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ABSTRACT

Video transmission usually has stringent requirements
on the network bandwidth, packet loss rate and the expe-
rienced delay. To better study the impact of layered video
traffic on the network performance, accurate and tractable
traffic model for layered video source is important. In this
paper we propose a traffic model for scalable video encoded
in multiple layers. The model is based on Markovian arrival
process with marked transitions. The states of the Marko-
vian arrival process are derived from the correlation feature
found in the video data. The base layer and enhancement
layer video frame size pairs are classified by cluster detec-
tion algorithm. Each cluster corresponds to one state of the
underlying Markov chain of the video traffic arrival process.
The joint base and enhancement layer video frame size dis-
tribution for each state of the Markov chain is approximated
by multivariate normal distribution. Simulation study shows
that the proposed traffic model can predict the network per-
formance with high accuracy.

1. INTRODUCTION

Due to the importance of video application, video traffic
modeling had raised great research attention. Video data is
usually encoded in variable bit rate (VBR), or nearly in con-
stant bit rate (CBR) if a proper rate control algorithm is ap-
plied by the video encoder. One development in video tech-
nology is the emergence of layered video encoding (also
called scalable encoding), which has found way in multi-
media applications in heterogeneous network environment
with diverse bandwidth and loss behavior. Generally there
are three types of scalability, i.e., temporal scalability, spa-
tial scalability and SNR scalability. In all the cases, the
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base layer pictures are encoded based on sub-sampling ei-
ther with less frame rate (for temporal scalability), or with
smaller picture size (for spatial scalability), or with coarser
picture quality (for SNR scalability). Combining both lay-
ers can generate full quality video. Recently, a new video
coding framework called fine grained scalability (FGS) is
proposed for MPEG-4 [23]. The FGS base layer can be
compressed using any motion compensation video encod-
ing methods, often with a proper rate control. The enhance-
ment layer data is encoded in a fine-granular way by adopt-
ing the bit-plane DCT-based FGS coding method [16]. This
offers the flexibility to arbitrarily truncate the enhancement
layer bit stream when the network bandwidth is variable,
and makes the FGS framework well suited for Internet video
streaming.

Video transmission usually has stringent requirements
on the network bandwidth, the packet loss rate and the ex-
perienced delay. A key purpose of video source modeling
is to employ the traffic model to predict the network per-
formance by queueing analysis or computer simulation. To
better study the impact of layered video traffic on the net-
work performance, accurate and tractable traffic model for
layered video source is desirable. In the literature there
are plenty of statistical source models for VBR compressed
video. A survey of the video source models can be found
in [14]. Most video traffic models can be categorized into
three classes, i.e., Markov process based, transform expand
sample (TES) process based, and self-similar process based.
TES based models [20] have the advantage to closely fit
both the marginal distribution and the autocorrelation func-
tion of the empirical data. Thus they had been used to model
the video traffic with a high accuracy in [21, 22]. It had
been shown in [2] that long range dependence (LRD) is an
inherent feature of the VBR video data, and that the LRD
feature can lead to challenge in network traffic engineer-
ing. Source models with LRD property for VBR video were
developed based on self-similar process in [7, 13]. TES
and self-similar based models, however, are not tractable
for queueing analysis, and the involved computation cost is



rather high. Studies in [12] showed that although the LRD
property of data traffic may have a strong negative impact
on the network performance, the effects are significant only
if the LRD causes the busy period of the network channel
to be long enough such that the long lag traffic can accumu-
late and come into play. Real-time VBR video often has
stringent QoS requirements on delay and loss. So suffi-
cient network bandwidth must be allocated for video traf-
fic and the buffer size need to be limited. Thus the traf-
fic intensity and the busy period can not be very high. In
such situation, the short range dependence property of video
data is more important for predicting the network perfor-
mance. This means that for real-time VBR video, tradi-
tional Markov based models are still valuable. For example,
Markov chains were applied to model video conference traf-
fic in [10, 19]. In addition, Markov chain had been widely
used as a basic building block for more complex video traf-
fic models, either in modeling scene change as in [22, 26],
or in modeling group-of-picture (GOP) pattern as in [17].

Although in the literature there are large number of traf-
fic models for VBR video, few is for layered video. A model
for one and two layer video was proposed in [5]. In the
model, the base layer was assumed to be coded in CBR and
the enhancement layer is VBR. The model was targeted for
video sequence with no (or few) scene change and encoded
in IPPPPP... pattern without any fixed GOP, i.e., the first
video frame is encoded in I-frame, and all the subsequent
frames are encoded in P-frames. The correlation between
successive P-frames was studied by cluster analysis on the
P-frame bit rate pairs 〈R(t), R(t + 1)〉, where R(t) repre-
sents the bit rate for the t-th P-frame. Based on the cluster-
ing result, a finite state Markov chain was constructed. For
each state of the Markov chain, an auto-regressive process
was estimated. The model was validated by matching sta-
tistical features and examining the loss behavior in a leaky
bucket policing function. The model, however, can only
handle the case when the base layer is encoded in CBR, or
in VBR with perfect rate control. For scalable video when
both the base layer and enhancement layer are encoded in
VBR, a general traffic model is still needed, which is the
motivation of this paper.

In this paper we propose a traffic model for video source
with no (or very few) scene change and scalably encoded in
multiple layers1. The model is based on Markovian arrival
process with marked transitions. The state of the Markovian
arrival process is derived from the correlation feature found
from the video data. The video frame size distribution in
each state of the underlying Markov chain is modeled by
a multivariate normal distribution2 in order to capture the

1In our modeling example we analyzed video traces coded in 2 layers.
One reason is that we lack scalable video trace coded in more than 2 layers.
The modeling approach in this paper, however, is general and applicable
for n-layer (n > 2) case.

2Since we only analyze the 2-layer case, we actually estimate the joint

dependence between the successive video frames within the
same video layer, as well as for the dependence across the
base layer and the enhancement layer. Simulation study on
the proposed model and the video trace is carried out. The
results show that the proposed traffic model can predict the
network performance with high accuracy.

2. TRAFFIC MODEL BASED ON MARKOVIAN
ARRIVAL PROCESS

Due to the versatility of the Markovian arrival processes
(MAPs) [18], they are widely used in modeling computer
data traffic [4]. MAP was used to model the performance of
superposition of VBR video sources in [3]. In recent time,
MAP also found application in modeling aggregated Inter-
net traffic [15]. It has been recognized that a compressed
video stream has high peak-to-mean ratio, and video traf-
fic is highly correlated in nature [6]. Modern video system,
e.g., MPEG-4 video [1], is defined in the form of multiple
video objects (VOs), which can be independently encoded,
multiplexed and transmitted. This provides the potential for
content-based interactivity, and also results in high efficient
encoding, which makes it particularly appealing in running
over low bit rate and wireless networks. Further, the video
contents are usually encoded in more than one layers, with
different significance in affecting the final decoded video
quality. This naturally leads to the representation of such
video traffic by using a MAP with marked transitions [9],
in a way that different type of transitions correspond to dif-
ferent type of traffic arrivals. In this section, we develop
general traffic model for VBR video with layered encoding.
The model is based on the discrete time batch Markovian
arrival process (DBMAP) with marked transition. For sim-
plicity, also due to the lack of scalable video trace coded
in more than 2 layers, we consider a video source with two
layers in this paper. The model, however, is generally appli-
cable to any hierarchically encoded video streams.

2.1. DBMAP with Two Types of Arrivals

We first briefly introduce the DBMAP with marked transi-
tions. The process is first defined in [27], and is called the
marked DBMAP process hereafter. We consider an n-state
DBMAP with two types of arrivals, class-1 and class-2 traf-
fic, respectively. Let the maximum batch size3 for a class-1
traffic arrival to be b1, and the maximum batch size for a
class-2 traffic arrival to be b2. The correspondent parameter
matrices for the arrival process are given by {D00, D01, ...
Db1b2}, each Di1i2 is an n×n matrix. Suppose that at time
t, t ≥ 0, the underlying Markov chain of the DBMAP pro-

video frame size distribution by bivariate normal distribution.
3In real applications, the maximum arrival batch size at an instant for a

stochastic arrival process is usually limited.



cess is in state j, 1 ≤ j ≤ n. Then at time epoch t + 1, with
conditional probability Di1i2(j, j′)4, where 0 ≤ i1 ≤ b1

and 0 ≤ i2 ≤ b2, the process transits to state j ′, 1 ≤ j′ ≤ n,
which is triggered by an arrival from class-1 traffic with
batch size of i1, and an arrival from class-2 traffic with batch
size of i2, simultaneously. Note that i1 and i2 might be 0.

Let the transition probability matrix of the underlying
Markov chain for the arrival process to be D (also an n ×
n matrix), and we have D =

∑b1
i1=0

∑b2
i2=0 Di1i2 , i.e., an

element D(j, j ′) in the matrix D is given by

D(j, j′) =
b1∑

i1=0

b2∑

i2=0

Di1i2(j, j
′).

Now let us focus on the arrival process in a state (j), it
may have arbitrary number of arrivals from the two traffic
classes, and results a transition to another state (j ′). This is
given by the conditional probability D i1i2(j, j′), therefore
we have

b1∑

i1=1

b2∑

i2=1

n∑

j′=1

Di1i2(j, j
′) = 1.

In another word, when the arrival process is in the state (j),
the next arrival is determined by this probability D i1i2(j, j′)5.
Notice that the above essentially implies De = e, in which
e is a column vector with all elements being 1s.

We assume the arrival process is in stationary state and
the initial probability vector is α = [α1, α2, ..., αn], which
satisfies

αe = 1,

αD = α.

Therefore, we can derive the average arrival rate for each
traffic class, λ1 and λ2. The arrival rate of class-1 traffic λ1

is given by

λ1 = α(
b1∑

i1=0

b2∑

i2=0

i1Di1i2)e,

the class-2 arrival rate λ2 is given by

λ2 = α(
b1∑

i1=0

b2∑

i2=0

i2Di1i2)e,

and the total traffic arrival rate is given by

λ = λ1 + λ2.

4We use the notation Di1i2 (j, j′) to represent an element in the matrix
Di1i2 .

5More precisely, this should be the arrivals from each of the two traffic
classes, with batch size of i1 and i2, and state transition from (j) to (j′).
There are total n(1 + b1)(1 + b2) such probabilities.

2.2. The Layered Video Source

Our aim is to analyze and model video source with no (or
very few) scene change. We study 3 short video sequences,
Foreman, Grandma and Paris, as well as 2 long video se-
quences, Silence of the Lambs and Terminator One. Fore-
man contains 400 frames with picture size of 176 × 144
in pixels (QCIF), Grandma contains 870 frames with pic-
ture size of 176× 144 in pixels (also QCIF), and Paris con-
tains 1000 frames with picture size of 352 × 288 in pixels
(CIF). Foreman contains one time of scene change and the
video pictures have a comparatively large degree of move-
ment, while Grandma and Paris contain no scene change.
Paris mainly consists of pictures with slow motion, while
pictures in Grandma only have very few motion. We en-
code the video sequences with a layered video encoder sup-
porting fine granular scalability (FGS) [23]. Since scene
change can usually introduce significant variation of video
content, encoding the immediate frame after a scene change
in P-frame can lead to poor performance. We assume the
I-frames are triggered by scene change resulting in an ar-
bitrary number of P-frames following, as in [5]. Thus all
the three video sequences are encoded in IPPPPP... pat-
tern without any fixed GOP. The base layer is encoded with
TM5 rate control, while the enhancement layer is encoded
in MPEG-4 FGS. In the analysis we only consider the first
sublayer of the enhancement layer video data. Our aim is
to propose a tractable and accurate traffic model for video
sequence without or with very few scene change. We expect
the traffic model developed in this paper can be used as a ba-
sic building block to model long video sequence with scene
changes. For example, by incorporating the scene detection
and scene modeling methods in [11, 22], longer video se-
quence can be modeled.

2.3. The Layered Video Traffic Model

In this section we introduce the Markov based traffic model
for layered video. We model the layered video data in the
following four steps.

1. In the first step, we analysis the rate clustering fea-
ture of the video data. We view the encoded 2 layer
video frame sequence as a vector time series along
the frame index, i.e., 〈Rb(t), Re(t)〉, t = 1, 2, 3, . . ..
Here Rb(t) denotes the frame size of the t-th base
layer video frame, and Re(t) denotes the frame size
of the t-th enhancement layer video frame. We draw
all the 〈Rb(t), Re(t)〉 pairs as points on the 2-D plane,
where Rb(t) and Rb(t) is viewed as the x-coordinate
and the y-coordinate of the corresponding point, re-
spectively. For example, for the first video frame in
Foreman, the encoded base layer frame size is 11215
bits, and the encoded enhancement layer frame size
is 3832 bits, we draw a point [x = 11215, y = 3832]
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Fig. 1. Rate pairs as point set on 2-D plane
(a) Foreman IPPP (b) Grandma IPPP (c) Paris IPPP

on the two-dimensional plane. Since the raw video
sequence has very few scene change, and the encod-
ing pattern is IPPPPP..., we expect that the rate pairs
〈Rb(t), Re(t)〉 and 〈Rb(t + 1), Re(t + 1)〉 should be
located very close from each other on the 2-D plane.
Thus when all the pairs are drawn, the graph should
have a clustering feature. This is clearly depicted in
Figure 1. We see from the figure that all the three
video sequences Foreman, Grandma and Paris show
a strong clustering characteristics.

2. In the second step, for each video sequence, we apply
cluster analysis on the corresponding rate pair point
set. We take the hierarchical clustering approach [8].
Basically this works as follows: for a set of n points,
we start with n clusters, each containing a single point;
we then recursively aggregate the nearest two clus-
ters into one; while combining cluster i and cluster j,
we apply the complete linkage clustering algorithm,
which means the distance between the two clusters is
defined to be the greatest distance between an arbi-
trary member of cluster i and an arbitrary member of
cluster j. The above method produces tight clusters
with similar characteristics, and the shape of the clus-
ter tends to be circular form. It is well known that
there is no general criteria to determine the optimal
number of resulting clusters. Thus we take a heuristic
approach to stop the above aggregation process. The
results of the above cluster analysis are shown in Fig-
ure 2. We obtained 12, 9 and 8 clusters for Foreman,
Grandma and Paris, respectively.

3. In the third step, we construct a Markov chain based
on the above clustering analysis results. For each
clustering result, we view one cluster as one state for
the Markov chain. Thus the Markov chain for Fore-
man, Grandma and Paris contains 12, 9 and 8 states,
respectively. We estimate the transition probability
matrix P = [pij ] for each Markov chain in the fol-

lowing way:

pij =
number of jumps from state i to state j

number of jumps out of i
.

In this way we obtained the transition probability ma-
trix TF , TG and TP for Foreman, Grandma and Paris,
respectively, as shown in Figure 3. In our calculation,
the pij has a precision near 10−3.

4. In the fourth step, for each state of the Markov chain,
we estimate the joint 〈base, enhance〉 2-layer frame
size distribution. Since we applied the complete link-
age clustering algorithm in the above step two, the
resulting clusters have compact and nearly circular
shape. This naturally lead to approximate the joint
frame size distribution in each state of the Markov
chain by bivariate normal distribution. Of course, this
does not preclude more general or accurate estimation
of the rate distributions using other advanced meth-
ods [25].

By the above four steps, we obtain a video traffic model
based on a Markov modulated process with correlated batch
arrivals. In the model the arrival process evolves accord-
ing to the underlying Markov chain. In each state of the
Markov chain, the base and enhancement layer data arrival
rate follows the corresponding two-dimensional normal dis-
tribution. The two-dimensional normal distribution has 6
parameters, i.e., the mean of the base layer rate, the mean of
the enhancement layer rate, the covariance matrix, which is
a 2×2 matrix containing 4 parameters. All the 6 parameters
for each state of the Markov chain can be easily estimated
from the video trace and the clustering results. For the case
of an n state Markov chain, the whole traffic model contains
6n parameters for the rate distributions, and one n×n tran-
sition probability matrix for the underlying Markov chain.

Clearly, the above traffic model belongs to a marked
DBMAP process introduced in Section 2.1. Denote the tran-
sition probability matrix of the underlying Markov chain as
T . Suppose that we divide the range of data rate for an ar-
bitrary state of the Markov chain into discrete levels, with



0

1000

2000

3000

4000

5000

2000 4000 6000 8000 10000 0

1000

2000

3000

4000

5000

6000

2000 4000 6000 8000
0

5000

10000

15000

20000

25000

30000

10000 20000 30000 40000 50000

Fig. 2. Clustering results for rate point sets
(a) Foreman IPPP (b) Grandma IPPP (c) Paris IPPP

TG =











0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.38 0.33 0.02 0.0 0.27 0.0 0.0 0.0
0.0 0.30 0.43 0.24 0.005 0.02 0.005 0.0 0.0
0.0 0.0 0.32 0.58 0.01 0.06 0.0 0.01 0.02
0.0 0.0 0.05 0.05 0.85 0.05 0.0 0.0 0.0
0.0 0.31 0.02 0.05 0.0 0.62 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.67 0.33 0.0
0.0 0.0 0.20 0.40 0.0 0.0 0.0 0.40 0.0
0.0 0.0 0.0 0.29 0.14 0.0 0.0 0.14 0.43











, TP =









0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.78 0.005 0.03 0.125 0.016 0.046
0.0 0.0 0.17 0.83 0.0 0.0 0.0 0.0
0.0 0.0 0.59 0.0 0.41 0.0 0.0 0.0
0.0 0.0 0.20 0.0 0.0 0.66 0.12 0.02
0.0 0.0 0.035 0.0 0.0 0.148 0.127 0.690
0.0 0.0 0.085 0.0 0.0 0.020 0.375 0.520









.

TF =















0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.67 0.23 0.01 0.01 0.0 0.03 0.0 0.0 0.03 0.02
0.0 0.0 0.23 0.52 0.16 0.02 0.0 0.01 0.04 0.02 0.0 0.0
0.0 0.0 0.12 0.18 0.44 0.22 0.04 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.17 0.0 0.50 0.11 0.22 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.02 0.03 0.02 0.05 0.82 0.05 0.0 0.0 0.0 0.0
0.0 0.0 0.02 0.0 0.0 0.0 0.05 0.84 0.09 0.0 0.0 0.0
0.0 0.0 0.0 0.19 0.0 0.0 0.0 0.03 0.75 0.03 0.0 0.0
0.0 0.0 0.0 0.40 0.40 0.0 0.0 0.0 0.0 0.20 0.0 0.0
0.0 0.0 0.44 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.56 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0















,

Fig. 3. Transition probability matrix for Grandma (TG), Paris (TP ) and Foreman (TF )

a level size of b6. Let fi(u, v) be the two-dimensional nor-
mal density function in state i, 1 ≤ i ≤ n of the underlying
Markov chain, and let

Fi(x, y) =
∫ bx

0

∫ by

0

fi(u, v)dudv, 1 ≤ i ≤ n

be the two-dimensional normal distribution function 7 for
state i, the corresponding parameter matrices for the marked
DBMAP

{D, D00, . . . Di1i2 , . . . , Db1b2}
can be derived as follows:





D = T,
Di1i2 = [(Fi(i1, i2) − Fi(i1 − 1, i2 − 1))D[i, j]],

for i1 > 0, i2 > 0, 1 ≤ i ≤ n, 1 ≤ j ≤ n,
D00 = D − ∑

i1>0

∑
i2>0 Di1i2 ,

6Different states may have different b values.
7In fact this is a scaled distribution function since the actual distribution

function is Fi(x, y) =
∫ x

0

∫ y

0
fi(u, v)dudv.

where D[i, j] is the (i, j)-th entry of matrix D. Subse-
quently, [(Fi(i1, i2)−Fi(i1 −1, i2−1))D[i, j]] is an n×n
sub-stochastic matrix.

3. SIMULATION RESULTS AND DISCUSSIONS

In this section we make simulation study on the traffic model
obtained in Section 2. We validate the traffic model in two
aspects: 1) we generate sample data from the traffic model,
and compare the statistics between the generated video traf-
fic and the video trace; 2) we inject the video trace data and
the generated video data into the network and compare the
queueing behavior of the network transmission buffer. The
comparison of average video statistics, including the mean
and the standard deviation to average ratio (SDA), for the
trace data and generated video data samples are shown in
Table 1. It can be seen from the table that the two set of
data share very similar statistics. In particular, the frame
size density functions for the model data and the trace data
are well matched for all the three video sequences. This is



Video sequence Video length Base layer frame size Enhancement layer frame size

Foreman
trace 400 frames X=248.78 (bytes)

SDA=0.3635
X=126.98 (bytes)
SDA=1.0398

Foreman
model 400 frames X=245.70 (bytes)

SDA=0.3739
X=128.42 (bytes)
SDA=1.0382

Grandma
trace 870 frames X=1997.93 (bits)

SDA=0.1653
X=1210.64 (bits)
SDA=1.1474

Grandma
model 870 frames X=1991.11 (bits)

SDA=0.1209
X=1190.96 (bits)
SDA=1.0168

Paris
trace 1000 frames X=798.56 (bytes)

SDA=0.1562
X=592.20 (bytes)
SDA=0.8664

Paris
model 1000 frames X=792.72 (bytes)

SDA=0.1348
X=615.44 (bytes)
SDA=0.9024

Note: X=mean, SDA=standard deviation to average ratio.

Table 1. Comparison of average video statistics for trace and model

shown in Figure 4 for base layer traffic, and in Figure 5 for
enhancement layer traffic. We also compute the autocor-
relation functions (acf) for the three video sequences, and
find that the base layer and enhancement layer acf’s for the
trace data and the model data are closely fitted for all the
three cases. We also find that the correlation after lag 100
is rather small and thus the long range dependence feature
for the three video sequences is not very strong. Due to
the space limitation, we can not show the acf curves in this
paper.

We next take a simple approach to compare the network
performance for the trace data and the model data. We in-
ject data generated from the traffic model and data recorded
in the video trace file into the network, respectively. We
divide the network bandwidth into two part, in proportion
to the mean traffic arrival rates for the base and enhance-
ment layer video data. We assume the network transmis-
sion buffer has infinite size. We then simulate the queueing
behavior of the network transmission buffer and compare
the cumulative queue length distribution functions (cdf’s)
for inputs from the model data and the trace data. Since
the encoder has rate control in the base layer, the base layer
video traffic has a relatively small variation. Thus the base
layer data buffer only experience occasional queueing and
the buffer remains idle with a high probability. Therefore,
we only show the enhancement layer queue length cdf for
the three video sequences, as in Figure 6. From the figure, it
can be seen that for the enhancement layer traffic, the whole
queue length distributions for the model data and the trace

data are closely matched, especially in the range when the
queue size is large. The results demonstrate that, in terms
of network queueing impact, the traffic model can emulate
the video trace data with a relatively high accuracy.

The traffic model developed in this paper is general.
First, although the model is targeted for video sequence
with no or very few scene change, for long video sequence
with lots of scene changes, a hierarchical model, based on
scene detection and modeling technique [11, 22], can be
built based on this model. Second, data clustering is an
inherent feature for video traffic. This is quite intuitive,
since if there is no scene change, content of the successive
video pictures are very similar, and thus the encoded data
rates should have small variation. We study two long video
traces, Silence of the Lambs and Terminator One, which
are publically available from [24]. The above two video
sequences are encoded in 2 layers with spatial scalability,
without rate control in either the base or the enhancement
layer. We display the first 1600 〈base, enhance〉 frame size
pairs for Silence of the Lambs on the 2-D plane, as shown
in Figure 7(a), and the first 2200 frame size pairs for Ter-
minator One, as shown in Figure 7(b). From the figure
it is obvious the rate pairs have strong clustering feature
for both cases. Third, note that for the definition of the
marked DBMAP process in Section 2.1, it can be extended
to support k, k ≥ 2 classes of traffic by extending the D i1i2

parameter matrix to Di1i2...ik
with a k-dimensional index.

This means mathematically the model developed in this pa-
per can be applied to video data encoded in k, k ≥ 2 lay-
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Fig. 4. Base layer frame size pdf comparison: trace (above) vs model (below)

ers. For example, if the video is encoded in 3 layers, then
a data tuple 〈base rate, enhance rate1, enhance rate2〉
would appear to be a three-dimensional point in the 3-D
space. Subsequently, 3-D cluster analysis algorithm can be
applied and the underlying Markov chain can be estimated,
and a traffic model can be developed in a similar approach
as in Section 2.3.

In scalably encoded video data there exists a cross layer
dependence between the base and the enhancement layer(s).
This is because the enhancement layer data are usually coded
by prediction from the base layer data. A large base layer
frame size often indicates that the video content is complex,
and the enhancement layer will need more bits to code the
residual video signals, thus the enhancement layer frame
size will also tend to be large. To demonstrate this, we
study the long video sequence Terminator One. We dis-
play the first 1400 base layer and enhancement layer video
frame size in Figure 8(a) and Figure 8(b). From the figure
we can discover that whenever the base layer data rate tend
to be high, the enhancement layer data rate also follows a
similar trend. This indicates that there exists a strong cor-
relation between the base layer and the enhancement layer
video traffic. We also compute the cross correlation coef-
ficients (ccf) for the video trace the result is shown in Fig-
ure 8(c). The ccf curve reveals that the cross layer corre-
lation lasts for a long period in terms of frame lags. For
example, the ccf value after 150 lags remains higher than
0.5. The existence of cross correlation suggests that in or-
der to precisely model layered video data, we must study
the data tuple 〈base rate, enhance rate〉 as a whole for
each 〈base, enhance〉 frame pair, rather than to study the

data statistics of individual layer separately. In this sense,
the model proposed in [5] lacks the ability to capture the
cross layer correlation, since the base layer is assumed to be
CBR and independent of the enhancement layer. Thus the
model is actually built on the enhancement layer data statis-
tics only. The model proposed in this paper, however, can
grasp the inter-layer dependence by properly estimating the
joint 〈base, enhance〉 data rate pdf.

4. CONCLUSIONS

In this paper we proposed a traffic model for layered video
data with no or few scene change. The model is based
on Markovian arrival process with marked transitions. The
state of the Markovian arrival process is derived from the
correlation feature found from the video data. The base
layer and enhancement layer video frame size pairs are an-
alyzed and grouped into clusters. Each cluster corresponds
to one state of the underlying Markov chain of the arrival
process. The video frame size distribution for each state
of the Markov chain is modeled by two-dimensional nor-
mal distribution. Simulation study on both the proposed
model and the video trace is carried out. The results show
that the proposed traffic model can predict the network per-
formance with good accuracy. One important property of
the traffic model is that it is tractable for queueing analy-
sis in studying the performance of video transmission over
the network. Our previous work in [27] showed that video
transmission over wireless network can be modeled by a
DBMAP /PH /1 priority queue, which have been solved
in [28] by adopting matrix analytic methods. We are inter-
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Fig. 5. Enhancement layer frame size pdf comparison: trace (above) vs model (below)
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Fig. 6. Queue length cdf for enhance layer data: trace vs model

ested in performance evaluation of various scheduling algo-
rithms for layered video data transmission, and in extending
the proposed traffic model for long video sequence with nu-
merous scene changes, as well as for layered video encoded
with fixed GOP pattern.
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