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Abstract 
 
This paper proposes an agent-based distributed 

replica allocation and management technique, where 
each agent maximizes its own benefit, such as, user 
access time, latency and communication cost. The 
technique gathers inspiration from market economy and 
game theoretical mechanism designs. In such 
mechanisms the agents do not have a global view of the 
system, which makes the optimization process highly 
localized. This local optimization may encourage these 
agents to alter the output of the resource allocation 
mechanism in their favor and act selfishly. The proposed 
technique guarantees a global optimal solution even 
though the system acts in a distributed fashion operated 
by self-motivated selfish agents. The mechanism is 
extensively evaluated against some well-known replica 
placement algorithms such as greedy, branch and 
bound, game theoretical auctions and genetic 
algorithms. The experimental results reveal that the 
mechanism provides excellent solution quality, while 
maintaining fast execution time. 

 
  

1. Introduction 
 
This paper proposes a simple approach to designing 

resource allocation mechanisms for autonomous 
distributed computing systems. The approach draws 
inspiration from game theory and the similarities 
between market economics and large-scale distributed 
computing systems.   

In our game theoretical replica allocation and 
management mechanism (RAMM), each site (node) is 
represented by an agent. We view an agent as part of a 
community of similar though heterogeneous agents that 
are designed to compete for scarce resources. Motivated 
by their self interests and the fact that the agents do not 
have a global view of the distributed system, they 
optimize their individual interests, such as, minimize 
communication costs, latencies, etc. Each agent defines 
its goals and utilities, and the rules for optimization. 
Although no direct attempt is made to globally improve 

or optimize the system wide goals, yet the mechanism 
provides a platform for self-evolving solution quality. 
This results in global performance improvement through 
an invisible hand.  

The remainder of this paper is organized as follows. 
Section 2 formulates the data replication problem (DRP). 
Section 3 describes the RAMM. The experimental 
results, related work and concluding remarks are 
provided in Sections 4, 5 and 6, respectively. 

 
2. Data Replication Problem 

 
Consider a distributed system comprising M sites, 

with each site having its own processing power, memory 
(primary storage) and media (secondary storage). Let Si 
and si be the name and the total storage capacity (in 
simple data units e.g. blocks), respectively, of site i 
where 1 ≤ i ≤ M. The M sites of the system are 
connected by a communication network. A link between 
two sites Si and Sj (if it exists) has a positive integer c(i,j) 
associated with it, giving the communication cost for 
transferring a data unit between sites Si and Sj. If the two 
sites are not directly connected by a communication link 
then the above cost is given by the sum of the costs of all 
the links in a chosen path from site Si to the site Sj. Let 
there be N objects, each identifiable by a unique name 
Ok and size in simple data unites ok where 1 ≤ k ≤ N. Let 
rk

i and wk
i be the total number of reads and writes, 

respectively, initiated from Si for Ok.  
Our replication policy assumes the existence of one 

primary copy for each object in the network. Let Pk, be 
the site which holds the primary copy of Ok, i.e., the only 
copy in the network that cannot be de-allocated, hence 
referred to as primary site of the k-th object. Each 
primary site Pk, contains information about the whole 
replication scheme Rk of Ok. This can be done by 
maintaining a list of the sites where the k-th object is 
replicated at, called from now on the replicators of Ok. 
Moreover, every site Si stores a two-field record for each 
object. The first field is its primary site Pk and the 
second the nearest neighborhood site NNk

i of site Si 
which holds a replica of object k. In other words, NNk

i is 
the site for which the reads from Si for Ok, if served 



there, would incur the minimum possible communication 
cost. It is possible that NNk

i = Si, if Si is a replicator or 
the primary site of Ok. Another possibility is that NNk

i = 
Pk, if the primary site is the closest one holding a replica 
of Ok. When a site Si reads an object, it does so by 
addressing the request to the corresponding NNk

i. For the 
updates we assume that every site can update every 
object. Updates of an object Ok are performed by 
sending the updated version to its primary site Pk, which 
afterwards broadcasts it to every site in its replication 
scheme Rk.  

For the DRP under consideration, we are interested 
in minimizing the total network transfer cost due to 
object movement, i.e. the Object Transfer Cost (OTC). 
The communication cost of the control messages has 
minor impact to the overall performance of the system, 
therefore, we do not consider it in the transfer cost 
model, but it is to be noted that incorporation of such a 
cost would be a trivial exercise. There are two 
components affecting OTC. The first component of OTC 
is due to the read requests.  Let Rk

i denote the total OTC, 
due to Sis’ reading requests for object Ok, addressed to 
the nearest site NNk

i. This cost is given by the following 
equation:  
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where NNk
i = {Site j | j∈Rk ^ min c(i,j)}. The second 

component of OTC is the cost arising due to the writes. 
Let Wk

i be the total OTC, due to Sis’ writing requests for 
object Ok, addressed to the primary site Pk. This cost is 
given by the following equation:  
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The cumulative OTC, denoted as Coverall, due to reads 
and writes is given by:  
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Let Xik=1 if Si holds a replica of object Ok, and 0 
otherwise. Xiks define an M×N replication matrix, named 
X, with boolean elements. Equation 3 is now refined to:  
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Using the above formulation, the DRP can be 
defined as:  

Find the assignment of 0, 1 values in the X matrix 
that minimizes Coverall, subject to the storage capacity 
constraint:∑ = ≤≤∀≤N

k
i

kik MisoX1 )1( , and subject to the 

primary copies policy: )1(    1 NkX kkP ≤≤∀= . 
 

3. The RAMM 
 
The Basics: The mechanism contains M agents. Each 
agent i has some private data ti ∈ R. This data is termed 
as the agent’s true data or true type. Only agent i has 

knowledge of ti. Everything else in the mechanism is 
public knowledge. Let t denote the vector of all the true 
types t = (t1…tM). 
Communications: The only information that is relayed 
to the mechanism by an agent i is its corresponding bid 
bi. Since the agents are selfish in nature, (i.e., localized 
optimization) they may (bi = ti) or may not (bi ≠ ti) 
communicate to the mechanism the value ti. Let b denote 
the vector of all the bids ((b = (b1…bM)), and let b-i 
denote the vector of bids, not including agent i, i.e., b-i = 
(b1…bi-1,bi+1,…bM). It is to be understood that we can 
also write b = (b-i,bi). 
Components: The mechanism has two components: 1) 
the algorithmic output x(·), and 2) the payment mapping 
function p(·).  
Algorithmic output: The mechanism allows a set of 
outputs X, based on the output function which takes in as 
the argument, the bidding vector, i.e., x(b) = {x1(b),…, 
xM(b)}, where x(b) ∈ X. This output function relays a 
unique output given a vector b. That is, when x(·) 
receives b, it generates an output which is of the form of 
allocations xi(b). Intuitively it would mean that the 
algorithm takes in the vector bid b and then relays to 
each agent its allocation.  
Monetary cost: Each agent i incurs some monetary cost 
ci(ti,xi(b)), i.e., the cost to accommodate the (data) 
allocation xi(b). This cost is dependent upon the output 
(of the allocations by the mechanism xi(b)) and the 
agent’s private data ti.  
Payments: To offset ci, the mechanism makes a 
payment pi(b) to agent i. An agent i always attempts to 
maximize its profit (utility) ui(ti,b) = pi(b) - ci(ti,xi(b)). 
Each agent i cares about the other agents’ bid only 
insofar as they influence the outcome and the payment. 
Bids: Each agent i is interested in reporting a bid bi such 
that it maximizes its profit, regardless of what the other 
agents bid, i.e., ui(ti,(b-i,ti)) ≥  ui(ti,(b-i,bi)) for all b-i and 
bi. It is to be noted that truth telling (bi = ti) brings in 
more utility to the agents than over bidding and under 
bidding  

For more details on the optimality of such type of 
payment and bidding procedures see [15]. In that paper, 
the authors have identified many such scenarios, all but 
reporting truthfully fail to exploit this (second best) 
payment option. 
The RAMM: We now put all the pieces together. A 
mechanism m consists of a pair m = (x(b),p(b)), where 
x(·) is the output function and p(·) is the payment 
mapping function. The objective of the mechanism is to 
select an output x, that optimizes a given objective 
function. 
Objective: The mechanism defined above leaves us with 
the following two optimization problems: 
1. Identify a strategy that is dominant to each agent i. 
2. Identify a payment mapping function that is truthful. 



Below we detail these two objectives. 
Dominating Strategy: The agents in the mechanism 
value an object k for the benefit that it brings to the 
agent’s site i. This benefit is equivalent to the savings 
that the object k brings in the total object transfer cost 
(OTC) if the object k is replicated at site i. This benefit is 
given as: 

1 ( , )Mi i x
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Payments: The mechanism eliminates incentives for 
misreporting by imposing on each agent the cost of any 
distortion it causes. The payment for agent i is set so that 
i’s report cannot effect the total payoff to the set of other 
agents (excluding agent i), M-i.  

To capture the effect of i’s report on the outcome, 
we introduce a hypothetical null report, which 
corresponds to agent i reporting that it is indifferent 
among the possible decisions and cares only about 
payments. When i makes the null report, the mechanism 
optimally chooses the decision D(X,M-i,t-i). The 
resulting total value of the decision for the set of agents 
M-i would be V(X,M-i,t-i), and the mechanism might also 
provide an agent i with payment equivalent to hi(t-i). 
Thus, if i makes a null report, the total payoff to the 
agents in set M-i is V(X,M-i,t-i) + hi(t-i). This would mean 
that the RAMM would choose payments for the M-i 
agents regardless of what i reports to the RAMM. For a 
detailed analysis of the above payment structure, readers 
are encouraged to see [10]. It is to be noted that in 
economic game theoretical literature this type of 
payment is often referred to as Vickrey payments [10]. 

We have entertained all the pending optimization 
issues regarding the RAMM, and are ready to give a 
pseudo-code (Figure 1). 

Briefly, we maintain a list Li at each server. This list 
contains all the objects that can be replicated by agent i 
onto site Si. We can obtain this list by examining the two 
constraints of the DRP. List Li would contain all the 
objects that have their size less then the total available 
space bi. Moreover, if site Si is the primary host of some 
object k’, then k’ should not be in Li. We also maintain a 
list LS containing all sites that can replicate an object, 
i.e., Si∈LS if Li≠NULL. The algorithm works iteratively. 
In each step the mechanism asks all the agents to send 
their preferences (first PARFOR loop). Each agent i 
recursively calculates the true data of every object in list  
Li. Each agent then reports the dominant true data (line 
08) to the mechanism. The mechanism receives all the 
corresponding entries, and then chooses the best 
dominant true data. This is broadcasted to all the agents, 
so that they can update their nearest neighbor table NNk

i, 
which is shown in Line 20 (NNi

OMAX). The object is 
replicated and payments made to the agent. The 
mechanism progresses forward till there are no more 
agents interested in acquiring any data for replication.   

The above discussion allows us to deduce the  

The RAMM Algorithm 
 
Initialize: 
LS, Li, Tk

i, M, MT 
 
01 WHILE LS ≠ NULL DO 
02     OMAX = NULL; MT = NULL; Pi = NULL; 
03          PARFOR each Si∈LS DO 
04                    FOR each Ok∈ Li DO 
05                              Tk

i = compute (Bk
i);  /*compute the valuations/bids*/ 

06                    ENDFOR 
07                    ti = argmaxk(Tk

i);  
08                    SEND ti to M; RECEIVE at M ti in MT; 
09           ENDPARFOR 
10   OMAX = argmaxk(MT);  /*Choose the global dominate valuation/bid*/ 
11   DELETE k from MT;  
12   Pi = argmaxk(MT);               /*Calculate the payment*/ 
13   BROADCAST OMAX;  
14   SEND Pi to Si; RECEIVE at Si /*Pay the winning agent this amount*/ 
15   Replicate OOMAX;  
16   aci=aci - ok;                        /*Update capacity*/ 
17   Li = Li - Ok;                    /*Update the list*/ 
18 IF Li = NULL THEN SEND info to M to update LS = LS - Si;    
/*Update mechanism players*/ 
19          PARFOR each Si∈LS DO  
20                  Update NNi

OMAX                  /*Update the nearest neighbor list*/ 
21          ENDPARFOR                  /*Get ready for the next round*/ 
22 ENDWHILE 

Figure 1: Pseudo-code describing the RAMM. 
following result about the RAMM algorithm. 
Theorem 1: RAMM takes O(MN2) time. 
Proof: The worst case scenario is when each site has 
sufficient capacity to store all objects. In that case, the 
while loop (Line 02) performs MN iterations. The time 
complexity for each iteration is governed by the two 
PARFOR loops (Lines 04 and 19). The first loop uses at 
most N iterations, while the send loop performs the 
update in constant time. Hence, we conclude that the 
worst case running time of the mechanism is O(MN2).■ 
 
4. Experiments 

 
We performed experiments on a 440MHz Ultra 10 

machine with 512MB memory. The experimental 
evaluations were targeted to benchmark the placement 
policies. The RAMM was implemented using IBM 
Pthreads. The solution quality is measured in terms of 
network communication cost (OTC percentage) that is 
saved under the replication scheme found by the 
algorithms, compared to the initial one, i.e., when only 
primary copies exists.  

To establish diversity in our experimental setups, the 
network connectively was changed considerably. In this 
paper, we only present the results that were obtained 
using a maximum of 500 sites (nodes). We used GT-
ITM [3] topology generator to obtain 45 random 
network topologies. In all the topologies the distance of 
the link between nodes was equivalent to the 
communication cost. To evaluate the chosen replication 
placement techniques on realistic traffic patterns, we 
used the access logs collected at the Soccer World Cup 
1998 website [2]. Each experimental setup was 
evaluated thirteen times, i.e., the Friday (24 hours) logs 
from May 1, 1998 to July 24, 1998. Thus, each



Capacity of Sites

O
TC

 S
av

es
Performance

N=2000, M=500, U=20%

10% 14% 18% 22% 26% 30% 34% 38%
0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Legend
Greedy
GRA
Aε-Star
DA
EA
RAMM

 

 

Reads

O
TC

 S
av

es

Performance
N=2000, M=500, C=30%

20% 22% 24% 26% 28% 30% 32% 34% 36% 38% 40%
0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 
Figure 2 OTC savings versus capacity.  Figure 3 OTC savings versus reads. 
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 Table 1 Running time (sec.) [C=55%, U=10%]. 
Problem Size Greedy GRA Aε-Star DA EA RAMM

M=300, N=1400 206.26 326.82 279.45 95.64 178.9 97.98 
M=300, N=1450 236.61 379.01 310.12 115.19 185.15 113.65 
M=300, N=1500 258.45 409.17 333.03 127.1 191.24 124.73 
M=300, N=1550 275.63 469.38 368.89 143.94 197.93 147.16 
M=300, N=2000 298.12 475.02 387.94 158.45 204.29 159.12 
M=400, N=1400 348.53 536.96 368.03 187.26 223.56 195.41 
M=400, N=1450 366.38 541.12 396.96 192.41 221.1 214.55 
M=400, N=1500 376.85 559.74 412.17 208.92 245.47 218.73 
M=400, N=1550 389.71 605.63 415.55 215.24 269.31 223.92 
M=400, N=2000 391.55 659.39 447.97 224.18 274.24 235.17 
M=500, N=1400 478.1 689.44 511.69 257.96 301.72 266.42 
M=500, N=1450 485.34 705.07 582.71 269.45 315.13 272.68 
M=500, N=1500 511.06 736.43 628.23 278.15 324.26 291.83 
M=500, N=1550 525.33 753.5 645.26 289.64 331.57 304.47 
M=500, N=2000 539.15 776.99 735.36 312.68 345.94 317.6  

Figure 4 OTC savings versus updates.   

Table 2 Running time (sec.) [C=15%, U=55%]. 
Problem Size Greedy GRA Aε-Star DA EA RAMM
M=20, N=50 70.06 92.35 96.31 24.35 38.69 26.06 
M=20, N=100 76.20 96.31 102.81 26.97 40.39 26.97 
M=20, N=150 77.55 100.93 113.25 31.62 53.69 35.98 
M=30, N=50 95.00 126.80 140.69 38.31 59.20 38.85 
M=30, N=100 108.79 124.55 148.07 39.01 62.73 39.40 
M=30, N=150 135.09 147.67 179.27 45.22 67.91 41.21 
M=40, N=50 125.55 154.11 198.21 41.79 76.20 45.11 
M=40, N=100 134.03 167.56 235.97 43.25 77.16 46.19 
M=40, N=150 140.81 203.54 269.88 46.91 81.70 48.39  

 Table 3 Average OTC (%) savings. 
Problem Size Greedy GRA Aε-Star DA EA RAMM

N=200, M=50 [C=20%,U=20%] 73.50 70.02 76.45 71.70 76.50 75.47 
N=300, M=50 [C=25%,U=5%] 69.16 64.17 70.04 67.72 70.02 70.39 
N=400, M=100 [C=25%,U=25%] 66.52 61.51 70.76 68.63 69.96 73.19 
N=500, M=100 [C=30%,U=35%] 65.89 61.20 70.71 70.11 70.95 72.92 
N=800, M=200 [C=25%,U=15%] 66.72 65.57 69.98 68.46 69.83 72.30 
N=1000, M=300 [C=25%,U=35%] 68.40 63.73 69.89 69.80 70.52 72.87 
N=1500, M=400 [C=35%,U=50%] 69.79 63.21 69.76 72.23 72.36 73.14 
N=2000, M=500 [C=10%,U=60%] 66.14 62.89 72.14 68.03 68.29 73.63  

    

experimental setup in fact represents an average of the 
585 (13×45) data set points. To process the logs, we 
wrote a script that returned: only those objects which 
were present in all the logs (2000 in our case), the total 
number of requests from a particular client for an object, 
the average and the variance of the object size. From this 
log we chose the top five hundred clients (maximum 
experimental setup). A random mapping was then 
performed of the clients to the nodes of the topologies. 
Note that this mapping is not 1-1, rather 1-M. This gave 
us enough skewed workload to mimic real world 
scenarios. It is also worthwhile to mention that the total 
amount of requests entertained for each problem 
instance was in the range of 1-2 million. The primary 
replicas’ original site was mimicked by choosing random 
locations. The capacities of the sites C% were generated 
randomly with range from Total Primary Object Sizes/2 
to 1.5×Total Primary Object Sizes. The variance in the 

object size collected from the access logs helped to 
instill enough diversity to benchmark object updates. 
The updates were randomly pushed onto different sites, 
and the total system update load was measured in terms 
of the percentage update requests U% compared that to 
the initial network with no updates.  

 
4.1. Comparative Algorithms 

 
For comparison, we selected five various types of replica 
placement techniques. To provide a fair comparison, the 
assumptions and system parameters were kept the same 
in all the approaches. The techniques studied include 
efficient branch-and-bound based technique (Aε-Star 
[9]). For fine-grained replication, the algorithms 
proposed in [10], [11], [12], and [14] are the only ones 
that address the problem domain similar to ours. We 
select from [14] the greedy approach (Greedy) for 



comparison because it is shown to be the best compared 
with 4 other approaches (including the proposed 
technique in [11]); thus, we indirectly compare with 4 
additional approaches as well. Algorithms reported in 
[10] (Dutch (DA) and English auctions (EA)) and [12] 
(Genetic based algorithm (GRA)) are also among the 
chosen techniques for comparisons. Due to space 
limitations details for a specific technique are left as an 
exercise for the readers and can be obtained from the 
referenced papers. 
 
4.2. Comparative Analysis 

 
First, we observe the effects of system capacity increase. 
An increase in the storage capacity means that a large 
number of objects can be replicated. Replicating an 
object that is already extensively replicated, is unlikely 
to result in significant traffic savings as only a small 
portion of the servers will be affected overall. Moreover, 
since objects are not equally read intensive, increase in 
the storage capacity would have a great impact at the 
beginning (initial increase in capacity), but has little 
effect after a certain point, where the most beneficial 
ones are already replicated. This is observable in Figure 
2, which shows the performance of the algorithms. GRA 
once again performed the worst. The gap between all 
other approaches was reduced to within 12% of each 
other. DA and RAMM showed an immediate initial 
increase (the point after which further replicating 
objects. is inefficient) in its OTC savings, but afterward 
showed a near constant performance. GRA although 
performed the worst, but observably gained the most 
OTC savings (47%) followed by Greedy with 44%. 
Further experiments with various update ratios (5%, 
10%, and 20%) showed similar plot trends. It is also 
noteworthy (plots not shown in this paper due to space 
restrictions) that the increase in capacity from 10% to 
17%, resulted in 3.7 times (on average) more replicas for 
all the algorithms.   

Next, we observe the effects of increase in the read 
and update (write) frequencies. Since these two 
parameters are complementary to each other, we 
describe them together. In both the setups the number of 
sites and objects were kept constant. Increase in the 
number of reads in the system would mean that there is a 
need to replicate as many object as possible (closer to 
the users). However, the increase in the number of 
updates in the system requires the replicas be placed as 
close as to the primary site as possible (to reduce the 
update broadcast). This phenomenon is also interrelated 
with the system capacity, as the update ratio sets an 
upper bound on the possible traffic reduction through 
replication. Thus, if we consider a system with unlimited 
capacity, the “replicate everywhere anything” policy is 
strictly inadequate. The read and update parameters 
indeed help in drawing a line between good and 

marginal algorithms. The plots in Figures 3 and 4 show 
the results of read and update frequencies, respectively. 
A clear classification can be made between the 
algorithms. Aε-Star, EA, Greedy and RAMM 
incorporate the increase in the number of reads by 
replicating more objects and thus savings increase up to 
86%. GRA gained the least of the OTC savings of up to 
13%. To understand why there is such a gap in the 
performance between the algorithms, we should recall 
that GRA specifically depends on the initial population 
(for details see [12]). Moreover, GRA maintains a 
localized network perception. Increase in updates result 
in objects having decreased local significance (unless the 
vicinity is in close proximity to the primary location). 
On the other hand, Aε-Star, EA, Greedy and RAMM 
never tend to deviate from their global view of the 
problem search space.  

Lastly, we compare the termination time of the 
algorithms depicted in Tables 1 and 2. Various problem 
instances were recorded with C=15%, 55% and U=10%, 
55%. The entries in bold represent the fastest time 
recorded over the problem instance.  It is observable that 
RAMM and DA terminated faster than all the other 
techniques, followed by EA, Greedy, Aε-Star and GRA. 

Table 3 shows the quality of the solution in terms of 
OTC percentage for eight problem instances (randomly 
chosen), each being a combination of various numbers 
of sites and objects, with varying storage capacity and 
update ratio. For each row, the best result is indicated in 
bold. The proposed RAMM algorithm steals the show in 
the context of solution quality, but Aε-Star, EA and DA 
do indeed give a good competition, with a savings within 
a range of 5%-10% of RAMM.  

 
5. Related Work 
 

The data replication problem as presented in Section 
2 is an extension of the classical file allocation problem 
(FAP). Chu [5] studied the file allocation problem with 
respect to multiple files in a multiprocessor system. 
Casey [4] extended this work by distinguishing between 
updates and read file requests. Eswaran [7] proved that 
Casey’s formulation was NP complete. In [13] 
Mahmoud et al. provide an iterative approach that 
achieves good solution quality when solving the FAP for 
infinite server capacities. A complete although old 
survey on the FAP can be found in [6]. Apers in [1] 
considered the data allocation problem (DAP) in 
distributed databases where the query execution strategy 
influences allocation decisions.  

Most of the research papers outlined in [6] aim at 
formalizing the problem as an optimization one, 
sometimes using multiple objective functions. Network 
traffic, server throughput and response time exhibited by 
users are considered for optimization. Although a lot of 
effort was devoted in providing comprehensive models, 



little attention has been paid to good heuristics for 
solving this complex problem. Furthermore access 
patterns are assumed to remain static and solutions in the 
dynamic case are obtained by re-executing a time 
consuming mathematical programming technique. 

Some on-going work is related to dynamic 
replication of objects in distributed systems when the 
read-write patterns are not known apriori. In [16] 
Wolfson et al. proposed an algorithm that leads to 
optimal single file replication in the case of a tree 
network. The performance of the scheme for general 
network topologies is not clear though. Dynamic 
replication protocols were also considered under the 
Internet environment. Heddaya et al. [8] proposed 
protocols that load balance the workload among replicas.  

Our work differs from all the above in: 1) Taking 
into account the more pragmatic scenario in today’s 
distributed information environments, we tackle the case 
of allocating replicas so as to minimize the network 
traffic under storage constraints with “read from the 
nearest” and “update through the primary server” 
policies, and 2) in using game theoretical techniques. 
 
6. Conclusions 
 

This paper proposed a game theoretical replica 
allocation and management mechanism (RAMM) for 
fine-grained data replication in large-scale distributed 
computing systems such as the Internet. RAMM is a 
protocol for automatic replication and migration of 
objects in response to demand changes. RAMM aims to 
place objects in the proximity of a majority of requests 
while ensuring that no hosts become overloaded. 

RAMM allows agents to compete for the scarce 
memory space at sites so that they can acquire the rights 
to place replicas. To cater for the possibility of cartel 
type behavior of the agents, RAMM uses Vickrey price 
protocol. This leaves the agents with no option, then to 
report truthful valuations of the objects that they 
represent. 

RAMM was compared against some well-known 
techniques, such as: branch and bound, greedy, game 
theoretical auctions, and genetic algorithms. To provide 
a fair comparison, the assumptions and system 
parameters were kept the same in all the approaches. The 
experimental setup was designed to mimic a large-scale 
distributed computing system (the Internet), by using 
several Internet topology generators and World Cup 
Soccer 1998 web server access logs. The experimental 
results revealed that RAMM outperformed the three 
widely cited and powerful techniques in both the 
execution time and solution quality. In summary, 
RAMM exhibited 5%-10% better solution quality and 
10%-30% savings in the algorithm termination timings.  

References 
 
[1] P. Apers, “Data Allocation in Distributed Database 
Systems,” ACM Trans. Database Systems, 13(3), pp. 
263-304, 1988. 
[2] M. Arlitt and T. Jin, “Workload characterization of 
the 1998 World Cup Web Site,” Tech. report, Hewlett 
Packard Lab, Palo Alto, HPL-1999-35(R.1), 1999.  
[3] K. Calvert, M. Doar, E. Zegura, “Modeling 
Internet Topology,” IEEE Communications, 35(6), pp. 
160-163, 1997. 
[4] R. Casey, “Allocation of Copies of a File in an 
Information Network,” in Proc. of IFIPS Congress, 
1972, pp. 617-625. 
[5] W. Chu, “Optimal File Allocation in a Multiple 
Computer System,” IEEE Trans. on Computers, 18(10), 
pp. 29-33, 1969. 
[6] L. Dowdy and D. Foster, “Comparative Models of 
the File Assignment Problem,” ACM Computing 
Surveys, 14(2), pp. 287-313, 1982. 
[7] K. Eswaran, “Placement of Records in a File and 
File Allocation in a Computer Network,” in Proc. of 
IFIPS Congress, 1974, pp. 304-307. 
[8] A. Heddaya and S. Mirdad, “WebWave: Globally 
Load Balanced Fully Distributed Caching of Hot 
Published Documents,” in Proc. 17th IEEE ICDCS, 
1997, pp. 160-168. 
[9] S. Khan and I. Ahmad, “Heuristic-based 
Replication Schemas for Fast Information Retrevial over 
the Internet,” in Proc. of 17th PDCS, 2004, pp. 278-283.  
[10] S. Khan and I. Ahmad, “A Powerful Direct 
Mechanism for Optimal WWW Content Replication,” 
To appear in Proc. of the 19th IEEE IPDPS, 2005, p. 86.  
[11] B. Li, M. Golin, G. Italiano and X. Deng, “On the 
Optimal Placement of Web Proxies in the Internet,” in 
Proc. of the IEEE INFOCOM, 1999, pp. 1282-1290.  
[12] T. Loukopoulos, and I. Ahmad, “Static and 
Adaptive Distributed Data Replication using Genetic 
Algorithms,” Journal of Parallel and Distributed 
Computing, 64(11), pp. 1270-1285, 2004. 
[13] S. Mahmoud and J. Riordon, “Optimal allocation 
of resources in distributed information networks,” ACM 
Trans. on Database Systems, 1(1), pp. 66-78, 1976. 
[14] L. Qiu, V. Padmanabhan and G. Voelker, “On the 
Placement of Web Server Replicas,” in Proc. of the 
IEEE INFOCOM,  2001, pp. 1587-1596. 
[15] S. Saurabh and D. Parkes, “Hard-to-Manupilate 
VCG-Based Auctions,” Avaialable at: http://www 
.eecs. harvard.edu/econcs/pubs/hard_to_manipulate.pdf 
[16] O. Wolfson, S. Jajodia and Y. Hang, “An Adaptive 
Data Replication Algorithm,” ACM Trans. on Database 
Systems, 22(4), pp. 255-314, 1997.  


