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Abstract 

A dynamic task scheduling algorithm, that is stable, de- 
centralized, and adaptive to network topology, is presented. 
The proposed algorithm is an extension of nearest neighbor 
load balancing strategy with an enhanced degree of efJicien- 
cy and it is intendedfor multicomputers connected by a store 
and forward communication network. The proposed algo- 
rithm is modeled by a central server open queuing network. 
It is shown that the response time of a task consists of two 
parts. The first part comprises a task‘s settling time which 
consists of scheduling time, communication time, and wait- 
ing time in scheduling and communication queues. The sec- 
ond part comprises waiting time in the execution queue in 
the execution time itself. In order to reduce thefirst response 
time, the scheduling algorithm needs to be stable, so that a 
task is quickly settled at some node. On the other hand, the 
second response time is reduced if the algorithm ejiciently 
migrates the task to a lightly loaded node. The proposed al- 
gorithm is comprehensively evaluated, through simulation 
and analytical model, and is shown to be both stable and ef- 
ficient. For performance evaluation, the task wander cost 
and the scheduling overhead is also taken into account. Ex- 
perimental results are also obtained for another nearest 
neighbor scheduling scheme and compared with the pro- 
posed algorithm. 

1. Introduction 
In order to realize the full potential of a multicomputer 

network, workload scheduling and remote execution facili- 
ties must be carefully designed. The scheduling strategies 
should incur less overhead and identify suitable remote sites 
for migrating extra workload. This paper presents a decen- 
tralized task scheduling algorithm which is based on nearest 
neighbor load balancing. The performance of the algorithm 
is modeled by an analytical model as well as simulation. It is 
shown that if a task is allowed to migrate a number of times, 
the response time of a task can be analyzed in two phases. 
The first phase comprises a task’s settling time which con- 
sists of scheduling and communication times, and waiting 
times in scheduling and communication queues at various 
nodes. If the task is scheduled at some node, the second 
phase comprises waiting time in the execution queue in the 
execution time itself. In order to reduce the first response 
time,called task settling time, the scheduling algorithm 

needs to be stable, so that a task is quickly settled at some 
node, without making unnecessary migrations. 

The settling time of a task can become very high if the 
system enters into task-thrashing state. Task-thtashing oc- 
curs if nodes spend more time on task migration than on task 
execution [7]. In this situation, a lightly loaded node can be 
dumped with tasks from heavily loaded nodes. The other 
problem associated with dynamic scheduling algorithms is 
statewoggling which is described as a state in which pro- 
cessors frequently change their status between low and high 
[ 101. On the other hand, the second phase of response time is 
reduced if the algorithm is accurate migrates tasks to a light- 
ly loaded nodes, and achieves a good load balance. Clearly, 
the performance of any scheduling algorithm depends on re- 
ducing both types ofresponse times. In addition, system to- 
pology can have a direct effect on the overall performance. 
It is very likely that a scheduling strategy may perform well 
on one topology but may perform poorly on the other. Fur- 
thermore, the scheduling overhead and communication cost 
for task migration can not be ignored. 

The proposed algorithm is designed to meet these objec- 
tives. For analyzing its performance, we use both analytical 
modeling and simulation. The analytical model, itself, con- 
sistsof queuing, statistical and simulation experiments. The 
proposed strategy is modeled by a central server queuing 
network. For the queuing model, the proposed scheduling 
strategy is characterized by the probability that a newly ar- 
rived task is executed locally or migrated to another node. 
This probability determines the tendency of task migration 
which in turn determines affects the settling time of a task. 
The execution queue length representing the load at a node is 
also determined. The queue length at a node affects the sec- 
ond part of a task’s response time. In our performance evalu- 
ation methodology, we obtained a large number of values of 
the average queue length and the probability associated with 
task migration, through simulation. We characterize these 
two parameters through, statistical analysis, in termsof sys- 
tem parameters. For details see [2]. The analytical queuing 
model uses statistical analysis to find the response time of a 
system with any set of system parameters. Another nearest 
neighbor scheduling strategy is characterized by the pro- 
posed performance evaluation model and compared with the 
proposed algorithm. These results are, again, compared 
with independent simulation. The main advantage of this ap- 
proach is that instead of assessing aparticular strategy on the 
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basis of a selected set of experiments, it can be analyzed in a 
variety of different conditions. 

2. Related Work 
Scheduling strategies can be either static or dynamic. In 

the former case, work load allocation decisions are taken be- 
fore run time and tasks areassigned to individual processors 
of the system. Static scheduling strategies can generate 
good load balance and are useful for workload with static 
structures [171. However, if the application have dynamic 
structures or if the tasks are created at run time [9], dynamic 
scheduling is required [SI, 181. It is essential for a dynamic 
scheduling strategy to balance computation load by migrat- 
ing workload from the heavily loaded processors to the 
lightly loaded or idle processors of the system. Dynamic 
task scheduling or load balancing, on a multicomputer net- 
work consisting of autonomous computers connected to- 
gether viacommunication links, has been extensively inves- 
tigatedbymanyresearchers[5], [71,[81,[11],[121. Dynam- 
ic scheduling can be centralized in which the control is in the 
hand of a single node. In a decentralized approach [51,[61, 
[7], this control is distributed amongst all the nodes in the 
system. In contrast jn  a semi-distributed control, only a 
subset of nodes make scheduling decisions [ 11. For decen- 
tralized control, various algorithms based on bidding [141, 
and nearest neighbors load balancing have been proposed 
[81, [lll, [131. These strategiesarealsoclassifiedaccording 
to the type and amount of information exchange [8]. 

3. The Task Scheduling Algorithm 
As discussed above, an efficient dynamic scheduling 

strategy is one that is stable, returns a fast response time, and 
incurs a low overhead. In general, a scheduling strategycon- 
sists of three policies, namely transfer policy, location 
policy and information policy 151. The information ex- 
change policy in our case is that when the scheduler of some 
node needs to schedule some task, it collects the load status 
of its neighbors. 

Since information interchange and execution of sched- 
uling algorithm takes certain amount of time, the tasks arriv- 
ing during that time wait in a waiting queue. For each com- 
munication link, a communication queue is maintained. At 
each node, task transferred fmm other node joins the locally 
generated tasks, andboth are handled with equal priority. If 
a task is decided to be scheduled locally, it is entered in the 
execution queue which is served by the CPU on the FCFS 
basis. The length of this queue represents the load of a node. 
A task may migrate from node to node in the network before 
finally being executed at some node. Figure 1 illustrates 
such a multicomputer network. 

The proposed algorithm is a combination of neighbor- 
hood averaging and bidding approach. When a task is to be 
scheduled, the scheduler broadcasts messages to its neigh- 
bors asking for bids. A neighbor calculates the average load 
of its own neighborhood and if its own load is less than that 

average, it sends a yes message along with its load informa- 
tion to the requesting node. After the requesting node has re- 
ceived all the bids, it calculates the average load of its own 
neighborhood. If its local load is greater than average, it se- 
lects the node with minimum load out of those neighbor 
which sent yes messages. If the local execution queue is 
empty or the local load is less than average and none of the 
neighbors reply with yes messages, the task is scheduled in 
the local queue. This strategy is proposed to add more stabil- 
ity to neighborhood averaging strategy. This extra level of 
stability is due to the fact that the receiving node expresses 
its willingness to receive a task only if its load is less than its 
own neighborhood average. This reduces the number of ex- 
tra task migrations and hence task thrashing. Avoidance of 
unnecessary task migration is particularly important at high 
load when every overloaded node tries to get rid off its load 
by assuming that other nodes are lightly loaded. As shown 
later, at high load, the task migration probability of the pro- 
posed algorithm is greatly reduced but at the same time it is 
large enough to transfer extra load. This algorithm is termed 
as Bidd-Average. 

For comparison, we select random scheduling strategy 
which also makes use of nearest neighbor loadbalancing. In 
this strategy, the task scheduler calculates the average of its 
own load and the load of all neighbors. If the local load is 
greater than the average, the task is sent to a randomly se- 
lected neighbor. Theobjectivebehind selecting this strategy 
is to show the tendency of random strategy to cause extra mi- 
grations. 

4. Performance Modeling 
In this section, we describe a performance evaluation 

model for scheduling strategies described above. First, we 
show that the class of distributed load balancing strategies 
described above can be modeled by an open central server 
queuing model. A multicomputer network can be repre- 
sented as agraph where each node represents an independent 
processor and each edge represents the communication link 
between two nodes. We consider a multicomputer network 
in which processing nodes are connected with each other 
through a symmetric topology, that is, each node is linked to 
the same number of nodes. The number of links per node is 
called the degree of the network. The processors of the sys- 
tem can be heterogeneous but in this paper we consider only 
the homogeneous case. Symmetry implies that the intercon- 
nection network of the system is a regular graph with fxed 
number of links per node whereas homogeneity implies that 
the processors of the system are identical. 

We assume that task arrive at each node with an average 
arrival rate of I tasks per time-unit per node. The task ar- 
rival process is assumed to be Poisson and inter-arrival time 
is assumed to be exponentially distributed. The average 
scheduling, communication and execution times are de- 
noted by ~ /Ps ,  1/Pc, ~ /PE timeunits, respectively and all 
of them are assumed to be exponentially distributed. With 
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Figure 1: A logical view of decentralized task scheduling. 
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Figure 2 The system in Figure 1 represented by open network central server model. 

nearest neighbor load balancing, the steady state departure 
and task arrival rates at anode are the same. When a task mi- 
grates from one node to another, it encounters a statistically 
identical node. Therefore, under steady-state conditions, 
the multicomputer network shown earlier in Figure 1 can be 
equivalently represented by the open central server queuing 
model as shown in Figure 2. The model consists of a waiting 
queue, L communication queue sand an execution queue. A 
task arriving at that node enters the local execution queue 
with probability, Po or migrates to one of the neighbors with 
probability 1 - P o .  The model is approximate since routing 
of tasks is dependent on the state of execution queues. This 
model is, however, also validated through simulation re- 
sults, which are obtained on actual network topologies. 

We can view a task’s residence time in the system ascon- 
sisting of two phases. In the first phase, the task may keep on 
migrating during the course of which it waits in the waiting 
queue, gets service from the scheduler, waits in the commu- 
nication queue, and then it may transfers to another node. If 
itisre-migrated,the samecyclecanstartalloveragain. The 
second phase starts when the task is finally scheduled at the 
execution queue of a node. The second phase includes the 
queuing and service time at the CPU. By solving this made1 
[16], response times in the fmt phase can be obtained as: 

Once a task is scheduled at a local execution queue, the 
duration of its residence time in the system, starting from the 
time it is scheduled to the time it finishes execution, can be 
calculated as: 



EINEl (Resp. Time)wz =- A '  

where ,??[NE] is the average execution queue length. The 
complete response time, therefore, is given by: 

Resp. Time = (Resp. Time)-el + (Resp. Time)+,2. 

Theaboveequationimpliesthat, foragiven system load, 
Po and Pj 's, the response time yielded by a load balancing 
strategy can be calculated if the probability, P o ,  and the av- 
erage execution queue length, E[NEI is determined. The 
probability that a task will be migrated to another node is 
simply 1 - Po. The migration probabilities to individual 
channels at each node are identical. The probability, po , is 
calculated, from the simulation data, after dividing the aver- 
age number of locally scheduled tasks by the total number of 
tasks arrived, at each node. The average execution queue 
length, EWE] ,determines how smoothly load is balanced. 
Both parameters, Po and EWE] , depend on a number of 
system parameters such as 12 , ps , pc , pE , and L. In the 
next sections, we briefly describe the simulation methodol- 
ogy which was used to obtain a very large data set from dif- 
ferent test cases. We describe, how we performed statistical 
analysis on the simulation data and determined the sensitiv- 
ity of Po and against different system parameters. 
Both task scheduling strategies were simulated. A long se- 
ries of simulation runs was conducted to obtain a largenum- 
ber of data points for Po and EWE] for each particular strat- 
egy by varying a , ps , pc and number of links per node. 

It is worth mentioning that the simulator takes into ac- 
count the time to schedule a task which includes the ex- 

change of state information and the execution of scheduling 
algorithm itself. Most previous studies have ignored this 
overhead. We have assumed an average scheduling time, 
l/ps , which in turn can be normalized with respect to the 

execution time, pE . For example, ifps is 10 tasks/time- 
unit and p E  is 1 taskhimeunit, it means that the average 
task scheduling time is 1/10 of the execution time. We con- 
sider it an input parameter which can be observed from areal 
system depending upon how the information message han- 
dling and regular task migration is implemented. 

We characterized p0 and E[NE] in terms of system pa- 
rameters such as A , ps , p~ and system network topology, 
with statistical analyses. For this purpose, a regression anal- 
ysis was then performed to obtain a model that expresses Po 
in terms of the aforementioned parameters. 

As explained earlier, the response time of a task consists 
of two parts. The first part is the response time before the 
task is scheduled in an execution queue. This is simply equal 
to the time at which the task is scheduled (in the execution 
queue of some node) minus its arrival time. This response 
time, called transient time, is completely described by Po 
which indicates the task migration tendency of a load bal- 
ancing strategy. The second part of response time shows 
how much time (queuing delay plus execution time) a task 
takes to finish its execution, after eventually being sched- 
uled. This time is equal to the time the task finishes execu- 
tion minus the time at which it was scheduled in the execu- 
tion queue. The best transient response time results when a 
strategy's Po is neither very high nor very low. In other 
words, the strategy should not have task thrashing tendency 
and yet it should make task migrations whenever appmpri- 
ate. The second part of the response time depends on a strat- 
egy's load equalization ability, that is, it results in a smaller 
average execution queue length if the load is equally bal- 
anced. Both of these factors, however, are dependent on 
each other. For example, if a strategy suffers from task 
thrashing,executionqueuelengthisnot balancedandtheav- 
erage value of queue length increases. 

- ( 1.722-0.154*linh + 0.001*p~ + 0.001 *ps - m o * a  ~ o ( ~ u r u i o m )  = [ I  + e -1 (1) 

(2) 

(3) 

(4) 

11 
- (1.349-0.10827* l i d s  + o.oo6*pCc + O.O13*ps - o m * a  Po(Bidd-Averuge) = [ 1 + e 

E[NE](Random) = exp (- 1.960 - 0.062 * links + + 3.300 *a ) 

E[N~](Bidd-Averuge) = exp (- 1.834 - 0.055 * links + + 2.913 * A  ) 
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5. Results 
First, we examine the task migration phenomenon asso- 

ciated with both strategies. This phenomenon is indicated 
by the Po which is the probability that a task is scheduled 
locally in the execution queue. The probability that a task is 
migrated to a neighbor is simply 1 - Po , as mentioned earli- 
er. The probability Po becomes low if a scheduling strategy 
has a tendency to make more task migrations. In contrast, if 
a scheduling strategy mes to keep more tasks locally, p,, be- 
comes very high. For instance, po will be equal to l if no 
load balancing is done at all. 

The impact of system load on Po is significant because 
the load of a node as well as those of its neighbors affect the 
behavior of the scheduling algorithm. The curves for Po 
with varying system load are shown in Figure 3. For this 
case the average value of pE is selected to be 1 task per time 
units whereas both Ps and PC are selected tobe 20 tasks per 
tirne unit. An ideal strategy keeps keeps the value of neither 
very high nor very low and adjusts to the system load. The 
average arrival rate per node is varied from 0.3 to 0.9. The 
topology used in this case is a 16-node hypercube with 4 
links per node. These results are obtained through the ana- 
lytical model by using equation l and2. A thresholdcan also 
be used to control po by adapting a static transfer policy. 
Since both Random and Bidd-Average strategies determine 
their threshold dynamically depending upon their own load 
and their neighbors load, they adjust to the system load. 
However, random strategy can still make unnecessary task 
migrations which makes a task go through scheduling and 
communication delays. A neighboring node which appears 
relatively less loaded as compared to the local node may still 
be loaded enough to make the task wait. The Bidd-Average 
algorithm makes a double check to see if the neighboring 
node is worth receiving the task. Due to this reason, the val- 
ueof Po is higher for theBidd-Average algorithm (showing 
controlled task migrations due to lower value of 1 - Po). 

The response time in the fist phase should be reduced to 
minimum so that less time is spend in communication and 
scheduling but in order to reduce execution queue lengths, 
load balancing needs to be done by task migration. Once a 
task is scheduled at some node, the duration of the second 
phase of its response time is dependent on the execution 
queue length of that node. The average queue length versus 
system load is shown in Figure 4. The parameters selected 
for this figure are the same as those used for Figure 3. These 
results are computed using equations 3 and 4. Again, the 
proposed algorithm is shown to results in a smaller average 
queue length, despite its controlled task migration. 

Next, we show the average response time in phase 1 and 
phase 2. These resultsare depicted in Figure 5 and Figure 6. 
These results are obtained through the analytical model. 
From these figures, we draw the following insights. The dif- 

ference in response times of both strategies in phase 1 and 
phase 2 is not very high at low load. However, this differ- 
ence becomes significant as the load increases. This indi- 
cates that Bidd-Average performs much better than the ran- 
dom strategy, as the load increases. The accumulative aver- 
age response time, which is the sum of response times in 
both phases is shown in Figure 7. For this case, we present 
the results from the analytical model as well as simulation. 
Simulation results are obtained by running these algorithms 
on actual topology ( I h o d e  hypercube). We note that the 
random algorithm performs better at low loading conditions 
but itsperformancedeteriorates withanincreaseinload. We 
also observe that the performance model alone is able to pro- 
duce distinct and accurate results, and the difference in the 
performance of both algorithms is clearly detected by the 
model. Moreaver, the model is able to produce non-linear 
curve for response time versus system load which is equally 
matched by simulation. These results validate ourperform- 
ance model. 

As opposed to some of the previous studies, we explicit- 
ly takeintoaccount thecostoftaskschedulingoverheadand 
the cost of task migration. Moreover, since both scheduling 
and communication processes take certain amount of time, 
waiting queues are maintained for tasks arriving during 
those times. These queues are taken into account in the ana- 
lytical model, as shown earlier in Figure 2, and are also im- 
plemented in the simulation. In order to evaluate the per- 
formance of the proposed algorithm and check the validity 
of the proposed model for various parameters, we change 
ps and pc but keep the rest fixed. The average accumula- 
tive time of a task is plotted in Figure 8 against variable task 
transferrate. Theloadpernodeis set tobe0.8. Theschedul- 
ing rate is fixed as 20 tasks per unit-time and the task trans- 
fer rate is varied from 4 to 40 tasksper unit-time, represent- 
ing slow to very fast communication conditions. Simula- 
tion results are also presented and compared with the results 
of the analytical model. Under these conditions, the pro- 
posed algorithm is again shown to outperfom Random al- 
gorithm. Moreover, themodel is, again, shown to predict the 
average response time which closely matches the response 
time produced by simulation. 

The task scheduling time has greater impact on the aver- 
age task response time than the task communication time. 
This is obvious when we compare the results given in Figure 
8 to those in Figure 9, indicating that the average response 
time with slow scheduling rate and high communicationrate 
(Figure 9) is greater than the response time with fast sched- 
uling rate and slow communication rate (Figure 8). The ob- 
servation is true for both strategies. However, if both pc 
and p s  are low, a significantly higher response time will re- 
sult. 

Next, we show the impact of system topology on the av- 
erageresponse time. In addition to 32-node hypercube with 
5 links per node, we consider a 8-node folded hypercube. 
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Figure 3: Probability that a task is scheduled locally. 
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Figure 7: Average accumulative task response time versus system load. 
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This topology is similar to 8-node hypercube except that it 
has an extra link at every node which connects it to the node 
whose binary address is the complement of this node. 
Therefore, a 8-node folded hypercube has 4 links per node, 
as opposed to 3 links per node for 8-node hypercube. The 
second selected topology is a 9-node mesh with 4 links per 
node, with wrappedaroundedges. The other two topologies 
are a &node fully connected network with 7 links per node 
and 16-node chordal ring with 3 links per node. The com- 
munication rate and scheduling rate are both 20 taskdtime- 

Time-unig 
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2i 
2 
& 1.8 

il 

2.2 
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Figure 8: Average accumulative task 
response time versus task transfer rate. 

unit and load per node is 0.7. The results for these topologks 
are given in Figure 10, showing the average accumulative 
response time obtained with both analytical model and sim- 
ulation. The percentage difference in results of analytical 
model and simulation is also indicated. We make the fol- 
lowing observations from this figure. The proposed algo- 
rithm performs better on all of these topologies. The differ- 
ence in the response time of the model and simulation is 
again very small. For both strategies, the fully connected 
network performs the best whereas the ring topology per- 
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Figure 9: Average accumulative task 
response time versus task scheduling rate. 
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Figure 10: Comparison of response times predicted by the model and simulation for some more topologks 
of varying sizes ( A  = 0.7 task/time-unit , Ccc =16 mutime-unit and ps = 16 task/timeunit ). 
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forms the worst which implies that greater number of links 
per node result in better load balancing. This is also intu- 
itively true since the availability of more links implies an in- 
creased probability of finding suitable neighbors for task 
migration. 

The is no difference in the performance of folded hyper- 
cube and mesh - both of these topologies have 4 links per 
node for 16-node network. The number of links per node 
determines the impact of topology on a scheduling strategy. 
It is because of this reason that the performance of both to- 
pologies is the same as 9-node mesh (4 links per node). In 
other words, the scheduler at the nodes of both topologies 
perform logically the same and the topological effect on 
nearest neighbor load balancing can indeed be modeled by 
the number of links per node. 

From this figure, the validity of the performance model 
ismorestmnglyestablishedasweobtainresponsetimefrom 
the model and compare it with some additional simulation 
runs. For comparing both results, the empirical data ob- 
tained from these simulation runs has not been used for sta- 
tistical modeling. The difference between any pair of data 
sets does notexceed ? 7 Z.. 

6. Summary 
In this paper, we have proposed a task scheduling algo- 

rithm and have evaluated its performance via analytical 
modeling and simulation. Theproposed algorithm performs 
load balancing among nearest neighbors and has been 
shown to yield a good performance. Using the performance 
evaluation approach, we are able to compare two different 
load balancing schemes on a unified basis. We have shown 
that these algorithms can be modeled by an open central 
server queuing network if the system is symmetric and ho- 
mogeneous. The statistical characteristics of the proposed 
algorithm are presented by showing the sensitivity of its 
queuing parameters with respect to various system parame- 
ters. By considering examples from a wide range of system 
parameters, it is shown that the average task response time 
computed by the performance model closely matches there- 
sponse time obtained via simulation. For dynamic schedul- 
ing strategies, the response time of a task can be analyzed in 
two phases. By comparing the algorithm with random strat- 
egy, we notice that the proposed algorithm exhibits extra sta- 
bility and avoids unnecessary task migrations. 
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