
BENCHMARK THE SOFTWARE BASED MPEG-4 VIDEO CODEC'
Weiguo Zheng, Ishfag Ahmad, Ming Lei Liou

wgz@cs.ust. hk, iahmad@cs. ust. hk, eeliou@ee.ust. hk
Multimedia Technology Research Center
HKUST, Clear Water Bay, Hong Kong

Abstract
Software-based implementations of H.263 and MPEG-
2 video standards are well documented, recently
reporting faster than or close to real-time performance.
Since the complexity of MPEG-4 is higher than its
predecessor standards, real time video encoding and
decoding can exhaust computational resource without
achieving real-time speed. In this paper, we report a
software-based real-time MPEG-4 video codec
(encoder and decoder) on a single-processor PC, with
no frame-skip, or profile simplifying tricks, or quality
loss compromise. The proposed codec is an
embodiment of a number of novel algorithms.
Specifically, we have designed a fast binary shape
coding algorithm, a fast motion estimation algorithm,
and a technique for detection of all-zero quanitzed
blocks. To enhance the computation speed, we harness
Intel's SIMD (Single Instruction Stream, Multiple Data
Stream) instructions to implement these algorithms. On
the 800 MHz Intel Pentium 111, our decoder can play
real-time CIF video with less than 20% system resource
consumption; and our encoder realizes up to 70 frames
per second for CIF resolution video, with the similar
picture quality as the reference software.

1. Introduction
Due to improved coding efficiency and functionality of
MPEG-4, a number of new applications using digital
video, such as video conferencing, Internet video
games or digital TV, are emerging on common PC as
well as hand-held devices. For such application,
efficient software encoding and decoding is highly
desirable.

Compared to its predecessor standards, MPEG-4
has a number of additional coding modules that
exacerbate its coding complexity. MPEG-4 supports
arbitrary shape object based encoding described by
alpha map. Multilevel alpha maps are frequently used
to blend different layers of image sequences for the
final film. Coding of texture for arbitrarily shaped
regions is required for achieving an efficient texture
representation for arbitrarily shaped objects. In
addition, MPEG-4 provides multifunctional coding
tools and algorithms that provide tools to support a
number of content based as well as other
knctionalities. MPEG-4 video group has developed
Video Verification Models (VMs), which has evolved

by means of core experiments. The VM is a common
platform with a precise definition of encoding and
decoding algorithms that can be presented as tools
addressing specific fknctionalities. New
algorithms/tools are added to the VM and old
algorithms/tools are replaced in the VM by successfkl
core experiments [11.

The introduction of arbitrary shape object encoding
and higher compression efficiency incur significant
additional computational complexity and requirements.
The speed of latest VM is still very slow and is far from
practical applications. Based on our testing, the
encoding speed for CIF format video (rectangular
frame) is usually less than 2 frames per second on
Pentium Ill 800 MHz processor and Windows 2000
(CIF size rectangular frame simple head and shoulder
sequences).

E

Fig. 1 : Complexity distribution of MPEG-4 encoder

Others -_

Fig.2: Complexity distribution of MPEG-4 decoder

The design of a fully standard-compliant MPEG-4
codec that can achieve real-time speed entails
optimizations at all levels, including designing new
algorithms for intra and inter VOP coding, software
implementation with efficient data structures, and
enhancing computation speed by all possible methods
such as taking advantage of the machine architecture.
Using profiling tools, the complexity of various
modules of MPEG-4 video encoder and decoder with
CIF size sequences are evaluated and depicted in Fig.1
and Fig.2. For the encoder, motion estimation occupies
the largest portion of the complexity pie, while FDCT

' This work was supported by Research Grants Council of Hong Kong under contract # CRC98/01.EG05 and HKUST6228199E.
\

0-7803-7057-0/01/$10.00 02001 IEEE. 289

and IDCT hold the second position, followed by
quantization and dequantization (QUAN and
DEQUAN) and shape encoding. For the decoder,
IDCT, dequantization, BAB decoding and motion
compensation consume most of computational
resource.

In this paper, we report a software-based real-time
MPEG-4 video codec on a single-processor PC, with
no frame-skip, or profile simplifying tricks, or quality
loss compromise. The proposed codec is an
embodiment of a number of novel algorithms, such as
fast binary shape coding algorithm, a fast motion
estimation algorithm, and a technique for detection of
all-zero quanitzed blocks, etc. To enhance the
computation speed, we harness Intel’s instructions to
implement these algorithms.

The remainder of this paper is In Section 2 we
describe the optimization of MPEG-4 decoder. Section
3 explains the optimising techniques for MPEG-4
encoder. Section 4 includes the benchmark and
comparison results. Section 5 concludes the paper with
some summarizing remarks.

2. Optimization for MPEG-4 Decoder
Some papers have reported how to optimize MPEG-4
decoder, but most of the reported work is for a limited
range of optimizations, such as IDCT [2], [3], and
without the utilization of MMX technology.

In order to identify the modules with major
computationally complexity, we have profiled the
reference software MPEG-4 decoder. These
experiments are done with streams in the core
profile@level 2. The size of GOV is 15, and there exist
4 PVOPs between IVOPs, 2 BVOPs between reference
VOPs. By the order of complexity, we list the modules
with major computational intensity in the following:
shape decoding, texture decoding, motion
compensation, VLC codeword decoding, disk access or
display, etc.

2.1 Improvements in Shape Decoding
The computation of context information for pixels in
the binary alpha block (BAB) is the most complex part
of shape decoding. Contexts are obtained using the
neighbouring pixel information. There are two types of
contexts: INTRA and INTER. In the case of INTRA
context computation, 10 neighbouring pixels are loaded
to form a template. In the case of INTER context, 9
pixels from current and reference VOPs are loaded.

To compute a 10-bit INTRA context, we need to
make 10 memory accesses for neighbouring pixels, and
test if they are opaque or transparent. If a pixel is
opaque, it is placed in current context location using the
shift operation; otherwise, a transparent pixel is
ignored.

Since the template is moved from left to right and
from top to bottom, we can use three 3 64-bit registers

(SIMD registers) to store their values, and keep moving
in and moving out to form a new template. And use
SIMD comparison and shift instructions to calculate the
context. The advantage of this method is reduced
memory access and improved efficiency of SIMD
instruction’s parallel processing.

2.2. Optimizing the Texture Decoding
The texture decoding procedure consists of decoding
macroblock header, decoding DCT coefficients from
VLC codeword, dequantization, and inverse DCT
(IDCT), etc. According to profiling analysis, the IDCT
and dequantization have the highest complexity for
texture decoding.

In the dequantization processing, the VLC decoded
DCT elements is multiplied by the product of
quantization scale factor and the quantization matrix.
To improve the speed the multiplication results can be
pre-computed and stored. The quantization scale factor
is used as an index to retrieve the pre-multiplication
value. Thus the number of multiplication steps is
reduced for each non-zero coefficient. The IDCT
processing is improved by SIMD instructions and AAN
algorithm.

2.3. Motion Compensation
Motion compensation includes three major functions:
pixel upsampling, data copy, and pixel compensation.
Pixel upsampling is necessary for half-pixel motion
compensation. Pixel values are typically stored as 8-bit
unsigned characters. In order to apply SIMD
instruction, the upsampling has to be implemented with
8-bit quantities, and 8 upsampled pixels can be
obtained in one process. In upsampling, after division
by 2 (or 4), two (or four) 8-bit quantities are
accumulated into a new 8-bit quantity. In order to
minimize accuracy loss, a compensation value can be
added to accumulated value.

Data copy also benefits from 64-bit long SIMD
register. Using SIMD data move instruction, 8 pixels
can be moved at the same time. Similarly, pixel
compensation can take benefit from SIMD processing.
The problem arises when the data types are unmatched
during the addition of the delta data to the reference
VOP. Pixel values in reference VOP are stored as 8-bit
quantities but the delta data from IDCT are 16-bit
quantities. Before the addition, the 8-bit reference
pixels are unpacked into 16-bit quantities, and added
with 16-bit delta data. Then, we pack the 16-bit
quantities back to 8-bit with saturation. The motion
compensation can be executed in a similar fashion.

3. Optimization for MPEG-4 Encoder
Compared to the decoder, the optimisation of MPEG-4
encoder is much more difficult due to several additional
operations such as motion estimation, FDCT, QUANT,
and mode decision, etc. However, implementation of
the encoder has more room for improvement since the

290

standard only defines the syntax and methods for
decoder and is more flexible for the encoder.

According to profiling results, the most
computational intensive module is motion estimation,
which is followed by FDCT/IDCT, QUANDEQUAN
and shape encoding. The optimization for shape
encoding is similar with what have been done for
decoder. This section focuses on fast motion estimation
and prediction of all-zero block.

3.1. Fast Motion Estimation
Motion estimation (ME) is the most important part of
the MPEG-4 encoder, since it could significantly affect
the output quality of the encoded sequence. This is also
the most complex part with an overwhelming
computational complexity compared with the other
parts of the encoding process. In our testing, with +16
search window, motion estimation with full search can
swallow more than 90% of processing resource. A
myriad of algorithms exist to improve the speed and
performance of motion estimation, such as the three-
step search, new three-step search, 2-D logarithmic
search, conjugate directional search and hierarchical
search [4], [5], [6], etc. The MPEG-4 Part-7 has
adopted MVFAST (motion vector field adaptive fast
search technique) as the core technology for fast
motion estimation [7]. MVFAST can achieve
substantial speedup comparing with full search.
However, more efficient motion estimation is possible.
We propose a new algorithm, called Adaptive Motion
Search with Elastic Diamond (AMSED), which is
considerably faster than MVFAST but yields the same
picture quality. The main features of AMSED are:

Adaptive threshold for stationary block;
Definition of motion vector candidate list (MVCL);
Detection of MB’s motion difference (MD);
Motion search with elastic diamond search pattern;
Adaptive threshold for half-way-stop;
Keeping the checking point history;
Adoption motion inertia in temporal domain;
Interpolated motion vector in motion candidate list
for BVOP.

A stationary MB is the one with its motion vector
at (0, 0). In MVFAST [7], the threshold is 512. In
AMSED, this threshold is set adaptively according to
motion of its neighbours. This allows faster and more
accurate detection of stationary block.

The motion difference (MD) is determined from a
list of candidate vectors. The motion vector candidate
list (MVCL) includes motion vectors from adjacent
MBs in spatial and temporal domain. Based on the
observation of smoothness of motion field, MD is
measured by calculating the maximum difference
between vectors in MVCL. If the MBs in MVCL
belong to the same moving object, MD is usually low,
and the motion vector can be refined within a small
range around the average vector. If MD is larger than L
(L = 2 in this paper), AMSED uses the motion inertia

property by testing MVs within the search range in the
reference VOP; the closest predictor (MB position +
MV) is selected as the MV candidate from the temporal
domain.

AMSED uses two search patterns: Large Diamond
Search Pattern (LDSP) and Small Diamond Search
Pattern (SDSP). LDSP is used to find raw motion
vector quickly, and SDSP is used to refine motion
vector prediction. In the elastic mode, LDSP and SDSP
may switch between each other. If SDSP is executed
for a certain number of times, the search pattern
changes to LDSP. If the center has the minimum SAD
in the current round of LDSP, the search pattern
changes to SDSP with the same search center, and so
on.

In order to eliminate duplicated checkpoints,
AMSED keeps track of the checking points that have
been accessed. An adaptive half-way-stop threshold is
applied to terminate the motion search once a good
enough motion vector is obtained.

3.2. Prediction of All-Zero Blocks
In MC/DCT framework, forward DCT helps in
removing the spatial redundancy by concentrating most
relevant information to the lower coefficients in the
frequency domain. Quantization is basically a process
for reducing the precision of the DCT coefficients. The
quantization process involves division of integer DCT
coefficient value by integer quantization scales, which
is chosen to minimize the perceived distortion in the
reconstructed picture using the principles based on the
human visual system. In practice, most quantized DCT
coefficients become zero, with many blocks having all
of their coefficients become zero. We refer to such a
block as all-zero block. If such blocks can be detected
prior to DCT and quantization, the associated
dequantization and IDCT can be skipped as well. This
can result in significant saving in the computational
cost.

As opposed to the techniques proposed in [SI and
[9], we combine the properties of DCT transformation
and quantization of H.263 and MPEG-2 mode,
respectively. The sum of absolute values (SAV) is
defined for an 8x8 block that is going to be transformed
and quantized.

We use the following criteria to predict all-zero
blocks in inter-coded blocks:

For H.263 quantization for non-intra block, if SAV
<: 20Q, this block is determined to be all zero block;
For MPEG quantization for non-intra block, if SAV
< 16Q, this block is determined to be all zero block.
Based on our experiments, we observe more than

half of the blocks in PVOP and BVOP are skipped as
all zero blocks.

29 1

’ . 4. Performance Comparison
We have tested our decoder and encoder on various
processors. The results reported here are based on an
Intel Pentium I11 800 MHz processor running Windows
2000. The decoding speeds of reference decoder and
our optimised decoder are compared in Table 1. For the
encoder, the first VOP is IVOP, and the rest of the
VOPs are predicted. There are two BVOPs between
reference VOPs. The quantization scales are fixed for
different type of VOPs; they are 10 for IVOP, 12 for
PVOP and 16 for BVOP. We compare both the
compression ratios and encoding frame rates (no rate
control is used in these experiments). The experiment
results are shown in Table 2.

5. Conclusions
In addition to the techniques mentioned above, we have
also improved 4-MV motion estimation, half-pixel
motion estimation, motion compensation, best-
bounding box finding, upsampling, fast DCT & IDCT,
and SIMD implementation, etc. Based on the proposed
techniques in this paper, the optimized decoder can
achieve real-time speed with less than 20%
computational resource consumption; and our software
based MPEG-4 encoder can encode CIF resolution
video at faster than real-time speed without loss of
quality and compression efficiency.

References
[l] ISO/IEC JTCl/SC29/WGll N3093, “MPEG-4
Video Verification Model Version 15.0.”
[2] Franco Casalino, Gianluca Di Cagno, and Ronco
Luca, “MPEG-4 Video Decoder Optimization,”

Proceeding of IEEE International Conference on
Multimedia Computing and Systems, Vol.1, 1999, pp.

[3] Lap-Pui Chau, Nam Ling, G. Hovden, H. Lan, Hon-
Cheong Ng, and Keng-Pang Lim, “An MPEG-4 Real-
time Video Decoder Software,” Proceeding of ICIP’99,
Vol. 1, 1999, pp. 249-253.
[4] R.Li, B.Zeng, and M.L.Liou, “A New Three-Step
Search Algorithm for Fast Motion Estimation,” IEEE
Transactions on Circuits & Systems for Video
Technology, Vo1.4, Aug. 1994, pp. 438-442.
[5] F.Dufaux and F.Moscheni, “Motion Estimation
Techniques for Digital TV: A Review and a New
Contribution,” Proceeding of IEEE, vol. 83, June 1995,

[6] Jo Yew Tham, Surendra Ranganath, Maitreya
Ranganath, and Ashraf Ali Kassim, “A Novel
Unrestricted Center-Biased Diamond Search Algorithm
for Block Motion Estimation,” IEEE Transactions on
Circuits & Systems for Video Technology, Vo1.8, No.4,

[7] ISO/IEC JTCl/SC29/WGll N3324, “Optimization
Model Version 1 .O.”
[SI I-Ming Pao, and Ming-Ting Sun, “Modeling DCT
Coefficients for Fast Video Encoding,” IEEE
Transactions on Circuits & Systems for Video
Technology, Vo1.9, No.4, June 1999, pp. 608-616.
[9] Anurag Bist, Wei Wu and Albert Hsueh,
“Intelligent Pre-Quantization in Motion compensated
Video Coding,” ITU-T Q15-0-35, Tampere, Finland,
April 1998.

363-442.

pp. 858-876.

August, 1998, pp. 369-377.

Table 1: Comparison of the reference MPEG-4 VM video decoder and our optimized decoder for
core profile @ level 2 (2 BVOPs between IVOPs or PVOPs)

Speed (fps)
Frames

Foreman Rectangular
News2 Arbitrary 300
Stefan 37 148

Table 2: Comparison of the reference MPEG-4 VM video encoder and our optimized
encoder for core profile @ level 2 (2 BVOPs between IVOPs or PVOPs)

292

