks on the same processor. The 
clustering process is repeated for all the edges of the 
processor graph. 

The clustering process is illustrated by an example, 
given in Figure 6, where the largest edges selected are 
shown as thick edges. In the first iteration the edge (tz, t4) 
is selected and task t4 is merged with t2 and its 
communication links with other tasks are added to t2. In 
the second iteration t, is merged. In the third iteration, the 
selected edge is not merged, and the algorithm stops. 

After clustering, the tasks are reordered using the 
minimax sequencing as discussed in Section 4.1. Now .the 
tasks are selected for the assignment using this sequence. 

The clustering procedure guarantees an optirnal 
assignment only when the processors are fully-connec ted 
since the searching algorithm assigns two communicating 
tasks only to the directly connected processors. 
5.3 Sub-optimal Algorithm 

The sub-optimal algorithm, henceforth referred to as 
the Sub-optimal Assignments (SA) algorithm, is designed 
to obtain the solution faster and to overcome the high 
memory requirements of A*. The basic idea in this 
algorithm is that when the search process reaches a certain 
level deep in the search tree, some search can be avoided 
(some tree nodes can be discarded) without moving far 
from the optimal solution. Based on this reasoning, we 
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Figure 6:  Illustration of the clustering procedure. 
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propose three heuristics, SA1, SA2 and SA3. The first 
heuristic (SA1) is explained as follows. When the 
algorithm selects a node for expansion and that node 
belongs to a level R or deeper than that in the search tree, 
it generates only its best successor instead of generating all 
the successors (i.e., it discards all successors except the 
best one). The second heuristic (SA2) is similar to the first: 
when the search reaches at level R for the first time, the 
algorithm starts discarding all successors except the best 
node among all the nodes selected for expansion. The third 
heuristic (SA3) is similar to the second heuristic except the 
nodes are discarded from the global list (OPEN). For 
example, if n nodes are generated, then all of them are 
inserted to OPEN and n - 1 high cost nodes are discarded. 

There is a little chance of running out of memory for 
the above mentioned heuristics. This is because when a 
node at level R is selected, the algorithm inserts only one 
node to OPEN for expansion and takes one node from it. 
Thus, no extra memory is required. Moreover, the running 
time of the algorithm is reduced by a large factor since the 
algorithm explores fewer nodes once it reaches the level R. 

6 Experimental Results 
We first discuss the workload used in our study and 

then present the experimental results obtained by the 
proposed algorithms. 
6.1 Workload Generation 

A realistic workload is important to validate an 
assignment algorithm but very little information is 
available about process communication patterns 
encountered in distributed systems. In distributed systems, 

there is usually a number of process groups with heavy 
interaction within the group, and almost no interaction 
with the processes outside the group [3]. With this 
intuition, we first generated a number of primitive task 
graph structures such as the pipeline, the ring, the server, 
and the interference graphs, all consisting of 2 to 8 nodes. 
The complete task graphs, consisting of 10-28 nodes, were 
generated by randomly selecting these primitives 
structures and combining them until the desired number of 
tasks was reached. This was done by first selecting a 
primitive graph and then combining it with a newly 
selected graph through a link labelled with cost 1; the last 
node was connected back to the first node. 

Since we assume the processors to be heterogeneous (a 
homogeneous processor system is a special case of a 
heterogeneous processor system), the execution cost varies 
from processor to processor in the execution cost matrix 
(X); the average value, however, remains the same. To 
generate the execution costs for the nodes and the 
communication costs for the edges, we used a parameter 
called the communication-to-cost ratio (CCR) which is the 
value of the average computation cost divide by the 
average communication cost per node. For example, if the 
total communication cost (sum of the cost of all of the 
edges connected to this task) of task i is equal to 16.0 and 
the CCR is equal to 0.2, then the average execution cost of 
i will be given by: 16.0 /0.2 = 80. We used the following 
values of CCR: 0.1, 0.2, 1.0, 5.0, and 10.0. 

For the processor graphs, we used 3 topologies each 
comprising 4 nodes. For the parallel algorithm OAPS, we 
used 2,4,8,  and 16 Paragon PES. 
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6.2 Running Times of the Serial Algorithm 
In this section we present the running times of various 

versions of the serial assignment algorithm. Table 1 and 2 
include the running times for different variations of the 
serial algorithm for the fully-connected topology 
comprising 4 processors. The running times of the serial 
algorithm without any task ordering or clustering are given 
in column 2; we will refer to it as A* in these tables. An 
entry '**' in a column means the algorithm could not 
generate the solution for this case using 50 MB of memory, 
i.e., it ran out of memory after a few hours (usually 5 to 6 
hours). The third column shows the running times of the 
algorithm with the task ordering; we will refer to this 
technique as A*R. The fourth column shows the running 
times of the algorithm with clustering and then ordering; 
we will refer to this technique as A*C. The fifth column is 
the ratio of the running times of the two algorithms. 

For the fully-connected topology of 4 processors and 
with CCR equal to 1.0 (see Table l), the clustering 
algorithm is on the average 3.95 times faster than A*R. 
Table 2 presents the running times for the same topology 
but with CCR equal to 5.0. The clustering algorithm is on 
the average 28 1 times faster. The clustering algorithm 
performs well when the value of CCR is high because for 
these cases the optimal algorithm also assigns highly 
communicating tasks to the same processor. For lower 
values of CCR the algorithm does no merging for most of 
the cases. 

It is observed that for most of the cases, task graphs 
with CCR equal to 0.1 and 0.2 result in larger search trees 
as compared to the graphs with CCR equal to 1.0,5.0, and 
10. The task graphs with CCR equal to 10.0 take the lowest 
running times. This is because the cost of the optimal 
solution for a higher CCR is less than a lower CCR and 
thus the algorithm finds the optimal solution quickly 
starting from an initial cost 0. For example, a task graph 
consisting of 10 tasks with the CCR equal to 10.0 has the 
solution cost equal to 7.36, while the same graph with the 
CCR equal to 0.1 has the solution cost equal to 374.00. 
Thus, the former takes only 0.40 seconds to find the 
solution while the latter takes 4.30 seconds. 

The processor topology also has a great impact on the 
size of the search tree as well as on the running time. This 
is because the algorithm assigns two communicating task 
to two different processors only if the processors are 
directly connected. So, in case of the line or ring topology, 
the algorithm prunes some of the nodes in the search tree 
based on this constraint. On the other hand, no such 
pruning is done for the fully-connected case. 
6.3 Speedup Using the Parallel Algorithm 

In this section, we present the speedup of the parallel 
algorithm using various number of processors. The 
speedup is defined as the running time of the serial 

Table 3 presents the speedup data for the fully- 
connected topology comprising 4 processors and the task 

algorithm over the running time of the parallel algorithm. 

No. of 
TaSkS 

10 

graphs with CCR equal to 0.1. The second collumn 
includes the running time of the serial algorithm while the 
third, fourth, fifth, and sixth columns include the speiedup 
of the parallel algorithm over the serial algorithm using 2, 
4, 8 and 16 Paragon PES, respectively. The bottom row of 
the table indicates the average speedup of all the task 
graphs. 

We can observe that the speedup increases with an 
increase in the problem size. Also the problems wiith a 
lower value of CCR yield a better speedup in most of the 
cases, since the running times of the serial algorithm in 
those cases are much longer compared to the parallel 
algorithm. 

Table 1 : The running times using the fully-connected 
topology (CCR = 1 .O) 

T(A*) T(A*R) T(A*C) 

3.35 0.87 0.17 

(sec) (sec) (sec) 

28 

Avg 

12 
14 
16 
18 
20 
22 
24 
26 

** 2451.56 2124.08 

139.54 
270.70 
822.08 

** 
** 
** 
** 
** 

0.73 
4.82 
36.08 
31.62 
55.78 
67.70 
191.27 
206.63 

0.77 
3.77 
1.67 

30.76 
22.19 
67.78 
55.21 
143.06 

-- 
" 
T(A*C) 

5.12 
0.95 
1.28 

21.60 
1.03 
2.51 
1.00 

3.46 
1 .A4 

1.15 

-- 

-- 
3.95 

Table 2: The running times using the fully-connected 
topology (CCR=5.0). 

No. of 
Tasks 

70 
12 
14 
16 
18 
20 
22 
24 
26 
28 

T(A*) 
(sec) 

0.24 
1.53 

35.98 
10.29 

6195.63 
** 
** 
** 
** 
** 

I I 

T(A*R) 

0.27 
0.49 
1.73 
1.67 

29.79 
21.96 
3.98 

3387.58 
4134.28 

52.86 

(sec) 

I 

T(A*C) 

0.08 
0.12 
0.25 
0.27 
0.55 
1.14 
3.18 
4.15 
2.19 
3.87 

(sec) 
T(A"R) 
T(A*C) 

3.37 
4.08 
6.92 
6.19 
54.16 
19.26 
1.25 

816.28 
1887.80 

-- 

13.66 -- -- 
The values of the average speedup for the fully- 
connected, ring, and line topologies are shown graphicially 
in Figure 7. 
6.4 Results of the Heuristics 

In this section, we present the result of comparing the 
three proposed heuristics (SA1, SA2, SA3) with the 
optimal algorithm. We make two kinds of comparisons. 
First, we compare the percentage deviation of the solution 
produced by SAl, SA2 and SA3 from that of OASS. This 
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deviation is defined as follows: 
%D = (Cost(SA) - Cost(0ASS) * 100) / Cost(0ASS) 
Second, we compare ratios of the running times of 

SA1, SA2 and SA3 to those of OASS. Optimal solutions 
are first obtained for the five task sets discussed in Section 
5.2 and then sub-optimal solution are obtained using SAl, 
SA2 and SA3 for the same task sets. Heuristic tree level 
used is: 

R = 141, 
where d is the maximum depth of the search tree. Table 4 
presents the results for the ring topology with 4 processors 
and the task graphs with CCR equal to 0.2. Each entry in 
the table is the average of five runs of each algorithm for 5 
task graphs generated using various permutations of the 
pipeline, the ring, the server and the interference sub- 
graphs. The average values of the percentage deviation in 
the solution and the ratios of the running times are 
indicated in the bottom row. 

The results indicate that SA3 always gives good 
solutions in terms of the percentage cost deviation from the 
optimal. This is because SA3 discards high cost nodes 
from the global list OPEN, so good nodes are always 
prevented from deletion. SA2 deviates more than SA3 but 
is faster. 

The average cost deviation and the ratio of time 
improvement for the fully-connected topology (with 
different values of CCR) is shown in Figure 8. It can be 
noted that the average percentage cost deviation for the 
cases with CCR equal to 5.0 and 10.0 is quite high as 
compared to the cases with lower values of CCR. This is 
because when the task graph has a larger value of CCR the 
optimal algorithm assigns more tasks to a single processor 
(for some cases all the tasks goes to one processor). 
Therefore, the optimal algorithm follows a rather straight 
path in the search tree considering less options. If the sub- 
optimal algorithm discards a node on this path, it will 
deviate far from the optimal. 

The availability of the optimal algorithm, sub-optimal 
heuristics, and the parallel algorithm gives a choice to the 
user to select a suitable algorithm depending upon the 
objective. If the objective is to find a solution in a short 
time, then SA2 can be used. To obtain a near-optimal 
assignments for a task graphs with higher values of CCR, 
SA3 can be used. If finding the optimal solution is the main 
objective without any regard to the algorithm running 
time, then the sequential A* can be used. If the resources, 
such as a parallel machine, are available, then OAPS can 
be used to speedup the running time of the optimal 
algorithm. 

7 Conclusions and Future Work 
We proposed algorithms for optimal and sub-optimal 

assignments of tasks to processors. We considered the 

problem under relaxed assumptions such as an arbitrary 
task graph with arbitrary costs on the nodes and edges of 
the graph, and processors connected through an 
interconnection network. Our algorithms can be used for 
homogeneous as well as heterogeneous processors, 
although in this paper we considered only the 
heterogeneous cases. We believe that to the best of our 
knowledge, ours is the first attempt in proposing a parallel 
algorithm for the optimal task-to-processor assignment 
problem. Although we kept the mapping of the algorithm 
on the Paragon PES simple, some fine refinements are 
possible to further improve the performance. 

A further study is required to understand the behavior 
of the parallel algorithm. One possibility is to implement 
quantitative load balancing of the tree nodes after a 
processor finds its solution, i.e., let the processor find more 
than one solution. Also, additional experimentation is 
required to find the ideal value of the threshold U. The 
clustering algorithm and the sub-optimal heuristic SA3 
may be combined in order to obtain faster and close-to- 
optimal assignments for task graphs with high values of 
CCR. Our future plans also include a parallelization and 
analysis of the heuristic algorithms (for an ideal tree level 
R )  to start applying the heuristics would also require more 
future works. 
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30.14 1.87 3.48 5.72 7.63 

58.96 1.96 3.68 3.60 12.85 

105.05 1.70 2.02 4.58 4.64 

1550.46 2.00 2.94 4.72 6.71 

Table 3: The speedup using the fully-connected topology (CCR=O. 1). 

18 

20 

Avg 

3839.00 2.00 3.86 7.59 13.16 

3191.86 1.78 3.72 5.62 9.97 

1.89 3.28 5.30 9.13 

m 
T(SA1) 

112 
1 54 
175 
4 17 
3 53 
2 35 
7 13 
6 19 
15 72 

490 

m 
T(SAP) 

2 68 
3 18 
3 94 
8 65 
7 22 
5 11 

37 97 
25 89 
108 75 

22 60 

Table 4: The time and cost comparison using the ring topology (CCR=O.2). 

No. of 

20 
22 
24 

C(SAI) -C(OASS) *lOQ 
C(OASS1 

7.20 
1.96 
4.08 
2.68 
1.86 
6.04 
2.81 
1.53 
3.52 

3.52 

- 
UOASS 

11.82 
2.24 
4.21 
3.41 
2.07 
6.31 
4.15 
2.51 
4.39 

3.53 

C(0ASS 

0.00 
1.49 
0.55 
0.55 
1.15 

2.30 
3.27 
0.94 
3.88 

1.67 

m 
T(SA3) 

1.95 
1.90 

2.48 
4.24 
2.81 
2.91 
22.59 
10.19 
40.81 

9.99 

145 



Proc topology = fully 
connected 

I 1 nil I 

8 
P 
7 6  U a 
$ 4  
v) 

2 

0 
0.1 0.2 1 5 10 

CCR 

Proc topology = ring 

0.1 0.2 1 5 10 

CCR 

I c w " 

9 - 5  
< 4  
a 
Q 
a 3  
- 2  

1 
0 
0.1 0.2 1 5 10 

C C R  

Proc topology = line 

Figure 7: The average speedup of the parallel algorithm. 
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Figure 8: The percentage cost deviation and speedup of the sub-optimal algorithms over the optimal algorithm. 
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