
Abstract
Many world wide web applications require access, transfer,

and synchronization of large multimedia data objects (MDOs)
(such as, audio, video, and images) across the communication
network. The transfer of large MDOs across the network
contributes to the response time observed by the end users. As the
end users expect strict adherence to response time constraints, the
problem of allocating these MDOs so as to minimize response
time becomes very challenging. The problem becomes more
complex in the context of hypermedia documents (web pages),
wherein these MDOs need to be synchronized during
presentation to the end users. Since the basic problem of data
allocation in distributed database systems is NP-complete, a need
exists to pursue and evaluate solutions based on heuristics for
generating near-optimal MDO allocations. In this paper, we i)
conceptualize this problem by using a navigational model to
represent hypermedia documents and their access behavior from
end users, ii) formulate the problem by developing a base case
cost model for response time, iii) design two algorithms to find
near-optimal solutions for allocating MDOs of the hypermedia
documents while adhering to the synchronization requirements,
and iv) evaluate the trade-off between time complexity to get the
solution and quality of solution by comparing the algorithms
solution with exhaustive solution over a set of experiments.

1 Introduction
Many world wide web applications require access, transfer

and synchronization of multimedia data objects (MDOs) (such as
audio, video, and images) [1], [4]. Moreover, the quality of
services provided in presenting these MDOs to end-users has
become an issue of paramount importance. End users have
started expecting strict adherence to synchronization and
response time constraints. Any application or system which
cannot respond quickly and in timely manner in presenting
MDOs to end users is at a clear disadvantage. In order to manage
and present large number of hypermedia documents (web pages)
and their MDOs, distributed hypermedia database systems have
been proposed [16]. In fact, a set of web servers can be treated as
a distributed hypermedia database system (DHDS). As the
hypermedia documents may not be located at the end users sites,
they need to be transferred across the communication network
incurring delay (increasing response time) in presenting the
MDOs of the hypermedia documents. Therefore, the allocation of
the hypermedia documents and their MDOs govern the response
time for the end-users. Moreover, as the MDOs in a hypermedia
document need to be synchronized, the allocation should also
adhere to these synchronization constraints.

The main problem with existing models for synchronization
requirements (such as,HyTime [5], [9], OCPN [8], AOCPN [10],

TPN [11] andXOCPN [15]; see [14] for a survey ofOCPNand
its variants) is that they do not provide any information about the
expected number of times each state (representingMDO or
hypermedia document) is needed in a unit time interval. Without
this information, the total response time in theDHDScannot be
estimated. In this paper, we design and evaluate data allocation
algorithms so as to optimize the response time for a set of end-
users while adhering to the synchronization requirements of the
MDOs presentation inDHDSs. In Section 2, we propose a graph
notion to represent navigation in the hypermedia systems and we
introduceOCPN modeling specification after that. In Section 3
we develop a cost model for the data allocation problem in
DHDSs. In Section 4 we describe the proposed algorithms based
on Hill-Climbing and probabilistic neighborhood search
approaches. In Section 5, we include the experimental results,
and Section 6 concludes the paper.

2 Modeling Hypermedia Documents
2.1 Navigation Model for Hypermedia Documents

A hypermedia system is a directed graphDG(H,E) whereH
= {D1, D2, ..., Dn} is the set of vertices, eachDp representing a
hypermedia document, and each directed edge fromDp to Dp’ is
a link denoting access of documentDp’ from documentDp.
Therefore, a user can start browsing the documents from (say)
documentDp and then proceed to access documentDp’ , and so
on. We have a label attached to each directed edge fromDp toDp’
giving the probability of end users accessing documentDp’ from
documentDp. These probabilities are generated by gathering
statistics (about document access, and browsing through logs of
users browsing activity) about end-user behavior over a period of
time. Further, since a user may end browsing after accessing any
hypermedia document, the probabilities of out-going edges from
a vertex do not add up to 1.0, and the difference is the probability
of ending the browsing at documentDp, and is shown by an edge
connecting to the ground (see Figure 1). An matrix
navigation_prob is used to capture this information.

Example 1: Suppose we have four hypermedia documents
D1 - D4, Figure 1 shows the navigation model and the
corresponding navigation_prob matrix.

From the above navigational model, we can calculate the
probabilities of accessing a hypermedia documentDp’ from

n n×

D1

D2

D4

D3

0.1

0.1

0.1

0.2

0.3 0.4

0.5

0.6

0.7

1

D1 D2 D3 D4

D1

D2

D3

D4

0 0.2 0.7 0

0 0 0.6 0.3

0 0 0 0

0.5 0 0.4 0

Figure 1: Probability model of navigational
links between hypermedia documents.

Allocating Data Objects to Multiple Sites for Fast Browsing of
Hypermedia Documents

Siu-Kai So, Ishfaq Ahmad, and Kamalakar Karlapalem
Department of Computer Science

The Hong Kong University of Science and Technology, Hong Kong
Email:{kai, iahmad, kamal} @cs.ust.hk

documentDp. This is done by considering all possible paths to
Dp’ from documentDp and calculating the probability of
accessingDp’ from documentDp for each path, and taking the
maximum of all these probabilities. Note that we assume each
document access and browsing from one document to another to
be independent events. Therefore, for a path withx edges from
documentDp to documentDp’, the probability of this path is the
product of x probabilities for the edges. Since there can be
potentially infinitely long paths, we limit the length of the path by
limiting the value of the cumulative probability given by the path
to be less than a parameter value (bpl). LetR be then x n matrix,
with each elementrjj’ giving the cumulative long run probability
of accessing documentDp’ from documentDp.

Example 1 (Cont.): From the navigation model, we can
construct a tree for each document representing the possible
navigation path for each session starting from that document.
These are given in Figure 2. We set thebpl value to be 0.01.
Notice that we do not need to further expand a node if the
document represented by that node is the same as that of the root.
(This happens in the first tree in Figure 2). Therefore, if we start
navigating the hypermedia system from documentD1, we have
probability 0.2 that we browse documentD2. For documentD3,
we have probability 0.7 if we follow the right path fromD1, but
probability = 0.12 if we follow the path

. In this case, we use the greater probability to
represent the long run probability of browsingD3 from D1 as 0.7.
Similarly other cumulative probability values are calculated.

Therefore, the matrixR is

2.2 Modeling Synchronization Constraints on MDOs
We use theObjectCompositionPetri Nets (OCPNs) [8] for

modeling the synchronization constraints among the MDOs in a
hypermedia document. Petri nets are composed by Places
(representing MDOs) and Transitions. We can transverse a
Transition (called as firing) if all Places pointing to this
Transition have a token and are in an unlocked state. When the
Transition fires, the Places that the Transition is pointing to will
become active (a token is added to these Places) and locked.
Places will become unlocked when their durations have expired.
All OCPN models can be mapped to a correspondingHyTime
model [2]. In Figure 3, the following synchronization constraint
is represented in OCPN1: MDOB has to be shown at the start of
browsing the hypermedia document, and after 40 units of time

MDO A must be shown in sync with it. TheOCPN specifications
of hypermedia documentsD1 to D4 are shown in Figure 3.

3 Cost Model of Data Allocation Scheme
Table 1 lists a number of notations used throughout this

paper.

3.1 Overview
In order to reduce response time for the end-users browsing

activities, we need to develop a cost model for calculating the
total response time observed. This response time depends on the
location of the MDOs and the location of the end-user. Further, it
depends on the synchronization constraints among the MDOs of
the hypermedia document browsed. The hypermedia document

0.2 0.6×
D1 D2 D3→ →

D1 D2 D3 D4

D1

D2

D3

D4

1 0.2 0.7 0.06

0.15 1 0.6 0.3

0 0 1 0

0.5 0.1 0.4 1 .

0.6

0.5

D1

D2 D3

D4D3

D1 D3

D2

D4D3

D3

D2 D3

D3

D1

D4

D3D2

D4D3

D3

D1

Figure 2: Navigation path starting from each
hypermedia document (bpl is set as 0.01).

0.6

0.6

0.5

0.5 0.4

0.4

0.4

0.7

0.7

0.70.2

0.2

0.2

0.3

0.3

0.3

Table 1: Symbols and their meanings.
Symbol Meaning

The ith site

The jth hypermedia document

Thekth MDO

m The number of sites in the network

n The number of hypermedia documents in the database system

k The number ofMDOs in the database system

The user navigation pattern matrix of sitei

The probability of using document as initial document if the

initial documnet isj in the previous navigation session at sitei

B The navigation initial document frequencies matrix

The frequency of using thejth document as initial point at theith site

C The transmission speed matrix of the network

The transmission speed from sitei to site

A The access frequencies matrix

The access frequency of documentj from sitei

l The allocation limit vector of the sites

The allocation limit of sitei

R The hypermedia document dependency matrix

The probability of retrieving document if browsing initial

document isj

TheOCPN specification of documentj

U The use matrix

The boolean value of whether documentj usesMDO k

The presentation duration ofMDO k in documentj

The presentation starting time ofMDO k in documentj

The size of thekth MDO

bpl The browsing probability limit.

The expected number of times documentj will be retrieved

D The delay matrix

The delay of presentation starting time of documentj at sitei

t The total delay

OCPN1: OCPN2:

OCPN4:OCPN3:

Figure 3: TheOCPN specification of each hypermedia document;
the tuple is [start time, duration, media size in kilobytes].

d1 d2

d3 d4

E A A

B

B

B

C

C

C

(0,40,2870)

(0,80,2870)

(0,80,1220)

(40,30,1220)

(0,55,1220)

(40,15,2280)

(0,30,2870)

(0,30,2280)

Si

D j

Ok

P
i

p
i

jj ′
j ′

bij

cii ′ i ′

aij

l i

r j j ′
j ′

OCPNj

ujk

dur jk

startjk
sizek

etj

dij

navigational model presented in Section 2.1 is used to estimate
the number of accesses (times browsed) to each MDO from each
site. This gives us information regarding affinity between the
MDOs and the sites of the distributed environment. Typically,
one would assign a MDO to a site which accesses it most. But this
may incur large delay for other sites which need to access this
MDO. Further, synchronization constraints may impose
additional delays in transferring the MDO to the end-user site.
This is done when two streams of MDOs need to simultaneously
finish their presentation, and one of them is for shorter duration
than the other. Since we are buffering the MDOs at the user sites
before the start of the presentation, the MDO allocation problem
needs to minimize this additional delay that is incurred because
of the synchronization constraints. We also take into
consideration limited buffer space constraint at end-users site and
user interaction during MDO presentation.

3.2 Total Response Time Cost Function
Suppose there arem sites in the distributed hypermedia

database system. Let be the name of sitei where .
Thesem sites are connected by a communication network. A
communication link between two sites and will have a
positive integer associated with it giving the transmission
speed from sitei to site . Notice that these values depend on the
routing scheme of the network. If fixed routing is used, we can
have the exact values. However, if dynamic routing is in used, we
can only obtain the expected values. Let there ben hypermedia
documents, called accessingk MDOs, named

.

From the navigation model, we can constructn trees
representing the navigation path of the session starting from each
document. As in Section 2.1, we must limit the level we will use
for our cost model by a threshold valuebpl, say 0.001. These
trees will give us some information about the probability of
retrieving document if we start navigating from .

For each site, we use an irreducible continuous-timed
Markov process [13] to model the user behavior in initial
browsing document (i.e., the document first browsed) as a
stationary regular transition probability matrix, .
These processes will converge in the long run and from these
long run behaviors, we can estimate the probability of browsing
each document from each site as the initial browsing document.
These Markov chains will haven + 1 states representing the
probabilities of using each of the documents as the initial
browsing document (n states), and probability of not browsing
any of the documents ((n+1)th state). Normalize the
probabilities derived from long run behavior Markov chain at
each site and multiply them by a constantS, we have the expected
frequencies of initial document out ofS browsing sessions. The
resultant information is represented by an matrixB.

We multiply this matrix to the matrixR obtained from
the hypermedia document trees to generate an matrixA
with entries giving the expected number of times needs to
retrieve theMDOs in . Further, we need the starting time,
duration, size, and presentation rate of eachMDO in each
hypermedia document. This information can be obtained from
the OCPN specification of MDOs in a hypermedia document.

A box will be added at the beginning of eachOCPN which
represents the delay in starting the presentation of the
hypermedia document so as to adhere to the synchronization
requirements. The duration of this delay box is related to the
browsing site and the sites where theMDOs in the document are
allocated. Thus, we use to represent the duration of the delay
box when site accesses document .

From theOCPN representations, we have the starting time
 and duration of eachMDO in each document

. In addition, the usage matrixU is generated from the
OCPN specifications. If document usesMDO , then set

 to 1, otherwise, set to 0. Then, by multiplyingA byU, we
can estimate the access frequencies of eachMDO from each site.
Let be the size ofMDO .

With this information, we can calculate by,

where represents the site where is allocated.

We can calculate the values of all , by
using the above formula. This formula means that the delay is
equal to the maximum value of (transmission duration -
presentation duration - presentation starting time) for eachMDO
in the document. A negative value implies that the transmission
time is shorter than the presentation time, we can start presenting
the MDOs in the hypermedia document as soon as the MDOs
arrive at the end-user site. A positive value implies that we must
delay the presentation, otherwise the MDOs presentation will end
after the synchronization time, and hence will not adhere to the
synchronization constraints.

Therefore, we have the cost function,

By minimizing this value through the change of the function
, we obtain the data allocation scheme that is optimal (the

(delay incurred) response time is minimal), while adhering to the
synchronization constraints.

3.3 User Interactions and Buffer Space Constraints
The model presented above does not consider user

interactions and buffer space constraints. It assumes that the user
does not interrupt the presentation and the size of the local
storage facility is large enough for storing any one of the
hypermedia documents in the hypermedia database system. By
including user interactions and buffer space constraints, there can
be four different cases for hypermedia document allocation
problem given below.

No user interaction and unlimited buffer space: This
is essentially the best scenario, because we can retrieve allMDOs
in a hypermedia document at the beginning since there is no
storage limitation. As there is no user interaction, the data can be
discarded immediately after use. The cost function for the
response time for each hypermedia document, as presented in
Section 3.2, is the maximum of the delays of the embedded
MDOs for satisfying the synchronization requirements.

User interaction and unlimited buffer space: By
including user interactions, some of theMDOs in a hypermedia
document may need to be presented multiple times (e.g. play in

Si 1 i m≤ ≤

Si Si ′

cii ′

i ′

D1 D2 … Dn, , ,{ }
O1 O2 … Ok, , ,{ }

r jj ′

Dj ′ Dj

Pi 1 i m<≤,

m n×
n n×

m n×
aij Si

D j

dij

Si D j

startjk durjk Ok

D j n l×
Dj Ok

ujk ujk

sizek Ok

dij

dij max k∀ ujk 1=,
sizek

csite k() i⋅
--------------- durjk– startjk–()= EQ 3.1

site k() Ok

dij 1 i m 1 j n≤ ≤,≤ ≤,

t dij aij⋅
j D∈
∑

i S∈
∑= EQ 3.2

site k()

reverse or stop and resume later). However, as there is unlimited
buffer space, the system can store allMDOs of a hypermedia
document once they are retrieved. Therefore, the delay for
handling the user interactions is some local processing time that
is irrelevant to the data allocation of theMDOs. The cost function
is thus same as that in the Section 3.2.

No user interaction and limited buffer space: In this
scenario, the system can not use the retrieving all the MDOs in
advance strategy. Instead, the system must retrieve theMDOs
only when it needs to present theseMDOs. Therefore, every
synchronization point in the hypermedia document may cause
some delay and the cost function in such situation is the
summation of these delays. Indeed, the model presented in
Section 3.2 can be generalized to deal with this scenario.

First, we need to decompose each document into component
sub-documents. From theOCPN specifications, we have the
states representing theMDOs in each document. Denote this set
of states asS and for , we can get the starting time and
ending time of the state (i.e., presentation of the corresponding
MDO) from theOCPN specifications. Then, we can decompose
the document by composing allMDOs starting at the same time
into a sub-document (so if there are h MDOs, there will beh sub-
documents in maximum).

User interaction and limited buffer space: If we know
the expected number of times each sub-document will be
presented in each hypermedia document, we can calculate the
expected response time of each document in each site. It is just
the weighted sum of the delays of the sub-documents in the
document. To calculate the expected number of times each
document is needed, we must know the probabilities of relevant
user interactions (such as reverse playing, and fast forward).
Once we have these probabilities, we can calculate the expected
number of time each document is presented by employing the
first step analysis method [13]. Note that these probabilities can
be generated by observing user interaction over a period of time.

For example, suppose the relevant probability of anMDO k
in a documentj is . Assume that the expected number of time
thisMDO is needed is . Then, we have†,

Similarly, we can estimate the expected number of times
other MDOs composing this document are needed. Then, the
expected number of times this document is needed is just the
maximum of these values. Denote this value as for document

, we have,

And the delays will become,

Example 1 (Cont.): Assume that the hypermedia database
system is distributed in a network with 3 sites.

In Figure 4, the transmission speed between the 3 sites are
given. These values can be represented as an matrixC,
with entry representing the transmission speed from to .

†. ormdo_etjk = 1 + ipjk + ipjk
2 + ... =(1 - ipjk)

-1.

Suppose after the analyses of the long run behavior of the
Markov chain in each site, the expected starting document
frequencies out ofS = 900 browsing sessions, matrixB is,

Then the matrixA () is,

In this example, there are 3MDOs, namely A, B and C (E is
a delay state, so there is no associative actualMDO). If we
allocate A at Site 2, B at Site 3 and C at site 1, then is equal to,

Similarly, we can calculate the values of all
 when we have theMDO allocation

scheme. And the total response time delay will be,

Suppose we add user interactions and worst case buffer space
constraints to this hypermedia database system. After adding the
probability of relevant user interruption to theMDO, the
augmentedOCPNof D1 is shown in Figure 5.

Thus, the expected number of timesMDO A is needed when
documentD1 is retrieved is,

Similarly, the expected number of timesMDO B is needed is,

Notice that when we needB again,A is also needed. Thus,
.

Since we have worst case buffer space constraints, so the
delay will become

s∀ s, S∈

ip jk

mdo_etjk
mdo_etjk 1 ip jk mdo_etjk×+= ,

mdo_etjk 1 ip jk–() 1–= EQ 3.3

etj

D j

etj max mdo_etjk()= for k∀ ujk 1=, , EQ 3.4

dij

dij max
sizek

csite k() i⋅
--------------- durjk– startjk–() etj⋅= for k∀ ujk 1.=, ,

m m×
cii ′ Si Si ′

Figure 4: The transmission speed between
the sites in Kilobytes per second.

S1

S2 S3

38 41

35

S1 S2 S3

S1

S2

S3

0 38 41

38 0 35

41 35 0 .

D1 D2 D3 D4

S1

S2

S3

100 200 300 200

225 450 225 0

300 100 100 400.
B R×

D1 D2 D3 D4

S1

S2

S3

245 340 630 296

292.5 495 652.5 148.5

515 200 530 448.

d11

d11 max
2280
38

------------ 15– 40–
 1220

41
------------ 55– 0–

 ,
 5.= =

dij 1 i 3≤ ≤ 1 j 3≤ ≤, ,

t 11430 4573.25 29130+ + 86291.25.= =

OCPN1 :

d1

E A

B (0,55,1220)

(40,15,2280)

0.4

0.5

Figure 5: The augmented OCPN by including user-interaction.

mdo_et1A 1 0.4 mdo_et1A×+= ,
mdo_et1A 1 0.4–() 1– 1.667.= =

mdo_et1B 1 0.5 mdo_et1B×+= ,
mdo_et1B 1 0.5–() 1– 2.= =

et1 max1.667 2,() 2= =

d11

d11 max
2280
38

------------ 15– 40–
 1220

41
------------ 55– 0–

 ,

 2× 10.= =

4 Proposed Data Allocation Algorithms
The data allocation problem in its simple form has been

shown to be NP-complete [3] and the problem discussed here is
more complex than the simple case; there are different
allocation schemes for a system withm sites andk MDOs,
implying that an exhaustive search would require in the
worst case to find the optimal solution. Therefore, we must use
heuristic algorithms to solve the problem.

4.1 The Hill-Climbing Approach
We have developed an algorithm based on the Hill-Climbing

technique to find a near optimal solution. The data allocation
problem solution consists of the following two steps:

1) Find an initial solution.
2) Iteratively improve the initial data allocation by using the

hill climbing heuristic until no further reduction in total
response time can be achieved. This is done by applying
some operations on the initial allocation scheme. Since
there are finite number of allocation schemes, the heuristic
algorithm will complete its execution.

For step one, one possibility is to obtain the initial solution by
allocating theMDOs to the sites randomly. However, a better
initial solution can be generated by allocating anMDO to the site
which retrieves it most frequently (this information can be
obtained from the matrix). If that site is already saturated,
we allocate theMDO to the next site that needs it the most. We
call this method theMDO site affinity algorithm.

In the second step, we apply some operations on the initial
solution to reduce the total response time. Two types of
operations are defined, namelymigrate andswap (see below).
These operations are iteratively applied until no more reduction
is observed in the total response time.

: moveMDO to . This operation can
be applied to eachMDO, and anMDO can be moved to any one
of the sites at which it is not located. Therefore, there can
be a maximum of migrate operations that can be
applied during each iteration.

: swap the location ofMDO with the
location of MDO . This operation can be applied to each
distinct pair ofMDOs. Therefore, there can be a maximum of

 swap operations that can be applied during each
iteration.

4.2 The Random Search Approach
One drawback of the Hill-Climbing approach is its high

complexity. Another problem is that the algorithm can be trapped
in some local minimum. This is because the exchange or
migration of MDO is done only if the movement will give a better
solution. To increase the chance of finding the global optimal
solution, we must introduce some probabilistic jumps [6], [7].
The probabilistic jumps must be large enough by involving
MDOs that can have a great effect on the solution quality.
Otherwise, if the jump is small, the algorithm may be remain
trapped in the same local minimum. Thus, before the execution
of the algorithm, we must determine which subset of the MDO
set is important. One possible set of important MDOs is the
MDOs which are presented at the beginning of some hypermedia
document. The reason being that when we browse a hypermedia

document, we must retrieve and use the starting MDO
immediately, so their transmission delay will have a great effect
on the overall document presentation delay. Thus, we have two
sets of MDOs: critical MDOs (CMDOs) and non-critical MDOs
(OMDOs).

The random algorithm starts with an initial solution using the
site affinity algorithm and then constructs the two MDO sets. It
then tries to merge OMDOs to some random sites by using either
the migrate operation or the swap operation whichever gives
more improvement in the solution quality. It continues to do so
for MAXSTEP times but will stop if there is no improvement in
MARGIN number of trials. It then chooses one of the CMDOs
and migrate it to a random site or swap it with another randomly
selected CMDO. This is repeated forMAXCOUNT times. The
algorithm preserves the best solution found so far and then does
a neighborhood search on CMDOs again to see if there is further
improvement.

The worst-case running time of the algorithm is
. It is reasonable to set

MAXSTEP as a multiple of the number ofOMDOs and the
number of sites. Similarly,MAXCOUNT is set to be a multiple of
the number ofCMDOs and the number of sites.

With these assumptions, we will have an algorithm.

5 Results
In this section, we present the experimental results for the

data allocation algorithms described in Section 4. Comparisons
among these algorithms will be made by considering the quality
of solutions and the algorithm running time. Since fork MDOs
andm sites there are allocation schemes for exhaustive search
algorithm, the problem sizes of the experiments we conducted
were limited. We conducted 10 experiments with number of
MDOs ranging from 4 to 8, and number of sites ranging from 4
to 8. Each experiment consisted of 100 allocation problems with
the number of sites and the number ofMDOs fixed. Each
allocation problem had between 4 and 16 documents, and each
document used a subset of theMDOs with its own temporal
constraints on them. The communication network, theMDO
sizes, the link costs, and the temporal constraints betweenMDOs
in each document were randomly generated from a uniform
distribution. The two data allocation algorithms described above
were tested for every case and statistics was collected.

In Table 2, for each of the experiments conducted in a
column-wise fashion, we list the following: i) the number of sites,
ii) the number ofMDOs, iii) the number of problems for which
optimal solutions are generated by hill-climbing, iv) the average
deviation in percentage of near optimal solutions from optimal
solution when optimal solution was not reach, v) and vi) provide
similar results for random search algorithm. The number of
optimal solutions can reflect how good the algorithm is; whereas
the average deviation shows how bad the algorithm performs
when it cannot generate optimal solution.

km

O km()

A U×

migrate Oj Si,() Oj Si

m 1–
k m 1–()

swap Ox Ox′,() Ox

Ox′

k k 1–() 2⁄

O MAXSTEP MAXCOUNT×()

MAXSTEP a m OMDOs⋅〈 〉⋅=

MAXCOUNT b m CMDOs⋅〈 〉⋅=

O m2k
2

()

km

From Table 2, we note that the Hill-Climbing algorithm
generated optimal solutions for a large number of problems —
853 cases out of a total of 1000 cases, corresponding to about
85% of the test cases. Most of the non-optimal solutions are in the
range of 0-5% deviation from the optimal solution while a few
solutions are in the range of equal to or more than 20%. The
average percentage (only for non-optimal cases) is about 7.9384
across all cases. These results indicate that the Hill-Climbing
algorithm is able to generate high quality solutions in comparison
to random search algorithm.

It seems that the algorithms cannot handle case with large
problem space such as thousands MDOs (running time is too
long). In such case, we can group MDOs into clusters and use the
algorithms to allocate the clusters instead of individual MDOs.

5.1 Comparison of Running Times
Table 3 contains the average running times of both

algorithms for each experiment. For comparison, the time taken
to generate the optimal solutions by using exhaustive search are
also listed. All the algorithms were implemented on a SPARC
IPX workstation and the time data was measured in milli-
seconds. As can be seen from the table, although the Random
Search algorithm took much short time compared with
exhaustive search and about 1 order of magnitude less time than
the Hill-Climbing Approach. Such margins become highly
significant when the problem size is large. Therefore, while the
Hill-Climbing algorithm may be preferred for small problem
sizes, the Random algorithm would be a better choice for large
problem sizes. From the experiment results presented in the
previous section, we observe that there is a trade-off between
execution time and solution quality. The random search
algorithm is very cost-effective if fast execution is desired. If the
solution quality is the more prominent factor, the Hill-Climbing
approach is a viable choice for an off-line allocation.

6 Conclusions
A probabilistic navigational model for modeling the user

behavior while browsing hypermedia documents is developed.
This model is used to calculate the expected number of accesses
to each hypermedia document from each site. Synchronization
constraints for presenting the MDOs of hypermedia documents
are modeled by using the OCPN specification. A cost model is
developed to calculate the average response time observed by the
end-users while browsing a set of hypermedia documents for a
given allocation of MDOs. This cost model is generalized to take
into consider end-user interaction while accessing MDOs, and
limited buffer space constraints at the end-user site. After that,
two MDO data allocation algorithms, one based on Hill-climbing
heuristic, and other based on Probabilistic Random search are
proposed. The two algorithms use extreme approaches: a high
complexity extensive incremental strategy and a fast random
search. Results indicate that there is a trade-off between
execution time and solution quality. The random search
algorithm is cost-effective if fast execution is desired. If the
solution quality is the more prominent factor, the Hill-Climbing
approach is a viable choice for small problem sizes.

References
[1] P. B. Berra, C. Y. R. Chen, A. Ghafoor, C.C. Lin, T. D. C. Little,

and D. Shin, “Architecture for Distributed Multimedia
Systems”, Computer Communications vol.13, no.4 (May 1990)
p217-31.

[2] R. Erfle, “ HyTime as the multimedia document model of
choice,” Proc. of the Int. Conf. on Multimedia Computing and
Systems, Cat. No. 94TH0631-2, 1994, pp.445-454.

[3] K. P. Eswaran, “Placement of Records in a File and File
Allocation in a Computer Network,”Information Processing,
1974, pp.304-307.

[4] A. Ghafoor, “ Multimedia database management systems,”
ACM Computing Surveys, 27(4) Dec. 1995, pp.593-598.

[5] C.F. Goldfarb, “Standards-HyTime: a standard for structured
hypermedia interchange,”IEEE Computer, 24(8), 1991, 81-84.

[6] D.S. Johnson, C.H. Papadimitriou and M. Yannakakis, “How
Easy Is Local Search,”Journal of Computer and System
Sciences,vol. 37, no. 1, Aug. 1988, pp. 79-100.

[7] Y.-K. Kwok, I. Ahmad, and J. Gu, “FAST: A Low-Complexity
Algorithm for Efficient Scheduling of DAGs on Parallel
Processors,” Proc. ofICCP, Aug. 1996, vol. II, pp. 150-157.

[8] T. D. C. Little, “ Synchronization and storage models for
multimedia objects,” IEEE JSAC, 8(3) April 1990, pp.413-427.

[9] S. R. Newcomb, “Multimedia interchange using SGML/
HyTime,” IEEE Multimedia,2(2) 1995, pp. 86-89.

[10] B. Prabhakaran and S. V. Raghavan, “Synchronization models
for multimedia presentation with user participation,”
Multimedia Systems, 1994, vol. 2, pp.53-62.

[11] J. Song, Y. N. Doganata, M. Y. Kim and A. N. Tantawi,
“Modeling Timed User-Interactions in Multimedia
Documents,”Proc. Int. Conf. on Multimedia Computing and
Systems, 1996, pp.407-416.

[12] P. D. Stotts and R. Furuta,“ Petri-net-based hypertext:
document structure with browsing semantics,” ACM TOIS, 7(1)
1989, pp.3-29.

[13] H. M. Taylor and S. Karlin,An Introduction to stochastic
modeling, Academic Press, 1994.

[14] S. Vuong, K. Cooper and M. Ito, “Specification of
Synchronization Requirements for Distributed Multimedia
Systems,” Proc. Int.l Workshop on Multimedia Software
Development, 1996, pp.110-119.

[15] M. Woo, N.U. Qazi, and A. Ghafoor, “A Synchronization
Framework for Communication of Pre-orchestrated
Multimedia Information,”IEEE Network, pp. 52-61, January/
February 1994.

[16] G. R. Rao, V. Balasubramanian and B. A. Suresh, “Integration
of Hypertext and Object-Oriented Databases for Information
Retrieval,” Proceedings of the 1993 IEEE Nineteenth Annual
Northeast Bioengineering Conference, May 1993, pp. 201-204.

Table 2: Experimental results of the two algorithms.
No. of
Sites

No. of
MDOs

No. of Opt.
Sol. (H)

Aver. %
Deviat. (H)

No. of Opt.
Sol.(R)

Aver. %
Deviat. (R)

4 4 93 15.4163 98 11.0071

4 8 81 5.3714 70 5.0961

5 4 92 19.3567 97 1.1011

5 8 83 11.5364 62 5.6252

6 4 97 5.2258 92 4.8935

6 8 82 11.6584 56 2.8690

7 4 88 3.0582 86 1.8645

7 8 77 3.9969 62 4.4913

8 4 88 3.8620 90 1.5051

8 8 72 9.7750 50 3.6533

Table 3: Average running times (msecs) of all algorithms.
No. of
Sites

No. of
MDOs

Exhaustive
Search

Hill
Climbing

Random
Search

4 4 7.63 38.95 27.44

4 8 6457.69 1014.08 183.12

5 4 18.34 68.36 45.57

5 8 50224.66 2011.78 314.17

6 4 51.88 85.14 67.28

6 8 273494.96 2885.52 446.66

7 4 176.10 166.09 97.67

7 8 1587830.28 4721.17 620.85

8 4 333.23 169.28 134.06

8 8 5755754.63 12053.53 875.84

