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Abstract. Replicating data over geographically dispersed web servers reduces 
network traffic, server load, and more importantly the user-perceived access de-
lays. This paper proposes a unique replica placement technique using the con-
cepts of a “supergame”. The supergame allows the agents who represent the 
data objects to continuously compete for the limited available server memory 
space, so as to acquire the rights to place data objects at the servers. At any 
given instance in time, the supergame is represented by a game which is a col-
lection of subgames, played concurrently at each server in the system. We de-
rive a resource allocation mechanism which acts as a platform at the subgame 
level for the agents to compete. This approach allows us to transparently moni-
tor the actions of the agents, who in a non-cooperative environment strategi-
cally place the data objects to reduce user access time and latency which in 
turn, adds reliability and fault-tolerance to the system. We show that this 
mechanism exhibits Nash equilibrium at the subgame level which in turn con-
forms to games and supergame Nash equilibrium, respectively. The mechanism 
is extensively evaluated against some well-known algorithms, such as: greedy, 
branch and bound, game theoretical auctions and genetic algorithms. The ex-
perimental results reveal that the mechanism provides excellent solution qual-
ity, while maintaining fast execution time. 

1   Introduction 

Web replication aims to reduce network traffic, server load, and user-perceived delay 
by replicating popular content on geographically distributed web servers (sites). Spe-
cifically, a replica placement algorithm aims to strategically select replicas (or hosting 
services) among a set of potential sites such that some objective function is optimized 
under a given traffic pattern [4]. 

The Internet can be considered as a large-scale distributed computing system [11]. 
We abstract this distributed computing system as an agent-based model, where each 
agent is responsible for (or represents) a data object. Each agent competes in a non-
cooperative environment for the limited available storage space at each server so as to 
acquire the rights to place the data object which they represent. Motivated by their 
self interests and the fact that the agents do not have a global view of the distributed 



system, they concentrate on local optimization [17]. In such systems there is no a-
priori motivation for cooperation and the agents may manipulate the outcome of the 
replica placement algorithm (resource allocation mechanism or simply a mechanism) 
in their interests by misreporting critical data such as objects’ popularity. To cope 
with these selfish agents, new mechanisms are to be conceived. The goal of a mecha-
nism should be to force the agents not to misreport and always follow the rules [7]. 

This paper uses the concepts of game theory to formally specify a mechanism with 
selfish agents. In a mechanism, each agent’s benefit or loss is quantified by a function 
called valuation. This function is private information for each agent and is very much 
possible that if the agents act selfishly, they can misreport their valuations. The 
mechanism asks the agents to report their valuations, and then it chooses an outcome 
that maximizes/minimizes a given objective function. Of course the grand problem is 
to stop the agents from misreporting [11]. 

In this paper, we will apply the derived mechanism to the fine grained data replica-
tion problem (DRP) over the Internet. In essence we sculpt the DRP as a supergame 
that is played infinitely during the entire lifespan of the system. In a discrete time 
instance t, the supergame is represented by a game, which is the collection of inde-
pendent subgames that are played concurrently at each site of the distributed system. 
It is in these subgames that the actual mechanism can be seen to operate.   

The major results of this paper are as follows: 
1. We derive a general-purpose distributed mechanism that allows selfish agents to 

compete at each site in the distributed computing system for the rights to replicate 
objects in a non-cooperative environment. 

2. We show that the concurrently played subgames exhibit Nash equilibrium which 
in turn guarantees Nash equilibrium for the games and the supergame. 

3. The mechanism is compared against some well-known techniques, such as: 
greedy, branch and bound, genetic and game theoretical auctions, employing vari-
ous internet topology generators and real user access data. The experimental re-
sults reveal that the mechanism provides excellent solution quality, while main-
taining fast execution time. 
This paper is organized as follows. Section 2 formulates the DRP. Section 3 de-

scribes the mechanism. The experimental results, related work and concluding re-
marks are provided in sections 4, 5 and 6, respectively. 

2   Formal Description of the Data Replication Problem 

Consider a distributed system comprising M sites, with each site having its own proc-
essing power, memory (primary storage) and media (secondary storage). Let Si and si 
be the name and the total storage capacity (in simple data units e.g. blocks), respec-
tively, of site i where 1 ≤ i ≤ M. The M sites of the system are connected by a com-
munication network. A link between two sites Si and Sj (if it exists) has a positive 
integer c(i,j) associated with it, giving the communication cost for transferring a data 
unit between sites Si and Sj. If the two sites are not directly connected by a communi-
cation link then the above cost is given by the sum of the costs of all the links in a 
chosen path from site Si to the site Sj. Without the loss of generality we assume that 



c(i,j) = c(j,i). This is a common assumption (e.g. see [11], [13] and [15]).  Let there be 
N objects, each identifiable by a unique name Ok and size in simple data unites ok 
where 1 ≤ k ≤ N. Let rk

i and wk
i be the total number of reads and writes, respectively, 

initiated from Si for Ok during a certain time period t.  
Our replication policy assumes the existence of one primary copy for each object 

in the network. Let Pk, be the site which holds the primary copy of Ok, i.e., the only 
copy in the network that cannot be de-allocated, hence referred to as primary site of 
the k-th object. Each primary site Pk, contains information about the whole replication 
scheme Rk of Ok. This can be done by maintaining a list of the sites where the k-th 
object is replicated at, called from now on the replicators of Ok. Moreover, every site 
Si stores a two-field record for each object. The first field is its primary site Pk and the 
second the nearest neighborhood site NNk

i of site Si which holds a replica of object k. 
In other words, NNk

i is the site for which the reads from Si for Ok, if served there, 
would incur the minimum possible communication cost. It is possible that NNk

i = Si, if 
Si is a replicator or the primary site of Ok. Another possibility is that NNk

i = Pk, if the 
primary site is the closest one holding a replica of Ok. When a site Si reads an object, 
it does so by addressing the request to the corresponding NNk

i. For the updates we 
assume that every site can update every object. Updates of an object Ok are performed 
by sending the updated version to its primary site Pk, which afterwards broadcasts it 
to every site in its replication scheme Rk.  

For the DRP under consideration, we are interested in minimizing the total net-
work transfer cost due to object movement, i.e., the Object Transfer Cost (OTC). The 
communication cost of the control messages has minor impact to the overall perform-
ance of the system, therefore, we do not consider it in the transfer cost model, but it is 
to be noted that incorporation of such a cost would be a trivial exercise. There are two 
components affecting OTC. The first component of OTC is due to the read requests.  
Let Rk

i denote the total OTC, due to Sis’ reading requests for object Ok, addressed to 
the nearest site NNk

i. This cost is given by the following equation:  
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k k k kR r o c i NN 

 
 

= , (1) 

where NNk
i = {Site j | j∈Rk ^ min c(i,j)}. The second component of OTC is the cost 

arising due to the writes. Let Wk
i be the total OTC, due to Sis’ writing requests for 

object Ok, addressed to the primary site Pk. This cost is given as:  
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Here, we made the indirect assumption that in order to perform a write we need to 
ship the whole updated version of the object. This of course is not always the case, as 
we can move only the updated parts of it (modeling such policies can also be done 
using our framework). The cumulative OTC, denoted as Coverall, is given by:  
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Let Xik=1 if Si holds a replica of object Ok, and 0 otherwise. Xiks define an M×N 
replication matrix, named X, with boolean elements. Equation 3 is now refined to:  
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Sites which are not the replicators of object Ok create OTC equal to the communi-
cation cost of their reads from the nearest replicator, plus that of sending their writes 
to the primary site of Ok . Sites belonging to the replication scheme of Ok, are associ-
ated with the cost of sending/receiving all the updated versions of it. Using the above 
formulation, the DRP can be defined as:  
“Identify entries of 0/1 in the X matrix that minimizes Coverall, subject to the storage 
capacity constraint:  

( )1   1N i
ik kk X o s i M= ≤ ∀ ≤ ≤∑ ,  

and subject to the primary copies policy:  
( )1  1p kk

X k N= ∀ ≤ ≤ .” 

In the generalized case, the DRP is NP-complete [13]. 

3   The Mechanism 

One has to be careful when incorporating a “one-size-fits-all” mechanism model as a 
piece of solution to a problem. Most of the mechanisms were developed and analyzed 
in microeconomic theory abstraction. Thus, assumptions underlying desirable proper-
ties of some mechanisms could be oversimplifying or even contradictory to the as-
sumptions underlying a problem that plans to incorporate such mechanisms. 

3.1   Discriminatory Mechanism 

In this paper we limit our analysis to one-shot (single round) mechanisms in which 
every agent demands a specific entity. Under our DRP formulation we aim to identify 
a replica schema that effectively minimizes the OTC. We propose a one-shot dis-
criminatory mechanism, where the agents compete for memory space at sites so that 
they can acquire the rights to place replicas. The mechanism described in this paper is 
called discriminatory because not all winning agents pay the same amount. In essence 
it works as follows: In a discriminatory mechanism, sealed-bids are sorted from high 
to low, and rights to the available memory space are awarded at the current highest 
bid price until the (memory) supply is exhausted. The most important point to re-
member is that the winning agents can (and usually do) pay different prices [17]. 

3.2 Preliminaries 

Definition 1 (Supergame). Generally a game in which some simple game is played 



more than once (often infinitely many times); the simple game is called the “stage” 
game or the “constituent” game __ a game repeated infinitely is called a supergame. 
If Γ represents a game then Γ(∞) represents a supergame.  

Definition 2 (Stage game (subgame)). Frequently it is the case that a game natu-
rally decomposes into smaller games. This is formalized by the notion of stage game 
(more popularly known as subgames) [7].  

Definition 3 (Nash equilibrium). If there is a set of strategies with the property that 
no player can benefit by changing her strategy while the other players keep their 
strategies unchanged, then that set of strategies and the corresponding payoffs con-
stitute the Nash equilibrium. 

Definition 4 (Equilibrium path). For a given (Nash) equilibrium an information set 
is on the equilibrium path if it will be reached with positive probability when the 
game is played according to the equilibrium strategies.  

Lemma 1. Nash equilibrium only depends upon subgame strategy profiles played 
along the equilibrium path [7].■ 

Theorem 1. In Nash equilibrium each player’s repeated game (supergame) strategy 
need only be optimal along the equilibrium path [17].■ 

3.3   Mechanism Applied to DRP 

Form the discussion above, we choose the following line of action. 
1. Define the DRP as a supergame. 
2. Define an instance of the supergame as a game. 
3. Split the game into concurrently played subgames. Each identical to each other in 

terms of:  
� Form: A discriminatory mechanism.  
� Valuation: Valuations that are obtainable via the system parameters. 
� Information: Independent of any other subgame. 

4. Establish the fact that subgames conform to Nash equilibrium provided agents play 
optimally. 

5. Use Lemma 1 to establish that the entire game at instance t is in Nash equilibrium. 
6. Use Theorem 1 to establish that the entire supergame is in Nash equilibrium. 

Supergame: A supergame Γ(∞) is defined as a mechanism that is played infinite 
during the lifespan of the distributed system under consideration. The supergame 
allows the agents to compete for memory spaces of the sites. The purpose of a super-
game is to keep the system in a self evolving and self repairing mode. 

Game: At any given instance t, a game Γ is played. It is to be noted that the sole 
purpose of defining a game is to observe the solution quality of the replica place-
ments at a given instance t. 

Subgames: A game is split into M concurrently played subgames. Each of these 
subgames take place at a particular site i. Each agent k competes through bidding for 



memory at a site i. 

Form: Each site i has a finite amount of space si, and available space bi. It is for this 
available space bi that the agents compete. In one-shot all the participating agents 
submit their bids for the available space. All the bids are sorted in descending order 
and the first n agents are awarded the rights to place their objects onto site i. Recall 
that each agent represents an object of size ok. After the decision is made, the first n 
agents pay their respective bids. This is discriminatory for the following two reasons. 
First, all the successful agents pay a different amount for their rights to place an ob-
ject. Second, the payment is in no relation to the size of the object or the available 
space at site i. The only connection that the payments have is the benefit that the 
object brings if replicated to that site. This benefit is the valuation of an agent for its 
object k if replicated at site i. We describe this valuation below. 

Valuation: Each agent k’s policy is to place a replica at a site i, so that it maximizes 
its (object’s) benefit function. This benefit is equivalent to the savings that the object 
k brings in the total OTC if the object k is replicated at site i. This benefit is given as: 
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From here onwards, for simplicity, we will denote the benefit Bk
i as v (valuation). 

It is to be understood that to differentiate the valuations between agents k and j we 
may denote the valuations as vk and vj, respectively. 

Information: It is clear that the subgames can operate independently of each other. 
There is no critical information that is required and is withheld from a subgame. For 
instance, 1) the frequency of reads and writes are obtained locally through the site 
which hosts the subgame, 2) the information about network architecture is globally 
available, and 3) the locations of the primary sites are also available locally since the 
agents represent the objects, (i.e., they have to know where they originated from,) etc. 

Subgame Nash equilibrium: To understand the bidding behavior in a discriminatory 
mechanism, we shall, for simplicity, assume that the agents are ex-ante symmetric, 
i.e., the agents are able to calculate in advance of the resolution of uncertainty. That 
is, we shall suppose that for all bidders k = 1,…, N, fk(v) = f(v) for all v ∈ [0,1]. It is to 
noted that we only assume that v ∈ [0,1] for underlying the groundwork for the prob-
abilistic analysis. In reality the valuations are of the form of v ≥ 0. Clearly, the main 
difficulty is in determining how the agents, will bid. But note that a rational agent k 
would prefer to win the right to replicate at a lower price rather than a higher one, 
agent k would bid low when the others are bidding low and would want to bid higher 
when the others bid higher. Of course, agent k does not know the bids that the others 
submit because of the sealed-bid rule. Yet, agent k’s optimal bid will depend on how 
the others bid. Thus, the agents are in a strategic setting in which the optimal action 
(bid) of each agent depends on the actions of others.  

Let us consider the problem of how to bid from the point of view of agent k. Sup-
pose that agent k’s value is vk. Given this value; agent k must submit a sealed-bid, bk. 
Because bk will in general depend on k’s value, let’s write bk(vk) to denote bidder k’s 
bid when his value is vk. Now, because agent k must be prepared to submit a bid bk(vk) 



for each of his potential values v ∈ [0,1], we may view agent k’s strategy as a bidding 
function bk:[0,1]→R+, mapping each of his values into a bid. 

Let us calculate agent k’s expected payoff from reporting an arbitrary value, r, to 
his friend when his value is v, given that all other agents employ the bidding function 
b^(·). To calculate this expected payoff, it is necessary to notice just two things. First, 
agent k will win only when the bid submitted for him is highest. That is, when b^(r) >  
b^(vj) for all agents j ≠ k. Because b^(·) is strictly increasing this occurs precisely when 
r exceeds the values of all N-1 other agents. Let F denote the distribution function 
associated with f, the probability that this occurs is (F(r))N-1 which we will denote FN-

1(r). Second, agent k pays only when it wins the right to replicate, and pays its bid, 
ˆ( )b r . Consequently, agent k’s expected payoff from reporting the value r to his friend 

when his value is v, given that all other bidders employ the bidding function b^(·), can 
be written as: 

1 ˆ( , ) ( ) ( )Nu r v F r v b r−  
 
 

= − . (6) 

Now, as we have already remarked, because b^(·) is an equilibrium, agent k’s ex-
pected payoff-maximizing bid when his value is v must be b^(v). Consequently, Equa-
tion 6 must be maximized when r = v, i.e., when agent k reports his true value, v, to 
his friend. So, we may differentiate the right-hand side with respect to r and set the 
derivative equal to zero when r = v. Differentiating yields: 

( )( ) ( )1 2 1ˆ( ) ( ) ˆ ˆ1 ( ) ( ) ( ) ( ) '( )N N NF r v b rd dr N F r f r v b r F r b r− − − −  
 

= − − − . (7) 

Setting this equal to zero when r = v and rearranging yields: 

( ) ( )2 1 2ˆ ˆ1 ( ) ( ) ( ) ( ) '( ) 1 ( ) ( )N N NN F v f v b v F v b v N vf v F v− − −− + = − . (8) 

Looking closely at the left-hand side of (8), we see that is just the derivative of the 
product FN-1(v) b^(v) with respect to v. With this observation, we can rewrite (8) as: 

( ) ( )1 2ˆ( ) ( ) 1 ( ) ( )N NF v b vd dv N vf v F v− −= − . (9) 

Now, because (9) must hold for every v, it must be the case that: 

( )1 2
0

( ) ( ) 1 ( ) ( )vN NF v b v N xf x F x dx constant− −= − +∫ . (10) 

Noting that an agent with value zero must bid zero, we conclude that the constant 
above must be zero. Hence, it must be the case that: 

1 2
0

ˆ( ) 1 ( ) ( ) ( )vN Nb v N F v xf x F x dx− −= − ∫ , (11) 

which can be written as: 

1 2
0

ˆ( ) 1 ( ) ( ) ( )vN Nb v F v xf x F x dx− −= ∫ . (12) 



There are two things to notice about the bidding function in (12). First, as we has 
assumed, it is strictly increasing in v. Second, it has been uniquely determined. Now 
since we assumed that each agent is ex-ante in nature, then F(v) = v and f(v) = 1. 
Consequently, if there are N bidders then each employs the bidding function: 

1
1 0
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Nb v xdx
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−
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Hence, in conclusion, we have proven the following: 

Theorem 2. If N agents have independent private values drawn from the common 
distribution, F, then bidding b^(v) = (N-1/N)v  whenever one’s value is v constitutes 
Nash equilibrium of the discriminatory mechanism, where the nature of the bids are 
sealed-bids.■ 

So, each agent shades its bid, by bidding less than its valuation. Note that as the 
number of agents increases, the agents bid more aggressively. Because FN-1(·) is the 
distribution function of the highest value among an agent’s N-1 competitors, the bid-
ding strategy displayed in Theorem 2 says that each agent bids the expectation of the 
second highest agent’s value conditional on his value being highest. But, because the 
agents use the same strictly increasing bidding function, having the highest value is 
equivalent to having the highest bid and so equivalent to winning the right to repli-
cate.  

Theorem 3. If N agents play their bids according to the bidding strategy: b^(v) = (N-
1/N)v, then the game at instance t and the supergame is in Nash equilibrium. 
Proof. It follows from Lemma 1 and Theorem 1 and Theorem 2.■ 

We are now ready to present the pseudo-code (Fig. 1) for a game at instance t. 
Briefly, we maintain a list Li at each server. The list contains all the objects that can 
be replicated at Si (i.e., the remaining storage capacity bi is sufficient and the benefit 
value is positive). We also maintain a list LS containing all servers that can replicate 
an object. In other words, Si∈LS if and only if Li ≠ NULL. Each player k∈O calcu-
lates the benefit function of object (Line 05). The set O represents the collection of 
players that are legible for participation. A player k is legible if and only if the benefit 
function value obtained for site Si is positive. This is done in order to suppress medio-
cre bids, which, in turn improves computational complexity. After receiving (Line 
06) all the bids, the bid vector is sorted in descending order (Line 08). Now, recur-
sively 



the rights are assigned to the current highest agent (Line 10) as long as there is avail-
able memory (Line 09 and 12). It is to be noted that in each step Li together with the 
corresponding nearest server value NNk

i, are updated accordingly.  

Theorem 4. In the worst case the mechanism takes O(N2logN) time. 
Proof. The worst case scenario is when each site has sufficient capacity to store all 
objects. In that case, the PARFOR loop (Line 03) performs N iterations. The most 
consuming time is to sort the bids in descending order (Line 10). This will take at 
least of the order of O(NlogN). Hence, we conclude that the worst case running time 
of the mechanism is O(N2logN).■ 

4   Experimental Setup and Discussion of Results 

We performed experiments on a 440MHz Ultra 10 machine with 512MB memory. 
The experimental evaluations were targeted to benchmark the placement policies. The 
mechanism was implemented using IBM Pthreads. To establish diversity in our ex-
perimental setups, the network connectively was changed considerably. In this paper, 
we only present the results that were obtained using a maximum of 500 sites (nodes). 
We used existing topology generator toolkits and also self generated networks. In all 

Discriminatory Mechanism 

Initialize: 
01 LS, Li. 
02 WHILE LS ≠ NULL DO 
03  PARFOR each Si∈LS DO                       /*M subgames*/ 
04            FOR each k∈O  DO 
05                      Bk = compute (Bk

i×(N-1)/N);          /*compute the benefit*/ 
06                      Report Bk to Si which is stored in array B; 
07            END FOR 
08            Sort array B in descending order. 
09    WHILE bi ≥ 0 
10        Bk = argmaxk(B);                /*Choose the best offer*/ 
11        Extract the info from Bk such as Ok and ok; 
12        bi = bi-ok;                     /*Calculate available space and termination conditions*/ 
13        Replicate Ok; 
14        Payment = Bk;                    /* Calculate payment*/ 
15        Delete Bk from B;             /*Update the list for highest bid*/ 
16        SEND Pi to Si; RECEIVE at Si  /*Agent pays the bid*/ 
17        Li = Li - Ok;                     /*Update the list*/ 
18        Update NNi

OMAX                 /*Update the nearest neighbor list*/ 
19        IF Li = NULL THEN SEND info to M to update LS = LS - Si;  update player list */   
20    END WHILE 
21   ENDPARFOR 
22 END WHILE 

Fig. 1. Mechanism game at instance t 



the topologies the distance of the link between nodes was equivalent to the communi-
cation cost. Details of various topologies can be obtained from [11]. 

To evaluate the chosen replication placement techniques on realistic traffic pat-
terns, we used the access logs collected at the Soccer World Cup 1998 website [15]. 
Each experimental setup was evaluated thirteen times, i.e., the Friday (24 hours) logs 
from May 1, 1998 to July 24, 1998. To process the logs, we wrote a script that re-
turned: only those objects which were present in all the logs (2000 in our case), the 
total number of requests from a particular client for an object, the average and the 
variance of the object size. From this log we chose the top five hundred clients 
(maximum experimental setup). A random mapping was then performed of the clients 
to the nodes of the topologies. Note that this mapping is not 1-1, rather 1-M. This 
gave us enough skewed workload to mimic real world scenarios. It is also worthwhile 
to mention that the total amount of requests entertained for each problem instance 
was in the range of 1-2 million. The primary replicas’ original site was mimicked by 
choosing random locations. The capacities of the sites C% were generated randomly 
with range from Total Primary Object Sizes/2 to 1.5×Total Primary Object Sizes. The 
variance in the object size collected from the access logs helped to install enough 
diversity to benchmark object updates. The updates were randomly pushed onto dif-
ferent sites, and the total system update load was measured in terms of the percentage 
update requests U% compared that to the initial network with no updates.  

4.1   Comparative Algorithms 

For comparisons, we selected five various types of replica placement techniques. To 
provide a fair comparison, the assumptions and system parameters were kept the same 
in all the approaches. The techniques studied include efficient branch-and-bound 
based technique (Aε-Star [10]). For fine-grained replication, the algorithms proposed 
in [11], [13], and [15] are the only ones that address the problem domain similar to 
ours. We select from [15] the greedy approach (Greedy) for comparison because it is 
shown to be the best compared with 4 other approaches; thus, we indirectly compare 
with 4 additional approaches as well. Algorithms reported in [9] (Dutch (DA) and 
English auctions (EA)) and [13] (Genetic based algorithm (GRA)) are also among the 
chosen techniques for comparisons. Due to space limitations we do not give particu-
lars of the comparative techniques. Details for a specific technique can be obtained 
from the referenced papers. 

Performance metric: The solution quality is measured in terms of network commu-
nication cost (OTC percentage) that is saved under the replication scheme found by 
the algorithms, compared to the initial one, i.e., when only primary copies exists. 
Notice that the discriminatory mechanism has an acronym of MECH. 

4.2   Comparative Game Analysis 

First, we observe the effects of system capacity increase. An increase in the storage 
capacity means that a large number of objects can be replicated. Replicating an object 



that is already extensively replicated, is unlikely to result in significant traffic savings 
as only a small portion of the servers will be affected overall. Moreover, since objects 
are not equally read intensive, increase in the storage capacity would have a great 
impact at the beginning (initial increase in capacity), but has little effect after a certain 
point, where the most beneficial ones are already replicated. This is observable in Fig. 
2, which shows the performance of the algorithms. GRA once again performed the 
worst. The gap between all other approaches was reduced to within 15% of each 
other. DA and MECH showed an immediate initial increase (the point after which 
further replicating objects is inefficient) in its OTC savings, but afterward showed a 
near constant performance. GRA although performed the worst, but observably 
gained the most OTC savings (53%) followed by Greedy with 34%. Further experi-
ments with various update ratios (5%, 10%, and 20%) showed similar plot trends. It is 
also noteworthy (plots not shown in this paper due to space restrictions) that the in-
crease in capacity from 13% to 24%, resulted in 4.3 times (on average) more replicas 
for all the algorithms. 

Next, we observe the effects of increase in the read and update (write) frequencies. 
Since these two parameters are complementary to each other, we describe them to-
gether. In both the setups the number of sites and objects were kept constant. Increase 
in the number of reads in the system would mean that there is a need to replicate as 
many object as possible (closer to the users). However, the increase in the number of 
updates in the system requires the replicas be placed as close as to the primary site as 
possible (to reduce the update broadcast). This phenomenon is also interrelated with 
the system capacity, as the update ratio sets an upper bound on the possible traffic 
reduction through replication. Thus, if we consider a system with unlimited capacity, 
the “replicate everywhere anything” policy is strictly inadequate. The read and update 
parameters indeed help in drawing a line between good and marginal algorithms. The 
plots in Figs. 3 and 4 show the results of read and update frequencies, respectively. A 
clear classification can be made between the algorithms. Aε-Star, DA, EA, Greedy 
and MECH incorporate the increase in the number of reads by replicating more ob-
jects and thus savings increase up to 89%. Aε-Star gained the most of the OTC sav-
ings of up to 47%. To understand why there is such a gap in the performance between 
the algorithms, we should recall that GRA specifically depend on the initial popula-
tion (for details see [13]). Moreover, GRA maintains a localized network perception. 
Increase in updates result in objects having decreased local significance (unless the 
vicinity is in close proximity to the primary location). On the other hand, Aε-Star, 
DA, EA, Greedy never tend to deviate from their global view of the problem domain.  

Lastly, we compare the termination time of the algorithms. Before we proceed, we 
would like to clarify our measurement of algorithm termination timings. The ap-
proach we took was to see if these algorithms can be used in dynamic scenarios. 
Thus, we gather and process data as if it was a dynamic system. The average break-
down of the execution time of all the algorithms combined is depicted in Fig. 5. There 
68% of all the algorithm termination time was taken by the repeated calculations of 
the shortest paths. Data gathering and dispersion, such as reading the access frequen-
cies from the processed log, etc. took 7% of the total time. Other miscellaneous op-
erations including I/O were recorded to carry 3% of the total execution time. From 
the plot it is clear that a totally static setup would take no less that 21% of the time 



depicted in Table 1.  
Various problem instances were recorded with C=20%, 35% and U=25%, 35%. 

The entries in bold represent the fastest time recorded over the problem instance. It is 
observable that MECH and DA terminated faster than all the other techniques, fol-
lowed by EA, Greedy, Aε-Star and GRA. If a static environment was considered, 
MECH with the maximum problem instance would have terminated approximately in 
55.16 seconds (21% of the algorithm termination time).  

In summary, based on the solution quality alone, the algorithms can be classified 
into four categories: 1) Very high performance: EA and MECH, 2) high performance: 
Greedy and DA, 3) medium-high performance: Aε-Star, and finally 4) mediocre per-
formance: GRA. Considering the execution time, MECH and DA did extremely well, 
followed by EA, Greedy, Aε-Star, and GRA. 

Table 2 shows the quality of the solution in terms of OTC percentage for 10 prob-
lem instances (randomly chosen), each being a combination of various numbers of 
sites and objects, with varying storage capacity and update ratio. For each row, the 
best result is indicated in bold. The proposed MECH algorithm steals the show in the 
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context of solution quality, but Aε-Star, EA and DA do indeed give a good competi-
tion, with a savings within 5%-10% of MECH. 

5   Related Work 

The data replication problem (see Sec. 2 for a formal description) is an extension of 
the classical file allocation problem (FAP). Chu [4] studied the file allocation prob-
lem with respect to multiple files in a multiprocessor system. Casey [3] extended this 
work by distinguishing between updates and read file requests. Eswaran [6] proved 
that Casey’s formulation was NP complete. In [14] Mahmoud et al. provide an itera-
tive approach that achieves good solution quality when solving the FAP for infinite 
server capacities. A complete although old survey on the FAP can be found in [5]. 
Apers in [1] considered the data allocation problem (DAP) in distributed databases 
where the query execution strategy influences allocation decisions. In [12] the authors 
proposed several algorithms to solve the data allocation problem in distributed mul-
timedia databases (without replication), also called as video allocation problem. 

Table 1. Running time in second [C=35%, U=35%] 

Problem instance Greedy GRA Aε-Star DA EA MECH 
M=300, N=1450 206.26 326.82 279.45 95.64 178.90 97.98 
M=300, N=1500 236.61 379.01 310.12 115.19 185.15 113.65 
M=300, N=1550 258.45 409.17 333.03 127.10 191.24 124.73 
M=300, N=2000 275.63 469.38 368.89 143.94 197.93 142.16 
M=400, N=1450 321.60 492.10 353.08 176.51 218.15 176.90 
M=400, N=1500 348.53 536.96 368.03 187.26 223.56 195.41 
M=400, N=1550 366.38 541.12 396.96 192.41 221.10 214.55 
M=400, N=2000 376.85 559.74 412.17 208.92 245.47 218.73 
M=500, N=1450 391.55 659.39 447.97 224.18 274.24 235.17 
M=500, N=1500 402.20 660.86 460.44 246.43 284.63 259.56 
M=500, N=1550 478.10 689.44 511.69 257.96 301.72 266.42 
M=500, N=2000 485.34 705.07 582.71 269.45 315.13 262.68 

Table 2. Average OTC (%) savings [C=35%, U=35%] 

Problem instance Greedy GRA Aε-Star DA EA MECH 
N=150, M=20  70.27 69.11 73.96 69.91 72.72 74.40 
N=200, M=50  73.49 69.33 76.63 71.90 77.11 75.43 
N=300, M=50 69.63 63.45 69.85 67.66 69.80 70.36 
N=300, M=60 71.15 64.95 71.51 69.26 70.38 74.03 
N=400, M=100 67.24 61.74 71.26 68.67 70.49 73.26 
N=500, M=100 65.24 60.77 70.55 69.82 70.87 72.73 
N=800, M=200 66.53 65.90 69.33 68.95 70.06 72.95 
N=1000, M=300 69.04 63.17 69.98 69.36 71.28 72.44 
N=1500, M=400 69.98 62.61 70.41 72.09 72.26 72.78 
N=2000, M=500 66.34 62.70 71.33 67.67 68.41 74.06 



Most of the research papers outlined in [5] aim at formalizing the problem as an 
optimization one, sometimes using multiple objective functions. Network traffic, 
server throughput and response time exhibited by users are considered for optimiza-
tion. Although a lot of effort was devoted in providing comprehensive models, little 
attention has been paid to good heuristics for solving this complex problem. Further-
more access patterns are assumed to remain static and solutions in the dynamic case 
are obtained by re-executing a time consuming mathematical programming technique. 

Some on-going work is related to dynamic replication of objects in distributed sys-
tems when the read-write patterns are not known apriori. Awerbuch’s et al. work in 
[2] is significant from a theoretical point of view, but the adopted strategy for com-
muting updates (object replicas are first deleted), can prove difficult to implement in a 
real-life environment. In [18] Wolfson et al. proposed an algorithm that leads to op-
timal single file replication in the case of a tree network. The performance of the 
scheme for general network topologies is not clear though. Dynamic replication pro-
tocols were also considered under the Internet environment. In [16], Rabinovich et al. 
proposed a protocol for dynamically replicating the contents of an ISP (Internet Ser-
vice Provider) in order to improve client-server proximity without overloading any of 
the servers. However updates were not considered. 

6   Conclusion 

This paper proposed a game theoretical discriminatory mechanism (MECH) for 
fine-grained data replication in large-scale distributed computing systems (e.g. the 
Internet). In MECH we employ agents who represent data objects to compete for the 
limited available storage space on web servers to acquire the rights to replicate. 
MECH uses a unique concept of supergame in which these agents continuously com-
pete in a non-cooperative environment. MECH allows the designers the flexibility to 
monitor the behavior and strategies of these agents and fine-tune them so as to attain 
a given objective. In case of the data replication problem, the object for these agents 
is to skillfully replicate data objects so that the total object transfer cost is minimized. 

MECH was compared against some well-known techniques, such as: greedy, 
branch and bound, game theoretical auctions and genetic algorithms. To provide a 
fair comparison, the assumptions and system parameters were kept the same in all the 
approaches. The experimental results revealed that MECH outperformed the five 
widely cited and powerful techniques in both the execution time and solution quality. 

In summary, MECH exhibited 5%-10% better solution quality and 25%-35% sav-
ings in the algorithm termination timings.  
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