
A Decentralized Task Scheduling Algorithm and its Performance
Modeling for Computer Networks

Ishfaq Ahmad, Arif Ghafoor *, and Kishan Mehrotra
School of Computer and Information Science, Syracuse University, Syracuse, NY 13244

* School of Electrical Engineering, Purdue University, West Lafayette, IN 47907

Abstract

A dynamic task scheduling algorithm, that is stable, de-
centralized, and adaptive to network topology, is presented.
The proposed algorithm is an extension of nearest neighbor
load balancing strategy with an enhanced degree of efJicien-
cy and it is intendedfor multicomputers connected by a store
and forward communication network. The proposed algo-
rithm is modeled by a central server open queuing network.
It is shown that the response time of a task consists of two
parts. The first part comprises a task‘s settling time which
consists of scheduling time, communication time, and wait-
ing time in scheduling and communication queues. The sec-
ond part comprises waiting time in the execution queue in
the execution time itself. In order to reduce thefirst response
time, the scheduling algorithm needs to be stable, so that a
task is quickly settled at some node. On the other hand, the
second response time is reduced if the algorithm ejiciently
migrates the task to a lightly loaded node. The proposed al-
gorithm is comprehensively evaluated, through simulation
and analytical model, and is shown to be both stable and ef-
ficient. For performance evaluation, the task wander cost
and the scheduling overhead is also taken into account. Ex-
perimental results are also obtained for another nearest
neighbor scheduling scheme and compared with the pro-
posed algorithm.

1. Introduction
In order to realize the full potential of a multicomputer

network, workload scheduling and remote execution facili-
ties must be carefully designed. The scheduling strategies
should incur less overhead and identify suitable remote sites
for migrating extra workload. This paper presents a decen-
tralized task scheduling algorithm which is based on nearest
neighbor load balancing. The performance of the algorithm
is modeled by an analytical model as well as simulation. It is
shown that if a task is allowed to migrate a number of times,
the response time of a task can be analyzed in two phases.
The first phase comprises a task’s settling time which con-
sists of scheduling and communication times, and waiting
times in scheduling and communication queues at various
nodes. If the task is scheduled at some node, the second
phase comprises waiting time in the execution queue in the
execution time itself. In order to reduce the first response
time,called task settling time, the scheduling algorithm

needs to be stable, so that a task is quickly settled at some
node, without making unnecessary migrations.

The settling time of a task can become very high if the
system enters into task-thrashing state. Task-thtashing oc-
curs if nodes spend more time on task migration than on task
execution [7]. In this situation, a lightly loaded node can be
dumped with tasks from heavily loaded nodes. The other
problem associated with dynamic scheduling algorithms is
statewoggling which is described as a state in which pro-
cessors frequently change their status between low and high
[101. On the other hand, the second phase of response time is
reduced if the algorithm is accurate migrates tasks to a light-
ly loaded nodes, and achieves a good load balance. Clearly,
the performance of any scheduling algorithm depends on re-
ducing both types ofresponse times. In addition, system to-
pology can have a direct effect on the overall performance.
It is very likely that a scheduling strategy may perform well
on one topology but may perform poorly on the other. Fur-
thermore, the scheduling overhead and communication cost
for task migration can not be ignored.

The proposed algorithm is designed to meet these objec-
tives. For analyzing its performance, we use both analytical
modeling and simulation. The analytical model, itself, con-
sistsof queuing, statistical and simulation experiments. The
proposed strategy is modeled by a central server queuing
network. For the queuing model, the proposed scheduling
strategy is characterized by the probability that a newly ar-
rived task is executed locally or migrated to another node.
This probability determines the tendency of task migration
which in turn determines affects the settling time of a task.
The execution queue length representing the load at a node is
also determined. The queue length at a node affects the sec-
ond part of a task’s response time. In our performance evalu-
ation methodology, we obtained a large number of values of
the average queue length and the probability associated with
task migration, through simulation. We characterize these
two parameters through, statistical analysis, in termsof sys-
tem parameters. For details see [2]. The analytical queuing
model uses statistical analysis to find the response time of a
system with any set of system parameters. Another nearest
neighbor scheduling strategy is characterized by the pro-
posed performance evaluation model and compared with the
proposed algorithm. These results are, again, compared
with independent simulation. The main advantage of this ap-
proach is that instead of assessing aparticular strategy on the

314
0-8186-2310-1/91$1.00 Q 1991 IEEE

basis of a selected set of experiments, it can be analyzed in a
variety of different conditions.

2. Related Work
Scheduling strategies can be either static or dynamic. In

the former case, work load allocation decisions are taken be-
fore run time and tasks areassigned to individual processors
of the system. Static scheduling strategies can generate
good load balance and are useful for workload with static
structures [171. However, if the application have dynamic
structures or if the tasks are created at run time [9], dynamic
scheduling is required [SI, 181. It is essential for a dynamic
scheduling strategy to balance computation load by migrat-
ing workload from the heavily loaded processors to the
lightly loaded or idle processors of the system. Dynamic
task scheduling or load balancing, on a multicomputer net-
work consisting of autonomous computers connected to-
gether viacommunication links, has been extensively inves-
tigatedbymanyresearchers[5], [71,[81,[11],[121. Dynam-
ic scheduling can be centralized in which the control is in the
hand of a single node. In a decentralized approach [51,[61,
[7], this control is distributed amongst all the nodes in the
system. In contrast jn a semi-distributed control, only a
subset of nodes make scheduling decisions [11. For decen-
tralized control, various algorithms based on bidding [141,
and nearest neighbors load balancing have been proposed
[81, [lll, [131. These strategiesarealsoclassifiedaccording
to the type and amount of information exchange [8].

3. The Task Scheduling Algorithm
As discussed above, an efficient dynamic scheduling

strategy is one that is stable, returns a fast response time, and
incurs a low overhead. In general, a scheduling strategycon-
sists of three policies, namely transfer policy, location
policy and information policy 151. The information ex-
change policy in our case is that when the scheduler of some
node needs to schedule some task, it collects the load status
of its neighbors.

Since information interchange and execution of sched-
uling algorithm takes certain amount of time, the tasks arriv-
ing during that time wait in a waiting queue. For each com-
munication link, a communication queue is maintained. At
each node, task transferred fmm other node joins the locally
generated tasks, andboth are handled with equal priority. If
a task is decided to be scheduled locally, it is entered in the
execution queue which is served by the CPU on the FCFS
basis. The length of this queue represents the load of a node.
A task may migrate from node to node in the network before
finally being executed at some node. Figure 1 illustrates
such a multicomputer network.

The proposed algorithm is a combination of neighbor-
hood averaging and bidding approach. When a task is to be
scheduled, the scheduler broadcasts messages to its neigh-
bors asking for bids. A neighbor calculates the average load
of its own neighborhood and if its own load is less than that

average, it sends a yes message along with its load informa-
tion to the requesting node. After the requesting node has re-
ceived all the bids, it calculates the average load of its own
neighborhood. If its local load is greater than average, it se-
lects the node with minimum load out of those neighbor
which sent yes messages. If the local execution queue is
empty or the local load is less than average and none of the
neighbors reply with yes messages, the task is scheduled in
the local queue. This strategy is proposed to add more stabil-
ity to neighborhood averaging strategy. This extra level of
stability is due to the fact that the receiving node expresses
its willingness to receive a task only if its load is less than its
own neighborhood average. This reduces the number of ex-
tra task migrations and hence task thrashing. Avoidance of
unnecessary task migration is particularly important at high
load when every overloaded node tries to get rid off its load
by assuming that other nodes are lightly loaded. As shown
later, at high load, the task migration probability of the pro-
posed algorithm is greatly reduced but at the same time it is
large enough to transfer extra load. This algorithm is termed
as Bidd-Average.

For comparison, we select random scheduling strategy
which also makes use of nearest neighbor loadbalancing. In
this strategy, the task scheduler calculates the average of its
own load and the load of all neighbors. If the local load is
greater than the average, the task is sent to a randomly se-
lected neighbor. Theobjectivebehind selecting this strategy
is to show the tendency of random strategy to cause extra mi-
grations.

4. Performance Modeling
In this section, we describe a performance evaluation

model for scheduling strategies described above. First, we
show that the class of distributed load balancing strategies
described above can be modeled by an open central server
queuing model. A multicomputer network can be repre-
sented as agraph where each node represents an independent
processor and each edge represents the communication link
between two nodes. We consider a multicomputer network
in which processing nodes are connected with each other
through a symmetric topology, that is, each node is linked to
the same number of nodes. The number of links per node is
called the degree of the network. The processors of the sys-
tem can be heterogeneous but in this paper we consider only
the homogeneous case. Symmetry implies that the intercon-
nection network of the system is a regular graph with fxed
number of links per node whereas homogeneity implies that
the processors of the system are identical.

We assume that task arrive at each node with an average
arrival rate of I tasks per time-unit per node. The task ar-
rival process is assumed to be Poisson and inter-arrival time
is assumed to be exponentially distributed. The average
scheduling, communication and execution times are de-
noted by ~ /Ps , 1/Pc, ~ /PE timeunits, respectively and all
of them are assumed to be exponentially distributed. With

Executed Tasks Executed Tasks Executed Tasks

Figure 1: A logical view of decentralized task scheduling.

Locally submitted
tasks with rate 1

Executed Tasks

Figure 2 The system in Figure 1 represented by open network central server model.

nearest neighbor load balancing, the steady state departure
and task arrival rates at anode are the same. When a task mi-
grates from one node to another, it encounters a statistically
identical node. Therefore, under steady-state conditions,
the multicomputer network shown earlier in Figure 1 can be
equivalently represented by the open central server queuing
model as shown in Figure 2. The model consists of a waiting
queue, L communication queue sand an execution queue. A
task arriving at that node enters the local execution queue
with probability, Po or migrates to one of the neighbors with
probability 1 - P o . The model is approximate since routing
of tasks is dependent on the state of execution queues. This
model is, however, also validated through simulation re-
sults, which are obtained on actual network topologies.

We can view a task’s residence time in the system ascon-
sisting of two phases. In the first phase, the task may keep on
migrating during the course of which it waits in the waiting
queue, gets service from the scheduler, waits in the commu-
nication queue, and then it may transfers to another node. If
itisre-migrated,the samecyclecanstartalloveragain. The
second phase starts when the task is finally scheduled at the
execution queue of a node. The second phase includes the
queuing and service time at the CPU. By solving this made1
[16], response times in the fmt phase can be obtained as:

Once a task is scheduled at a local execution queue, the
duration of its residence time in the system, starting from the
time it is scheduled to the time it finishes execution, can be
calculated as:

EINEl (Resp. Time)wz =- A '

where ,??[NE] is the average execution queue length. The
complete response time, therefore, is given by:

Resp. Time = (Resp. Time)-el + (Resp. Time)+,2.

Theaboveequationimpliesthat, foragiven system load,
Po and Pj 's, the response time yielded by a load balancing
strategy can be calculated if the probability, P o , and the av-
erage execution queue length, E[NEI is determined. The
probability that a task will be migrated to another node is
simply 1 - Po. The migration probabilities to individual
channels at each node are identical. The probability, po , is
calculated, from the simulation data, after dividing the aver-
age number of locally scheduled tasks by the total number of
tasks arrived, at each node. The average execution queue
length, EWE] ,determines how smoothly load is balanced.
Both parameters, Po and EWE] , depend on a number of
system parameters such as 12 , ps , pc , pE , and L. In the
next sections, we briefly describe the simulation methodol-
ogy which was used to obtain a very large data set from dif-
ferent test cases. We describe, how we performed statistical
analysis on the simulation data and determined the sensitiv-
ity of Po and against different system parameters.
Both task scheduling strategies were simulated. A long se-
ries of simulation runs was conducted to obtain a largenum-
ber of data points for Po and EWE] for each particular strat-
egy by varying a , ps , pc and number of links per node.

It is worth mentioning that the simulator takes into ac-
count the time to schedule a task which includes the ex-

change of state information and the execution of scheduling
algorithm itself. Most previous studies have ignored this
overhead. We have assumed an average scheduling time,
l/ps , which in turn can be normalized with respect to the

execution time, pE . For example, ifps is 10 tasks/time-
unit and p E is 1 taskhimeunit, it means that the average
task scheduling time is 1/10 of the execution time. We con-
sider it an input parameter which can be observed from areal
system depending upon how the information message han-
dling and regular task migration is implemented.

We characterized p0 and E[NE] in terms of system pa-
rameters such as A , ps , p~ and system network topology,
with statistical analyses. For this purpose, a regression anal-
ysis was then performed to obtain a model that expresses Po
in terms of the aforementioned parameters.

As explained earlier, the response time of a task consists
of two parts. The first part is the response time before the
task is scheduled in an execution queue. This is simply equal
to the time at which the task is scheduled (in the execution
queue of some node) minus its arrival time. This response
time, called transient time, is completely described by Po
which indicates the task migration tendency of a load bal-
ancing strategy. The second part of response time shows
how much time (queuing delay plus execution time) a task
takes to finish its execution, after eventually being sched-
uled. This time is equal to the time the task finishes execu-
tion minus the time at which it was scheduled in the execu-
tion queue. The best transient response time results when a
strategy's Po is neither very high nor very low. In other
words, the strategy should not have task thrashing tendency
and yet it should make task migrations whenever appmpri-
ate. The second part of the response time depends on a strat-
egy's load equalization ability, that is, it results in a smaller
average execution queue length if the load is equally bal-
anced. Both of these factors, however, are dependent on
each other. For example, if a strategy suffers from task
thrashing,executionqueuelengthisnot balancedandtheav-
erage value of queue length increases.

- (1.722-0.154*linh + 0.001*p~ + 0.001 *ps - m o * a ~ o (~ u r u i o m) = [I + e -1 (1)

(2)

(3)

(4)

11
- (1.349-0.10827* l i d s + o.oo6*pCc + O.O13*ps - o m * a Po(Bidd-Averuge) = [1 + e

E[NE](Random) = exp (- 1.960 - 0.062 * links + + 3.300 *a)

E[N~](Bidd-Averuge) = exp (- 1.834 - 0.055 * links + + 2.913 * A)

317

5. Results
First, we examine the task migration phenomenon asso-

ciated with both strategies. This phenomenon is indicated
by the Po which is the probability that a task is scheduled
locally in the execution queue. The probability that a task is
migrated to a neighbor is simply 1 - Po , as mentioned earli-
er. The probability Po becomes low if a scheduling strategy
has a tendency to make more task migrations. In contrast, if
a scheduling strategy mes to keep more tasks locally, p,, be-
comes very high. For instance, po will be equal to l if no
load balancing is done at all.

The impact of system load on Po is significant because
the load of a node as well as those of its neighbors affect the
behavior of the scheduling algorithm. The curves for Po
with varying system load are shown in Figure 3. For this
case the average value of pE is selected to be 1 task per time
units whereas both Ps and PC are selected tobe 20 tasks per
tirne unit. An ideal strategy keeps keeps the value of neither
very high nor very low and adjusts to the system load. The
average arrival rate per node is varied from 0.3 to 0.9. The
topology used in this case is a 16-node hypercube with 4
links per node. These results are obtained through the ana-
lytical model by using equation l and2. A thresholdcan also
be used to control po by adapting a static transfer policy.
Since both Random and Bidd-Average strategies determine
their threshold dynamically depending upon their own load
and their neighbors load, they adjust to the system load.
However, random strategy can still make unnecessary task
migrations which makes a task go through scheduling and
communication delays. A neighboring node which appears
relatively less loaded as compared to the local node may still
be loaded enough to make the task wait. The Bidd-Average
algorithm makes a double check to see if the neighboring
node is worth receiving the task. Due to this reason, the val-
ueof Po is higher for theBidd-Average algorithm (showing
controlled task migrations due to lower value of 1 - Po).

The response time in the fist phase should be reduced to
minimum so that less time is spend in communication and
scheduling but in order to reduce execution queue lengths,
load balancing needs to be done by task migration. Once a
task is scheduled at some node, the duration of the second
phase of its response time is dependent on the execution
queue length of that node. The average queue length versus
system load is shown in Figure 4. The parameters selected
for this figure are the same as those used for Figure 3. These
results are computed using equations 3 and 4. Again, the
proposed algorithm is shown to results in a smaller average
queue length, despite its controlled task migration.

Next, we show the average response time in phase 1 and
phase 2. These resultsare depicted in Figure 5 and Figure 6.
These results are obtained through the analytical model.
From these figures, we draw the following insights. The dif-

ference in response times of both strategies in phase 1 and
phase 2 is not very high at low load. However, this differ-
ence becomes significant as the load increases. This indi-
cates that Bidd-Average performs much better than the ran-
dom strategy, as the load increases. The accumulative aver-
age response time, which is the sum of response times in
both phases is shown in Figure 7. For this case, we present
the results from the analytical model as well as simulation.
Simulation results are obtained by running these algorithms
on actual topology (I h o d e hypercube). We note that the
random algorithm performs better at low loading conditions
but itsperformancedeteriorates withanincreaseinload. We
also observe that the performance model alone is able to pro-
duce distinct and accurate results, and the difference in the
performance of both algorithms is clearly detected by the
model. Moreaver, the model is able to produce non-linear
curve for response time versus system load which is equally
matched by simulation. These results validate ourperform-
ance model.

As opposed to some of the previous studies, we explicit-
ly takeintoaccount thecostoftaskschedulingoverheadand
the cost of task migration. Moreover, since both scheduling
and communication processes take certain amount of time,
waiting queues are maintained for tasks arriving during
those times. These queues are taken into account in the ana-
lytical model, as shown earlier in Figure 2, and are also im-
plemented in the simulation. In order to evaluate the per-
formance of the proposed algorithm and check the validity
of the proposed model for various parameters, we change
ps and pc but keep the rest fixed. The average accumula-
tive time of a task is plotted in Figure 8 against variable task
transferrate. Theloadpernodeis set tobe0.8. Theschedul-
ing rate is fixed as 20 tasks per unit-time and the task trans-
fer rate is varied from 4 to 40 tasksper unit-time, represent-
ing slow to very fast communication conditions. Simula-
tion results are also presented and compared with the results
of the analytical model. Under these conditions, the pro-
posed algorithm is again shown to outperfom Random al-
gorithm. Moreover, themodel is, again, shown to predict the
average response time which closely matches the response
time produced by simulation.

The task scheduling time has greater impact on the aver-
age task response time than the task communication time.
This is obvious when we compare the results given in Figure
8 to those in Figure 9, indicating that the average response
time with slow scheduling rate and high communicationrate
(Figure 9) is greater than the response time with fast sched-
uling rate and slow communication rate (Figure 8). The ob-
servation is true for both strategies. However, if both pc
and p s are low, a significantly higher response time will re-
sult.

Next, we show the impact of system topology on the av-
erageresponse time. In addition to 32-node hypercube with
5 links per node, we consider a 8-node folded hypercube.

318

1
PO

0.8

0.6

0.4

0.2

0
0.3 0.4 0.5 0.6 0.7 0.8 0.9

Load Per Node

Figure 3: Probability that a task is scheduled locally.

Tie-units

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Load Per Node

Figure 5: Average task settling time.

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Load Per Node

Figure 4: Average Execution Queue length.

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Load Per Node

Figure 6 Average task waiting time plus execution time.

Model -

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Load Per Node

Figure 7: Average accumulative task response time versus system load.

3 19

This topology is similar to 8-node hypercube except that it
has an extra link at every node which connects it to the node
whose binary address is the complement of this node.
Therefore, a 8-node folded hypercube has 4 links per node,
as opposed to 3 links per node for 8-node hypercube. The
second selected topology is a 9-node mesh with 4 links per
node, with wrappedaroundedges. The other two topologies
are a &node fully connected network with 7 links per node
and 16-node chordal ring with 3 links per node. The com-
munication rate and scheduling rate are both 20 taskdtime-

Time-unig

P) F E 2.6

2i
2
& 1.8

il

2.2

4 1.4

1 llwEEEl 4 8 12 16 20 24 28 32 36 40

Figure 8: Average accumulative task
response time versus task transfer rate.

unit and load per node is 0.7. The results for these topologks
are given in Figure 10, showing the average accumulative
response time obtained with both analytical model and sim-
ulation. The percentage difference in results of analytical
model and simulation is also indicated. We make the fol-
lowing observations from this figure. The proposed algo-
rithm performs better on all of these topologies. The differ-
ence in the response time of the model and simulation is
again very small. For both strategies, the fully connected
network performs the best whereas the ring topology per-

4 8 12 16 20 24 28 32 36 40

Figure 9: Average accumulative task
response time versus task scheduling rate.

Time-units

I

1.6

2
3
&

z

1.2

2 0.8

4 0.4

0

Fully Connected Chordal Ring Folded Hypercube Hypercube Mesh
(8node) (6node) (8 node) (32 node) (9 no&)

Figure 10: Comparison of response times predicted by the model and simulation for some more topologks
of varying sizes (A = 0.7 task/time-unit , Ccc =16 mutime-unit and ps = 16 task/timeunit).

320

forms the worst which implies that greater number of links
per node result in better load balancing. This is also intu-
itively true since the availability of more links implies an in-
creased probability of finding suitable neighbors for task
migration.

The is no difference in the performance of folded hyper-
cube and mesh - both of these topologies have 4 links per
node for 16-node network. The number of links per node
determines the impact of topology on a scheduling strategy.
It is because of this reason that the performance of both to-
pologies is the same as 9-node mesh (4 links per node). In
other words, the scheduler at the nodes of both topologies
perform logically the same and the topological effect on
nearest neighbor load balancing can indeed be modeled by
the number of links per node.

From this figure, the validity of the performance model
ismorestmnglyestablishedasweobtainresponsetimefrom
the model and compare it with some additional simulation
runs. For comparing both results, the empirical data ob-
tained from these simulation runs has not been used for sta-
tistical modeling. The difference between any pair of data
sets does notexceed ? 7 Z..

6. Summary
In this paper, we have proposed a task scheduling algo-

rithm and have evaluated its performance via analytical
modeling and simulation. Theproposed algorithm performs
load balancing among nearest neighbors and has been
shown to yield a good performance. Using the performance
evaluation approach, we are able to compare two different
load balancing schemes on a unified basis. We have shown
that these algorithms can be modeled by an open central
server queuing network if the system is symmetric and ho-
mogeneous. The statistical characteristics of the proposed
algorithm are presented by showing the sensitivity of its
queuing parameters with respect to various system parame-
ters. By considering examples from a wide range of system
parameters, it is shown that the average task response time
computed by the performance model closely matches there-
sponse time obtained via simulation. For dynamic schedul-
ing strategies, the response time of a task can be analyzed in
two phases. By comparing the algorithm with random strat-
egy, we notice that the proposed algorithm exhibits extra sta-
bility and avoids unnecessary task migrations.
References
[l] Ishfaq Ahmad and Arif Ghafoor, “A Semi Distributed

Task Allocation Strategy for Large Hypercube Super-
computers,” in Proc. of Supercomputing ’90, Nov.
1990, pp. 898-897.

[2] Ishfaq Ahmad, Arif Ghafoor and Kishan Mehrotra,
“Performance Prediction for Distributed Load Balanc-
ing on Multicomputers,yy Technical report + SU-
CIS-91-12, Department of Computer Science, Syra-
cuse university, Syracuse, New York.

[3] Rafael Alonso and Luis L. Cova, “Sharing Jobs Among
IndependentlyOwned~ssors,”inProc. of8-thInt1.
Con. on Distributed Computing Systems, 1988, pp.

[4] Yuan-Cheih Chow and Walter H. Kohler, “Models for
Dynamic Load Balancirig in a Heterogeneous Multiple
Processor System,” IEEE Trans. on Computers ,vol.
c-28, no. 5, May 1979, pp.354-361.

[5] Derek L. Eager, Edward D. Lazowska and John Zahor-
jan,”Adaptive Load Sharing in Homogeneous Distrib-
uted Systems,” IEEE Trans. on Software Eng. ,vol.

[6] Kemal Efe and Bojan Groselj, ”Minimizing Control
Ovehead in Adaptive Load Sharing,” in Proc. of9-th
I d . CO@. on Distributed Computing Systems, 1989,

[7] Arif Ghafoor and Ishfaq Ahmad ”An Efficient Model of
Dynamic Task Scheduling for Distributed Systems, “in
Proc. of COMPSAC ’90, Oct., 1990, pp.442-447.

[8] Dirk C. Grundwald, Bobby A. A. Nazief and Daniel A.
Reed, ”Empirical Comparison of Heuristic Load Distri-
bution in Point-to-Point Multicomputer Networks,”
Proc. of The Fifth Distributed Memory Computing
Conference, April 1990, pp. 984-993.

[9] Jeff Koller, ”The MOOS II Operating System and Dy-
namic Load balancing,” in Proc. of The Fourth Cod. on

282-288.

SE-12, pp. 662-675, May 1986.

pp. 307-3 15.

ia

11

Hypercube, Concur& Computh and Applicadons,
March 1989, pp. 599-602.
Andrew Ross and Bruce McMillin, ”Experimental
Comparison of Bidding and Drafting Load Sharing Pro-
tocols,” Proc. of The Fifth Distributed Memory Com-
puting Conference, April 1990, pp. 968-974.
Vikram A. Saltore, ”A Distributed and Adaptive Dy-
namic Load Balancing Scheme for Parallel Processing
of Medium-Grain Tasks,” Proc. of The Fifih Distrib-
uted Memory Computing Confereke, Aphll990, pp.
994-999.

123 Niranjan Sivrati and Philip Krueger, ‘ T ~ o Adaptive
Location policies for Global Scheduling Algorithms,”
Proc. ofThe ZO-th Int’l con. on Distributed Computing
systems, June 1990, pp. 502-509.

131 Wei Shu and L. V. Kalk, “A Dynamic Scheduling Strat-
egy for the Chare-Kernel System,” in Proc. of Super-
computing ‘89, November 1989, pp. 389-398.

141 John A. Stankovic and I. S. Sidhu, ”An Adaptive Bid-
ding Algorithm for Processes, Clusters and Distributed
Groups, “in Proc. of 4-th Int’l. CO@. on Distributed
Computing Systems, 1984, pp. 49-59.

151 Anders Svensson,”Hostory, an Intelligent- Sharing
Filter,” in Proc. of l&th Intl. Con. on Distributed
Compun’ng Systems, 1990, pp. 546-553.

[I61 Kishor S. Trivedi, Probability & Statistics with Reli-
ability, Queuing and Computer Science Applications,
Prentice-Hall, inc. Englewood Cliffs, NJ, 1982.

[17] Min-You Wu and W. Shu, “Scatter Scheduling for
Problems with Unpredictable Structures,” in Proc. of
The Sixtth Distributed Memory Computing Confer-
ence. April 1991, pp. 137-143.

32 I

