
RAMM: A Game Theoretical Replica Allocation and Management Mechanism

Samee Ullah Khan and Ishfaq Ahmad
Department of Computer Science and Engineering

University of Texas at Arlington, Arlington, TX-76019, U.S.A.
{sakhan, iahmad}@cse.uta.edu

Abstract

This paper proposes an agent-based distributed

replica allocation and management technique, where
each agent maximizes its own benefit, such as, user
access time, latency and communication cost. The
technique gathers inspiration from market economy and
game theoretical mechanism designs. In such
mechanisms the agents do not have a global view of the
system, which makes the optimization process highly
localized. This local optimization may encourage these
agents to alter the output of the resource allocation
mechanism in their favor and act selfishly. The proposed
technique guarantees a global optimal solution even
though the system acts in a distributed fashion operated
by self-motivated selfish agents. The mechanism is
extensively evaluated against some well-known replica
placement algorithms such as greedy, branch and
bound, game theoretical auctions and genetic
algorithms. The experimental results reveal that the
mechanism provides excellent solution quality, while
maintaining fast execution time.

1. Introduction

This paper proposes a simple approach to designing

resource allocation mechanisms for autonomous
distributed computing systems. The approach draws
inspiration from game theory and the similarities
between market economics and large-scale distributed
computing systems.

In our game theoretical replica allocation and
management mechanism (RAMM), each site (node) is
represented by an agent. We view an agent as part of a
community of similar though heterogeneous agents that
are designed to compete for scarce resources. Motivated
by their self interests and the fact that the agents do not
have a global view of the distributed system, they
optimize their individual interests, such as, minimize
communication costs, latencies, etc. Each agent defines
its goals and utilities, and the rules for optimization.
Although no direct attempt is made to globally improve

or optimize the system wide goals, yet the mechanism
provides a platform for self-evolving solution quality.
This results in global performance improvement through
an invisible hand.

The remainder of this paper is organized as follows.
Section 2 formulates the data replication problem (DRP).
Section 3 describes the RAMM. The experimental
results, related work and concluding remarks are
provided in Sections 4, 5 and 6, respectively.

2. Data Replication Problem

Consider a distributed system comprising M sites,

with each site having its own processing power, memory
(primary storage) and media (secondary storage). Let Si
and si be the name and the total storage capacity (in
simple data units e.g. blocks), respectively, of site i
where 1 ≤ i ≤ M. The M sites of the system are
connected by a communication network. A link between
two sites Si and Sj (if it exists) has a positive integer c(i,j)
associated with it, giving the communication cost for
transferring a data unit between sites Si and Sj. If the two
sites are not directly connected by a communication link
then the above cost is given by the sum of the costs of all
the links in a chosen path from site Si to the site Sj. Let
there be N objects, each identifiable by a unique name
Ok and size in simple data unites ok where 1 ≤ k ≤ N. Let
rk

i and wk
i be the total number of reads and writes,

respectively, initiated from Si for Ok.
Our replication policy assumes the existence of one

primary copy for each object in the network. Let Pk, be
the site which holds the primary copy of Ok, i.e., the only
copy in the network that cannot be de-allocated, hence
referred to as primary site of the k-th object. Each
primary site Pk, contains information about the whole
replication scheme Rk of Ok. This can be done by
maintaining a list of the sites where the k-th object is
replicated at, called from now on the replicators of Ok.
Moreover, every site Si stores a two-field record for each
object. The first field is its primary site Pk and the
second the nearest neighborhood site NNk

i of site Si
which holds a replica of object k. In other words, NNk

i is
the site for which the reads from Si for Ok, if served

there, would incur the minimum possible communication
cost. It is possible that NNk

i = Si, if Si is a replicator or
the primary site of Ok. Another possibility is that NNk

i =
Pk, if the primary site is the closest one holding a replica
of Ok. When a site Si reads an object, it does so by
addressing the request to the corresponding NNk

i. For the
updates we assume that every site can update every
object. Updates of an object Ok are performed by
sending the updated version to its primary site Pk, which
afterwards broadcasts it to every site in its replication
scheme Rk.

For the DRP under consideration, we are interested
in minimizing the total network transfer cost due to
object movement, i.e. the Object Transfer Cost (OTC).
The communication cost of the control messages has
minor impact to the overall performance of the system,
therefore, we do not consider it in the transfer cost
model, but it is to be noted that incorporation of such a
cost would be a trivial exercise. There are two
components affecting OTC. The first component of OTC
is due to the read requests. Let Rk

i denote the total OTC,
due to Sis’ reading requests for object Ok, addressed to
the nearest site NNk

i. This cost is given by the following
equation:

),(i
kk

i
k

i
k NNicorR = , (1)

where NNk
i = {Site j | j∈Rk ^ min c(i,j)}. The second

component of OTC is the cost arising due to the writes.
Let Wk

i be the total OTC, due to Sis’ writing requests for
object Ok, addressed to the primary site Pk. This cost is
given by the following equation:

(),
((,) (,))i i

k k k k k
j R j ik

W w o c i P c P j
∀ ∈ ≠

= + ∑ . (2)

The cumulative OTC, denoted as Coverall, due to reads
and writes is given by:

∑ ∑ += = =
M
i

N
k

i
k

i
koverall WRC 1 1)((3)

Let Xik=1 if Si holds a replica of object Ok, and 0
otherwise. Xiks define an M×N replication matrix, named
X, with boolean elements. Equation 3 is now refined to:

∑ ∑ 













∑++

=−
=

= =
=

M

i

N

k
kk

M
x

x
kikkk

i
k

jkk
i

kik

PicowXPicow

XjicorX
X

1 1
1),()()],(

}1|),(min{)[1(
(4)

Using the above formulation, the DRP can be
defined as:

Find the assignment of 0, 1 values in the X matrix
that minimizes Coverall, subject to the storage capacity
constraint:∑ = ≤≤∀≤N

k
i

kik MisoX1)1(, and subject to the

primary copies policy:)1(1 NkX kkP ≤≤∀= .

3. The RAMM

The Basics: The mechanism contains M agents. Each
agent i has some private data ti ∈ R. This data is termed
as the agent’s true data or true type. Only agent i has

knowledge of ti. Everything else in the mechanism is
public knowledge. Let t denote the vector of all the true
types t = (t1…tM).
Communications: The only information that is relayed
to the mechanism by an agent i is its corresponding bid
bi. Since the agents are selfish in nature, (i.e., localized
optimization) they may (bi = ti) or may not (bi ≠ ti)
communicate to the mechanism the value ti. Let b denote
the vector of all the bids ((b = (b1…bM)), and let b-i
denote the vector of bids, not including agent i, i.e., b-i =
(b1…bi-1,bi+1,…bM). It is to be understood that we can
also write b = (b-i,bi).
Components: The mechanism has two components: 1)
the algorithmic output x(·), and 2) the payment mapping
function p(·).
Algorithmic output: The mechanism allows a set of
outputs X, based on the output function which takes in as
the argument, the bidding vector, i.e., x(b) = {x1(b),…,
xM(b)}, where x(b) ∈ X. This output function relays a
unique output given a vector b. That is, when x(·)
receives b, it generates an output which is of the form of
allocations xi(b). Intuitively it would mean that the
algorithm takes in the vector bid b and then relays to
each agent its allocation.
Monetary cost: Each agent i incurs some monetary cost
ci(ti,xi(b)), i.e., the cost to accommodate the (data)
allocation xi(b). This cost is dependent upon the output
(of the allocations by the mechanism xi(b)) and the
agent’s private data ti.
Payments: To offset ci, the mechanism makes a
payment pi(b) to agent i. An agent i always attempts to
maximize its profit (utility) ui(ti,b) = pi(b) - ci(ti,xi(b)).
Each agent i cares about the other agents’ bid only
insofar as they influence the outcome and the payment.
Bids: Each agent i is interested in reporting a bid bi such
that it maximizes its profit, regardless of what the other
agents bid, i.e., ui(ti,(b-i,ti)) ≥ ui(ti,(b-i,bi)) for all b-i and
bi. It is to be noted that truth telling (bi = ti) brings in
more utility to the agents than over bidding and under
bidding

For more details on the optimality of such type of
payment and bidding procedures see [15]. In that paper,
the authors have identified many such scenarios, all but
reporting truthfully fail to exploit this (second best)
payment option.
The RAMM: We now put all the pieces together. A
mechanism m consists of a pair m = (x(b),p(b)), where
x(·) is the output function and p(·) is the payment
mapping function. The objective of the mechanism is to
select an output x, that optimizes a given objective
function.
Objective: The mechanism defined above leaves us with
the following two optimization problems:
1. Identify a strategy that is dominant to each agent i.
2. Identify a payment mapping function that is truthful.

Below we detail these two objectives.
Dominating Strategy: The agents in the mechanism
value an object k for the benefit that it brings to the
agent’s site i. This benefit is equivalent to the savings
that the object k brings in the total object transfer cost
(OTC) if the object k is replicated at site i. This benefit is
given as:

1 (,)Mi i x
k k k k kxB RC w o c i P== −∑ .

Payments: The mechanism eliminates incentives for
misreporting by imposing on each agent the cost of any
distortion it causes. The payment for agent i is set so that
i’s report cannot effect the total payoff to the set of other
agents (excluding agent i), M-i.

To capture the effect of i’s report on the outcome,
we introduce a hypothetical null report, which
corresponds to agent i reporting that it is indifferent
among the possible decisions and cares only about
payments. When i makes the null report, the mechanism
optimally chooses the decision D(X,M-i,t-i). The
resulting total value of the decision for the set of agents
M-i would be V(X,M-i,t-i), and the mechanism might also
provide an agent i with payment equivalent to hi(t-i).
Thus, if i makes a null report, the total payoff to the
agents in set M-i is V(X,M-i,t-i) + hi(t-i). This would mean
that the RAMM would choose payments for the M-i
agents regardless of what i reports to the RAMM. For a
detailed analysis of the above payment structure, readers
are encouraged to see [10]. It is to be noted that in
economic game theoretical literature this type of
payment is often referred to as Vickrey payments [10].

We have entertained all the pending optimization
issues regarding the RAMM, and are ready to give a
pseudo-code (Figure 1).

Briefly, we maintain a list Li at each server. This list
contains all the objects that can be replicated by agent i
onto site Si. We can obtain this list by examining the two
constraints of the DRP. List Li would contain all the
objects that have their size less then the total available
space bi. Moreover, if site Si is the primary host of some
object k’, then k’ should not be in Li. We also maintain a
list LS containing all sites that can replicate an object,
i.e., Si∈LS if Li≠NULL. The algorithm works iteratively.
In each step the mechanism asks all the agents to send
their preferences (first PARFOR loop). Each agent i
recursively calculates the true data of every object in list
Li. Each agent then reports the dominant true data (line
08) to the mechanism. The mechanism receives all the
corresponding entries, and then chooses the best
dominant true data. This is broadcasted to all the agents,
so that they can update their nearest neighbor table NNk

i,
which is shown in Line 20 (NNi

OMAX). The object is
replicated and payments made to the agent. The
mechanism progresses forward till there are no more
agents interested in acquiring any data for replication.

The above discussion allows us to deduce the

The RAMM Algorithm

Initialize:
LS, Li, Tk

i, M, MT

01 WHILE LS ≠ NULL DO
02 OMAX = NULL; MT = NULL; Pi = NULL;
03 PARFOR each Si∈LS DO
04 FOR each Ok∈ Li DO
05 Tk

i = compute (Bk
i); /*compute the valuations/bids*/

06 ENDFOR
07 ti = argmaxk(Tk

i);
08 SEND ti to M; RECEIVE at M ti in MT;
09 ENDPARFOR
10 OMAX = argmaxk(MT); /*Choose the global dominate valuation/bid*/
11 DELETE k from MT;
12 Pi = argmaxk(MT); /*Calculate the payment*/
13 BROADCAST OMAX;
14 SEND Pi to Si; RECEIVE at Si /*Pay the winning agent this amount*/
15 Replicate OOMAX;
16 aci=aci - ok; /*Update capacity*/
17 Li = Li - Ok; /*Update the list*/
18 IF Li = NULL THEN SEND info to M to update LS = LS - Si;
/*Update mechanism players*/
19 PARFOR each Si∈LS DO
20 Update NNi

OMAX /*Update the nearest neighbor list*/
21 ENDPARFOR /*Get ready for the next round*/
22 ENDWHILE

Figure 1: Pseudo-code describing the RAMM.
following result about the RAMM algorithm.
Theorem 1: RAMM takes O(MN2) time.
Proof: The worst case scenario is when each site has
sufficient capacity to store all objects. In that case, the
while loop (Line 02) performs MN iterations. The time
complexity for each iteration is governed by the two
PARFOR loops (Lines 04 and 19). The first loop uses at
most N iterations, while the send loop performs the
update in constant time. Hence, we conclude that the
worst case running time of the mechanism is O(MN2).■

4. Experiments

We performed experiments on a 440MHz Ultra 10

machine with 512MB memory. The experimental
evaluations were targeted to benchmark the placement
policies. The RAMM was implemented using IBM
Pthreads. The solution quality is measured in terms of
network communication cost (OTC percentage) that is
saved under the replication scheme found by the
algorithms, compared to the initial one, i.e., when only
primary copies exists.

To establish diversity in our experimental setups, the
network connectively was changed considerably. In this
paper, we only present the results that were obtained
using a maximum of 500 sites (nodes). We used GT-
ITM [3] topology generator to obtain 45 random
network topologies. In all the topologies the distance of
the link between nodes was equivalent to the
communication cost. To evaluate the chosen replication
placement techniques on realistic traffic patterns, we
used the access logs collected at the Soccer World Cup
1998 website [2]. Each experimental setup was
evaluated thirteen times, i.e., the Friday (24 hours) logs
from May 1, 1998 to July 24, 1998. Thus, each

Capacity of Sites

O
TC

 S
av

es
Performance

N=2000, M=500, U=20%

10% 14% 18% 22% 26% 30% 34% 38%
0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Legend
Greedy
GRA
Aε-Star
DA
EA
RAMM

Reads

O
TC

 S
av

es

Performance
N=2000, M=500, C=30%

20% 22% 24% 26% 28% 30% 32% 34% 36% 38% 40%
0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Figure 2 OTC savings versus capacity. Figure 3 OTC savings versus reads.

Updates

O
TC

 S
av

es

Performance
N=2000, M=500, C=70%

40% 42% 44% 46% 48% 50% 52% 54% 56% 58% 60%
8%

16%

24%

32%

40%

48%

56%

64%

72%

80%

 Table 1 Running time (sec.) [C=55%, U=10%].
Problem Size Greedy GRA Aε-Star DA EA RAMM

M=300, N=1400 206.26 326.82 279.45 95.64 178.9 97.98
M=300, N=1450 236.61 379.01 310.12 115.19 185.15 113.65
M=300, N=1500 258.45 409.17 333.03 127.1 191.24 124.73
M=300, N=1550 275.63 469.38 368.89 143.94 197.93 147.16
M=300, N=2000 298.12 475.02 387.94 158.45 204.29 159.12
M=400, N=1400 348.53 536.96 368.03 187.26 223.56 195.41
M=400, N=1450 366.38 541.12 396.96 192.41 221.1 214.55
M=400, N=1500 376.85 559.74 412.17 208.92 245.47 218.73
M=400, N=1550 389.71 605.63 415.55 215.24 269.31 223.92
M=400, N=2000 391.55 659.39 447.97 224.18 274.24 235.17
M=500, N=1400 478.1 689.44 511.69 257.96 301.72 266.42
M=500, N=1450 485.34 705.07 582.71 269.45 315.13 272.68
M=500, N=1500 511.06 736.43 628.23 278.15 324.26 291.83
M=500, N=1550 525.33 753.5 645.26 289.64 331.57 304.47
M=500, N=2000 539.15 776.99 735.36 312.68 345.94 317.6

Figure 4 OTC savings versus updates.

Table 2 Running time (sec.) [C=15%, U=55%].
Problem Size Greedy GRA Aε-Star DA EA RAMM
M=20, N=50 70.06 92.35 96.31 24.35 38.69 26.06
M=20, N=100 76.20 96.31 102.81 26.97 40.39 26.97
M=20, N=150 77.55 100.93 113.25 31.62 53.69 35.98
M=30, N=50 95.00 126.80 140.69 38.31 59.20 38.85
M=30, N=100 108.79 124.55 148.07 39.01 62.73 39.40
M=30, N=150 135.09 147.67 179.27 45.22 67.91 41.21
M=40, N=50 125.55 154.11 198.21 41.79 76.20 45.11
M=40, N=100 134.03 167.56 235.97 43.25 77.16 46.19
M=40, N=150 140.81 203.54 269.88 46.91 81.70 48.39

 Table 3 Average OTC (%) savings.
Problem Size Greedy GRA Aε-Star DA EA RAMM

N=200, M=50 [C=20%,U=20%] 73.50 70.02 76.45 71.70 76.50 75.47
N=300, M=50 [C=25%,U=5%] 69.16 64.17 70.04 67.72 70.02 70.39
N=400, M=100 [C=25%,U=25%] 66.52 61.51 70.76 68.63 69.96 73.19
N=500, M=100 [C=30%,U=35%] 65.89 61.20 70.71 70.11 70.95 72.92
N=800, M=200 [C=25%,U=15%] 66.72 65.57 69.98 68.46 69.83 72.30
N=1000, M=300 [C=25%,U=35%] 68.40 63.73 69.89 69.80 70.52 72.87
N=1500, M=400 [C=35%,U=50%] 69.79 63.21 69.76 72.23 72.36 73.14
N=2000, M=500 [C=10%,U=60%] 66.14 62.89 72.14 68.03 68.29 73.63

experimental setup in fact represents an average of the
585 (13×45) data set points. To process the logs, we
wrote a script that returned: only those objects which
were present in all the logs (2000 in our case), the total
number of requests from a particular client for an object,
the average and the variance of the object size. From this
log we chose the top five hundred clients (maximum
experimental setup). A random mapping was then
performed of the clients to the nodes of the topologies.
Note that this mapping is not 1-1, rather 1-M. This gave
us enough skewed workload to mimic real world
scenarios. It is also worthwhile to mention that the total
amount of requests entertained for each problem
instance was in the range of 1-2 million. The primary
replicas’ original site was mimicked by choosing random
locations. The capacities of the sites C% were generated
randomly with range from Total Primary Object Sizes/2
to 1.5×Total Primary Object Sizes. The variance in the

object size collected from the access logs helped to
instill enough diversity to benchmark object updates.
The updates were randomly pushed onto different sites,
and the total system update load was measured in terms
of the percentage update requests U% compared that to
the initial network with no updates.

4.1. Comparative Algorithms

For comparison, we selected five various types of replica
placement techniques. To provide a fair comparison, the
assumptions and system parameters were kept the same
in all the approaches. The techniques studied include
efficient branch-and-bound based technique (Aε-Star
[9]). For fine-grained replication, the algorithms
proposed in [10], [11], [12], and [14] are the only ones
that address the problem domain similar to ours. We
select from [14] the greedy approach (Greedy) for

comparison because it is shown to be the best compared
with 4 other approaches (including the proposed
technique in [11]); thus, we indirectly compare with 4
additional approaches as well. Algorithms reported in
[10] (Dutch (DA) and English auctions (EA)) and [12]
(Genetic based algorithm (GRA)) are also among the
chosen techniques for comparisons. Due to space
limitations details for a specific technique are left as an
exercise for the readers and can be obtained from the
referenced papers.

4.2. Comparative Analysis

First, we observe the effects of system capacity increase.
An increase in the storage capacity means that a large
number of objects can be replicated. Replicating an
object that is already extensively replicated, is unlikely
to result in significant traffic savings as only a small
portion of the servers will be affected overall. Moreover,
since objects are not equally read intensive, increase in
the storage capacity would have a great impact at the
beginning (initial increase in capacity), but has little
effect after a certain point, where the most beneficial
ones are already replicated. This is observable in Figure
2, which shows the performance of the algorithms. GRA
once again performed the worst. The gap between all
other approaches was reduced to within 12% of each
other. DA and RAMM showed an immediate initial
increase (the point after which further replicating
objects. is inefficient) in its OTC savings, but afterward
showed a near constant performance. GRA although
performed the worst, but observably gained the most
OTC savings (47%) followed by Greedy with 44%.
Further experiments with various update ratios (5%,
10%, and 20%) showed similar plot trends. It is also
noteworthy (plots not shown in this paper due to space
restrictions) that the increase in capacity from 10% to
17%, resulted in 3.7 times (on average) more replicas for
all the algorithms.

Next, we observe the effects of increase in the read
and update (write) frequencies. Since these two
parameters are complementary to each other, we
describe them together. In both the setups the number of
sites and objects were kept constant. Increase in the
number of reads in the system would mean that there is a
need to replicate as many object as possible (closer to
the users). However, the increase in the number of
updates in the system requires the replicas be placed as
close as to the primary site as possible (to reduce the
update broadcast). This phenomenon is also interrelated
with the system capacity, as the update ratio sets an
upper bound on the possible traffic reduction through
replication. Thus, if we consider a system with unlimited
capacity, the “replicate everywhere anything” policy is
strictly inadequate. The read and update parameters
indeed help in drawing a line between good and

marginal algorithms. The plots in Figures 3 and 4 show
the results of read and update frequencies, respectively.
A clear classification can be made between the
algorithms. Aε-Star, EA, Greedy and RAMM
incorporate the increase in the number of reads by
replicating more objects and thus savings increase up to
86%. GRA gained the least of the OTC savings of up to
13%. To understand why there is such a gap in the
performance between the algorithms, we should recall
that GRA specifically depends on the initial population
(for details see [12]). Moreover, GRA maintains a
localized network perception. Increase in updates result
in objects having decreased local significance (unless the
vicinity is in close proximity to the primary location).
On the other hand, Aε-Star, EA, Greedy and RAMM
never tend to deviate from their global view of the
problem search space.

Lastly, we compare the termination time of the
algorithms depicted in Tables 1 and 2. Various problem
instances were recorded with C=15%, 55% and U=10%,
55%. The entries in bold represent the fastest time
recorded over the problem instance. It is observable that
RAMM and DA terminated faster than all the other
techniques, followed by EA, Greedy, Aε-Star and GRA.

Table 3 shows the quality of the solution in terms of
OTC percentage for eight problem instances (randomly
chosen), each being a combination of various numbers
of sites and objects, with varying storage capacity and
update ratio. For each row, the best result is indicated in
bold. The proposed RAMM algorithm steals the show in
the context of solution quality, but Aε-Star, EA and DA
do indeed give a good competition, with a savings within
a range of 5%-10% of RAMM.

5. Related Work

The data replication problem as presented in Section
2 is an extension of the classical file allocation problem
(FAP). Chu [5] studied the file allocation problem with
respect to multiple files in a multiprocessor system.
Casey [4] extended this work by distinguishing between
updates and read file requests. Eswaran [7] proved that
Casey’s formulation was NP complete. In [13]
Mahmoud et al. provide an iterative approach that
achieves good solution quality when solving the FAP for
infinite server capacities. A complete although old
survey on the FAP can be found in [6]. Apers in [1]
considered the data allocation problem (DAP) in
distributed databases where the query execution strategy
influences allocation decisions.

Most of the research papers outlined in [6] aim at
formalizing the problem as an optimization one,
sometimes using multiple objective functions. Network
traffic, server throughput and response time exhibited by
users are considered for optimization. Although a lot of
effort was devoted in providing comprehensive models,

little attention has been paid to good heuristics for
solving this complex problem. Furthermore access
patterns are assumed to remain static and solutions in the
dynamic case are obtained by re-executing a time
consuming mathematical programming technique.

Some on-going work is related to dynamic
replication of objects in distributed systems when the
read-write patterns are not known apriori. In [16]
Wolfson et al. proposed an algorithm that leads to
optimal single file replication in the case of a tree
network. The performance of the scheme for general
network topologies is not clear though. Dynamic
replication protocols were also considered under the
Internet environment. Heddaya et al. [8] proposed
protocols that load balance the workload among replicas.

Our work differs from all the above in: 1) Taking
into account the more pragmatic scenario in today’s
distributed information environments, we tackle the case
of allocating replicas so as to minimize the network
traffic under storage constraints with “read from the
nearest” and “update through the primary server”
policies, and 2) in using game theoretical techniques.

6. Conclusions

This paper proposed a game theoretical replica
allocation and management mechanism (RAMM) for
fine-grained data replication in large-scale distributed
computing systems such as the Internet. RAMM is a
protocol for automatic replication and migration of
objects in response to demand changes. RAMM aims to
place objects in the proximity of a majority of requests
while ensuring that no hosts become overloaded.

RAMM allows agents to compete for the scarce
memory space at sites so that they can acquire the rights
to place replicas. To cater for the possibility of cartel
type behavior of the agents, RAMM uses Vickrey price
protocol. This leaves the agents with no option, then to
report truthful valuations of the objects that they
represent.

RAMM was compared against some well-known
techniques, such as: branch and bound, greedy, game
theoretical auctions, and genetic algorithms. To provide
a fair comparison, the assumptions and system
parameters were kept the same in all the approaches. The
experimental setup was designed to mimic a large-scale
distributed computing system (the Internet), by using
several Internet topology generators and World Cup
Soccer 1998 web server access logs. The experimental
results revealed that RAMM outperformed the three
widely cited and powerful techniques in both the
execution time and solution quality. In summary,
RAMM exhibited 5%-10% better solution quality and
10%-30% savings in the algorithm termination timings.

References

[1] P. Apers, “Data Allocation in Distributed Database
Systems,” ACM Trans. Database Systems, 13(3), pp.
263-304, 1988.
[2] M. Arlitt and T. Jin, “Workload characterization of
the 1998 World Cup Web Site,” Tech. report, Hewlett
Packard Lab, Palo Alto, HPL-1999-35(R.1), 1999.
[3] K. Calvert, M. Doar, E. Zegura, “Modeling
Internet Topology,” IEEE Communications, 35(6), pp.
160-163, 1997.
[4] R. Casey, “Allocation of Copies of a File in an
Information Network,” in Proc. of IFIPS Congress,
1972, pp. 617-625.
[5] W. Chu, “Optimal File Allocation in a Multiple
Computer System,” IEEE Trans. on Computers, 18(10),
pp. 29-33, 1969.
[6] L. Dowdy and D. Foster, “Comparative Models of
the File Assignment Problem,” ACM Computing
Surveys, 14(2), pp. 287-313, 1982.
[7] K. Eswaran, “Placement of Records in a File and
File Allocation in a Computer Network,” in Proc. of
IFIPS Congress, 1974, pp. 304-307.
[8] A. Heddaya and S. Mirdad, “WebWave: Globally
Load Balanced Fully Distributed Caching of Hot
Published Documents,” in Proc. 17th IEEE ICDCS,
1997, pp. 160-168.
[9] S. Khan and I. Ahmad, “Heuristic-based
Replication Schemas for Fast Information Retrevial over
the Internet,” in Proc. of 17th PDCS, 2004, pp. 278-283.
[10] S. Khan and I. Ahmad, “A Powerful Direct
Mechanism for Optimal WWW Content Replication,”
To appear in Proc. of the 19th IEEE IPDPS, 2005, p. 86.
[11] B. Li, M. Golin, G. Italiano and X. Deng, “On the
Optimal Placement of Web Proxies in the Internet,” in
Proc. of the IEEE INFOCOM, 1999, pp. 1282-1290.
[12] T. Loukopoulos, and I. Ahmad, “Static and
Adaptive Distributed Data Replication using Genetic
Algorithms,” Journal of Parallel and Distributed
Computing, 64(11), pp. 1270-1285, 2004.
[13] S. Mahmoud and J. Riordon, “Optimal allocation
of resources in distributed information networks,” ACM
Trans. on Database Systems, 1(1), pp. 66-78, 1976.
[14] L. Qiu, V. Padmanabhan and G. Voelker, “On the
Placement of Web Server Replicas,” in Proc. of the
IEEE INFOCOM, 2001, pp. 1587-1596.
[15] S. Saurabh and D. Parkes, “Hard-to-Manupilate
VCG-Based Auctions,” Avaialable at: http://www
.eecs. harvard.edu/econcs/pubs/hard_to_manipulate.pdf
[16] O. Wolfson, S. Jajodia and Y. Hang, “An Adaptive
Data Replication Algorithm,” ACM Trans. on Database
Systems, 22(4), pp. 255-314, 1997.

