
A Shape-Adaptive Partitioning Method for
MPEG-4 Video Encoding

Yong Het, Ishfaq Ahmad$, Ming L. Lieu?
+Department of EEE, *Department of Computer Science,
The Hong Kong University of Science and Technology,

Clear Water Bay, Kowloon, Hong Kong
Fax: +(852) 2358-1485, *(852) 2358-1477

Email: +eehey@ee.ust. hk, Siahrnad@cs. ust. hk, +eeliou@ee.ust. hk

Abstract
MPEG-4 is a new standard for multimedia applications.
Due to the flexible and extensible features of MPEG-4,
the software-based implementation seems to be a natural
and viable option. While such approaches usually require
huge computing power, we can overcome such problem
by using parallel and distributed processing. Because the
behaviour of MPEG-4 objects may vary with time and
such variation can not be predicted in advance, the issues
of data partition and load balancing of the multiprocessor
systems need to be addressed carefully in order to
achieve real-time operation performance. In this, paper,
we propose a shape-adaptive data partitioning method to
guarantee the load balancing among the multiprocessor
systems. The effectiveness of this method has been dem-
onstrated by the experimental results.

1. Introduction
MPEG-4 is an ISODEC standard being developed by
MPEG to enable the integration of the production, distri-
bution and content access paradigms in multimedia envi-
ronment [11. With a flexible toolbox approach, MPEG-4
can support a broad range of existing and emerging inter-
active multimedia applications, such as real-time com-
munications, surveillance and live broadcast.
Due to the object-based nature and flexible toolbox ap-
proaches, MPEG-4 is much more complex than existing
video standards. No MPEG-4 hardware is available at
present and any such implementation is likely to be very
much application specific. We believe that software-
based implementation is a natural and viable option be-
cause of its flexibility, portability, scalability, and its
ability to allow the inclusion of new tools [2]. While for
most real-time applications, video encoding usually re-
quires huge amount of computing power whch is the ma-
jor problem with the software approaches. We can solve
such problem by using parallel and distributed process-
ing.
During the entire MPEG-4 video session, the size and
shape of each object may vary from time to time. Moreo-
ver, some computationally intensive algorithms of the en-

239

coder are data-dependent, which means the execution
time can not be predicted in advance. In order to achieve
high efficient encoding performance, the issues of data
partitioning and load balancing within a parallel comput-
ing system need to be addressed carefully.
We have proposed some software implementation of
MPEG-4 video encoder [3]. In order to further speed-up
the computing, we developed a shape-adaptive data par-
titioning method to guarantee the load balancing as well
as to improve the global performance within a parallel
computing system.
The rest of the paper is arranged as follows: Section 2
gives a brief overview of MPEG-4 video encoder. Sec-
tion 3 introduces several load balancing partitioning
methods. Section 4 proposes a shape-adaptive data parti-
tioning scheme used in our testbed. Section 5 provides
the experimental results of our approach. The last section
concludes the paper by providing an overview of our on-
going research.

2. Overview of MPEG-4 Video
MPEG-4 video is one of the major part of MPEG-4. It is
an object based hybrid natural and synthetic video coding
standard enabling the functionalities such as content-
based interactivity, efficient compression, error resil-
ience and random access [4].

Input - output -
I I Bitstream I I

Figure 1 . MPEG-4 Video Codec Structure

Figure 1 is the overall structure of MPEG-4 video codec.
The video encoder is composed of identical VOP (video
object plane) encoders and so is the decoder. The same
coding scheme is applied to each video object separately

0-7803-5008- 1/98/$10.0001998 IEEE.

and the reconstructed video objects are composited to-
gether and presented to the user.
In order to encode the arbitrarily shaped VOPs, MPEG-4
defines the “VOP window” as the tightest rectangular of
the VOP with the minimum number of macroblocks to
represent the VOP. There are three kinds of macroblock
(MB) within the VOP window, as depicted in Figure 2,
the transparent MB, the contour MB and the standard
MB. The contour and standard macroblocks include the
pixels belonging to the VOP image, and transparent MB
lies completely outside the object.

/ Transparent
MB

C o n t o u i
MB

VOP
Window

0

Standard

Figure 2. VOP window example for AKIYO

Each VOP encoder consists of three main parts: the shape
coder, motion estimatiodcompensation, and texture cod-
er. Most algorithms adopted by the encoder are macrob-
lock-based.
Shape information which is referred to as the alpha plane
is used in MPEG-4 to indicate the time-varying shape and
location information of the VOPs. Shape coder performs
the compression to the alpha plane. Since the transparent
MB does not include any object pixels, it will not be proc-
essed for the motion andlor texture coding.
Motion estimation and compensation techniques are used
to efficiently reduce the temporal redundancies. Due to
the arbitrary shapes of VOP, repetitive padding technique
is applied to the contour MBs of the reference VOP, then
a block-based motion estimation is performed to both the
contour and standard MBs of the current VOP. SAD
(Sum of Absolute Difference) is used as the error meas-
ure due to its lower computational complexity. SAD is
calculated only on the pixels inside the object, and is giv-
en by:

N , N
S A D N (x , y) = l o r i sno[-prev ious l* (! (A lpha e 0))

i = 1, j = 1

The intra and residual data after motion compensation of
VOPs is coded by texture coding algorithms including
DCT or shape adaptive DCT (SA-DCT), MPEG or H.263
quantization, intra DC and AC prediction, and VLC to
achieve further compression. For those contour MBs, the
padding technique is employed again.
The details of the encoder can be found in [5] .

3. Load balancing techniques
As mentioned earlier, software-based approach is feasi-
ble for MPEG-4 video applications. But the computation-
al requirement of a software-based encoder is simply too
enormous to be handled by a single processor. It is, there-
fore, natural to harness the accumulated computational
power offered by a high-performance parallel or distrib-
uted system. In addition, the MPEG-4 video codec struc-
ture happens to be very suitable for parallel and
distributed processing. As the encoder is much more
complex than the decoder, it is more challenging to
speed-up the computation for the encoder.
Due to the object-based nature of MPEG-4 video, the size
and location of each object may vary with time, and such
behaviours can not be predicted beforehand. Therefore
no matter how initial tasks are assigned, the workloads of
the processors will become unbalanced later on, which
will cause some processors to be highly loaded while oth-
ers are idle or lightly loaded. Furthermore, some compu-
tationally intensive algorithms of the encoder are data
dependent and their execution time are different to differ-
ent data region. For example, some algorithms are per-
formed on all macroblocks while others just acted on
contour and standard MBs. Thus the problem of load bal-
ancing should be addressed carefully in the parallel
processing in order to achieve real-time video encoding.
Since the video and image usually consist of a large
amount of data, data parallel paradigm is often used in
such a large data sets [6]. The main idea of data parallel
is to decompose the whole frame data into a number of
data blocks and mapping each block to certain processor,
thus the processors can run the program simultaneously
and a high speed-up can be achieved.

jl:lil
3 1 4 1 5

Boxwise Recursive bisection

Figure 3. Common partitioning methods

Figure 3 shows several commonly used partitioning
methods. Stripwise partition divides the whole VOP win-
dow horizontally or vertically into n subregions for n
processors. It is easy to determine the area of subregions
for corresponding processors. Boxwise partition divides
the VOP window evenly along both the horizontal and
vertical dimensions. The number of boundary pixels of
the subregion is minimum, but the number of processors
to be used is restricted and not suitable for heterogeneous
systems. Recursive bisection method divides the whole
VOP window recursivly in binary fashion [7]. It is capa-
ble to optimally equidistribute the computational load,
while it is relatively expensive to execute the recursive

240

operations during the decomposition.

4. A periodical shape-adaptive partition
Due to the unpredictable variation of MPEG-4 objects,
any simple and static partitioning scheme will cause
workload imbalances which result in lower overall per-
formance. A dynamic partition scheme can handle the in-
deterministic behaviour of the system, but it depends on
the trade-off between the balancing quality and overhead
runtime cost [8]. In our implementation, since the parti-
tion must be done in real-time, the cost of partition and
redistribution must be kept low to ensure that the benefits
gained from an efficient parallelization are not negated
by a long time taken by the partitioning method.
In order to adapt object variations and minimize parti-
tioning cost, we developed a shape-adaptive data parti-
tion method to guarantee the workload balancing during
the whole video session with low runtime overhead and
fine granularity.
First, the entire MPEG-4 video session is defined as a
number of time intervals. The time interval boundary de-
pends on the variation of the VOP window size. A new
time interval begins whenever a VOP window changes
above a certain threshold. Since the knowledge of the
video objects can be obtained at the beginning of the in-
terval, we then perform the shape-adaptive partition with-
in each time interval. During that interval, we can assume
that the spatial computation distribution is relatively sta-
ble and no need to change partitions. Therefore, the pro-
posed load balancing can handle the object variation with
minimum overhead runtime. Since most of the algo-
rithms are macroblock-based, we employ macroblock-
based data partition to map an integer number of macrob-
locks to each processor and enable the compression algo-
rithm to be done locally.
Most data partitioning methods restrict the subregion to
be rectangular blocks to avoid a messy problem of the
data structure [7]. For MPEG-4, when the object is large
enough and almost fill the VOP window, these methods
may achieve good load balancing because the contour
and standard MBs are likely to be distributed uniformly
among multiprocessors. While in general cases, some su-
bregions of the window may be full of transparent MBs
while others may be full of contour and/or standard MBs.
Therefore, no partitioning method can equidistribute rec-
tangular subregion in a straightforward way. In addition,
the object size may become too tricky to do the stripwise
or boxwise partition.
Here, we present a shape-adaptive partitioning method
whose subregions may have arbitrary shape, and the rec-
tangular sub-alpha plane is further redefined to avoid the
unnecessary computation for each processor.
As implied in Figure 4, the gray blocks represent the con-
tour and standard MBs while white ones represent trans-

Sub-AlnhaPlane Re-defined Sub-AlnhaPlane

(c) (dl

Figure 4. Arbitrary partitioning example

parent MBs. By using the alpha plane information, we
can get the statistical distribution of the contour and
standard MBs. Then they are equally assigned to a given
number of processors. As Figure 4 (a) illustrates, there
are 20 contour and standard MBs within the window and
each processor is assigned 5 contour and standard MBs.
Because each processor (Po to P3) may get arbitrarily
shaped subregions as Figure 4 (b) shows, it may cause
messy data structure problem and become more complex
to specify for parallel programming. Here, we extend
these subregions to rectangulars called sub-Alphaplane
as Figure 4 (c) shows. Since some of the sub-alpha planes
contain macroblocks which are redundant, we redefine
the sub-Alpha planes by labelling those macroblocks as
transparent MBs in order to avoid unnecessary computa-
tion (Figure 4 (d)). For example, Processor 3 (P3) should
only encode the subregion which includes the contour
and standard macroblock from 16 to 20 as shown in Fig-
ure 4 (b). In order to get a rectangular subregion which
contains those blocks, we extend this subregion and the
whole sub-alpha plane contains the contour and standard
MBs from 14 to 20. Then we define the 14th and 15thMB
as the transparent MB to form a redefined sub-alpha
plane as shown in Figure 4 (d). Therefore, processor 3
still processes 5 contour and standard MBs while keeps
the subregion rectangular.
Because such a partition is based on macroblock decom-
position, the granularity is low and the method can yield
the finest workload balancing among the multiproces-
sors. In addition, by keeping the data block for each proc-
essor rectangular, it is easy for parallel decoders to
compose the reconstructed subVOPs together since the
syntax definition of the bitstream assume that the input
VOP window is rectangular.

24 1

5. Experimental results
The proposed partitioning scheme has been implemented
and tested on a cluster of Sun UltraSparc-I workstations
connected by a Fore Systems ATM switch. A fast motion
estimation algorithm [9] was used to speed-up the com-
puting and still keeps the high visual quality.
Figure 5 shows the encoding rates for different MPEG-4
video test sequences by using various numbers of work-
stations.

, , , , . . .
1 Shape-adaplive pentim

0 , , 0 S l t l C st”pwl*smo~sn Panillan
+ - -+ obien-based panltlon

Number of workstations

Figure 5. Encoding frame rate

I ,

Figure 6 is the comparison between the static stripwise/
boxwise partition, object-based partition [3] and our pro-
posed method for the test sequence ‘Children2’ with
QCIF format. It is clear that a high real-time performance
has been achieved by our method.

‘Children2 ’ (QCIF) Test Sequence

25

Number of workstations

Figure 6. Partitioning performance comparison

Figure 7 is the comparison of the average partitioning
time cost among three partition methods. It indicates that
our proposed method can improve the coding efficient
with low overhead partitioning runtime cost.

6. Conclusions
In this paper, we propose an arbitrary shape-adaptive par-
titioning method for MPEG-4 encoding using a cluster of
workstations. The experimental results indicate that real-
time MPEG-4 encoding using distributed and parallel

0 0 4 0 t

7. Acknowledgments
This work was supported by the Hongkong Telecom In-
stitute of Information Technology.

References
[l] “Overview of MPEG-4 Version 1 Standard,” ISO/IEC/

JTCI/SC29/WGII N1909, Oct. 1997.
[2] S. M. Akramullah, I. Ahmad, M. L. Liou, “A Software

Based H.263 Video Encoder using Network of worksta-
tions,” Proceedings of SPIE, vol. 3166, Aug. 1997.

[3] Yong HE, Ishfaq Ahmad and Ming L. Liou, “An Implemen-
tation of MPEG-4 Video Verification Model Encoder using
Parallel Processing,” Proceedings of the third Asia-Pacijic
Conference on Communications, pp.56-59, Dec. 1997

[4] T. Sikora, “The MPEG-4 Video Standard Verification Mod-
el,” IEEE Trans. on CSVT, vol. 7, no. I , pp. 19-31, Feb. 1997.

[5] ISOLEC, “MPEG-4 Video Verification Model Version
8.0,” ISOLEC JTClISC29MrGll N1796, July 1997.

[6] Shen Ke, G.W Cook, L.H Jamieson and E.J Delp, “An Over-
view of Parallel Processing approaches to image and video
compression,” Proceedings of SPlE, ~01.2186 pp197-208,
1994.

[7] Marsha J. Berger and Shahid H. Bokhari, “A partitioning
Strategy for Nonuniform Problems on Multiprocessors,”
IEEE Trans. on Computers, vol. C-36, no.5, pp.570-580,
May 1987.

[8] Y. Zhang, H. Kameda and S.L. Hung, “Comparison of dy-
namic and static load-balancing strategies in heterogeneous
distributed systems,” IEE Proc.-Comput. Digit. Tech.,
~01.144, no.2, pp100-106, March 1997.

[9] 2. L. He and M. L. Liou, “A High Performance Fast Search
Algorithm for Block Matching Motion Estimation,” IEEE
Trans. on CSVT, vol.7, no.5, p p 826-828, Oct. 1997.

242

