
 

 

 
 

Non-cooperative, Semi-cooperative, and Cooperative Games-based Grid 
Resource Allocation 

 
 

Samee Ullah Khan and Ishfaq Ahmad 
Department of Computer Science and Engineering

University of Texas at Arlington, TX-76019, U.S.A. 
{sakhan, iahmad}@cse.uta.edu 

 
 

Abstract 
 

In this paper we consider, compare and analyze 
three game theoretical Grid resource allocation 
mechanisms. Namely, 1) the non-cooperative sealed-bid 
method where tasks are auctioned off to the highest 
bidder, 2) the semi-cooperative n-round sealed-bid 
method in which each site delegate its work to others if it 
cannot perform the work itself, and 3) the cooperative 
method in which all of the sites deliberate with one 
another to execute all the tasks as efficiently as possible.  

To experimentally evaluate the above mentioned 
techniques, we perform extensive simulation studies that 
effectively encapsulate the task and machine 
heterogeneity. The tasks are assumed to be independent 
and bear multiple execution time deadlines. The 
simulation model is built around a hierarchical Grid 
infrastructure where machines are abstracted into larger 
computing centers labeled “federations,” each of which 
are responsible for managing their own resources 
independently. These federations are then linked together 
with a primary portal to which Grid tasks would be 
submitted. To measure the effectiveness of these game 
theoretical techniques, the recorded performance is 
evaluated against a conventional baseline method in 
which tasks are randomly assigned to the sites without 
any task execution guarantee. 

 
 

1. Introduction 
 
 
Computational Grids provide transparent access to 

large-scale distributed computational resources and lend 
themselves, by their size and geographic distribution, to 
the creation of federations for sharing and aggregating 
large repertoire of resources [11], [14]. These grids 
consist of heterogeneous resources (PCs, workstations, 
clusters and supercomputers), with varying resource 
management requirements (single system image OS, 
queuing systems, etc.). The resource management systems 

for such grids should provide mechanisms and tools that 
facilitate the realization of the goals of both resource 
owners and users. Most of the existing work on resource 
management and scheduling problems in grids adopts a 
conventional style where a scheduling component decides 
which jobs are to be executed at which site based on 
certain cost functions (AppLeS [3], Netsolve [6], Legion 
[9]). Such cost functions are often driven by system-
centric parameters that enhance system throughput and 
utilization rather than improving the utility of application 
processing.  

This paper presents agent-based game theoretic 
resource management techniques, classified as 
cooperative, semi-cooperative and non-cooperative 
games. Using game theory, the behavior of these agents 
can be tailored to provide profitable contracts to the 
various federations of the grid, and, therefore, can 
provide allocation with a reasonable amount of 
processing and communications overhead. Within each 
federation care must be taken to ensure that the federation 
as a whole operates profitably. The individual resources 
that compose the federation also have their particular 
interests (i.e. some sites may not wish to execute jobs). 
Thus, the need to accommodate the wishes of the 
individual resources and the need of the federation as a 
whole to turn a profit must be balanced out.  

The rules of resource management must decide 
whether the individuals are free to cater for their own 
interests or they have the option of planning as a group in 
advance of choosing their actions. This leads to the main 
question of whether or not the gaming mechanism 
involves cooperation. This paper seeks to find answers to 
these questions by proposing and comparing cooperative 
and non-cooperative gaming mechanism, using 
theoretical and experimental framework. The results are 
not surprising but the study highlights the pros and cons 
of each approach, describing as to how to best optimize 
the system resources. The main highlights of this paper 
are:  

An economic model for grid environments: In this 
model an agent represents a grid site (or machine) and 



 

 

thus has the knowledge of the available computational 
resources, such as, CPU, memory, I/O, etc. Based on this 
information the agents compete individually or 
collectively to execute user submitted tasks.  

Hierarchical policies for resource management in 
grid environments: The hierarchical resource 
management mechanism is a three-tier computational 
model. At the top level is the global portal to which the 
tasks are submitted to be executed by the Grid. This top 
level is a control structure for the middle-level 
federations, which are composed of individual sites. The 
proposed architecture has various advantages, such as 
ease of maintenance, decentralized control and fault 
tolerance. This approach is also analogous to many real 
life examples and consumer models, e.g. food chain 
models [7]. 

Gaming mechanisms for grid resource 
management: The paper proposes three game theoretical 
mechanisms for resource management: (a) A non-
cooperative gaming mechanism where every site 
competes to maximize its profit without having the option 
for cooperation; (b) A cooperative method in which all of 
the sites deliberate with one another to execute all the 
tasks as efficiently as possible (each site negotiates with 
the other sites to maximize the profit of the group as a 
whole); (c) A semi-cooperative method in which each site 
tries to delegate its work to others in a limited fashion. All 
three methods are compared. 
 A mathematical foundation for the use of 
cooperative games in grid scheduling: Specifically, we 
derive mathematical game theoretical results that enable 
us to propose a cooperative Grid resource allocation 
mechanism. Based on this mathematical model, we prove 
that in any cooperative approach, global optima are only 
achievable when cooperation occurs among all the agents.  

The remainder of this paper is organized as follows: 
Section 2 covers the related work pertaining to Grid 
resource allocation. In Section 3 we provide some 
necessary background game theoretical material and push 
the case of choosing different gaming environments. 
Section 4 focuses on describing the system architecture, 
while Section 5 illustrates the Grid computing 
environment.  In Section 6 we focus on describing the 
four game theoretical resource allocation models and also 
describe the baseline method. We provide experimental 
results and final concluding remarks in Sections 7 and 8, 
respectively. 

 
2. Related Work 

 
Over the past several years, economic approaches to 

resource allocation have been developed quite 
successfully. They satisfy some basic requirements for a 
Grid setting [20], namely: 1) they are naturally 
decentralized, 2) decisions about whether to consume or 

provide resources are taken locally by the clients or 
service providers, 3) the use of currency provides 
incentives for service providers to contribute resources, 
and 4) clients have to act responsibly and cannot afford to 
waste resources due to their limited budget. A number of 
systems [1], [3], [10], [16], [26] have been built using a 
market mechanism to allocate the computational 
resources. However, all of them make the inherent 
assumption that a market-based approach is per se better, 
which is ad hoc, as the allocation depends on many 
factors besides demand and supply, such as 
communication delays, bandwidth, server speeds, etc.  

Market mechanisms provide a way of representing 
the system state. They value resources and achieve an 
efficient match of supply and demand. While some 
systems use only a price and match or offers and bids, 
others employ more sophisticated auction protocols [20]. 
Spawn [26], POPCORN [16], and CPM [4] are examples 
of systems which employ decentralized auctions with 
resource accounting. Dynasty [3] pursues a different 
approach: avoiding the communication overhead of 
auctions, it uses brokering without any ongoing 
negotiation. Prices are periodically fixed and there are 
fees for migration and data transport services. A different, 
yet interesting, approach is taken in Challenger [10], 
which implements load balancing with a market approach 
but without money. When a task is submitted, a request 
for bids containing its priority value and information that 
can be used to estimate its execution time is sent to the 
agents in the network. These agents provide bids by 
estimating the job execution time (incorporating certain 
important parameters such as, message delays etc.). A 
similar but more flexible approach is proposed in 
Nimrod-G Resource Broker [1], which is a resource 
management system for scheduling computations on 
globally distributed resources with varying QoS.  

In a resource allocation mechanism proposed in [11] 
each computer optimizes its profits by considering the 
payment and cost involved in handling a task. Another 
approach, GameMosix, is adopted in [25], where agent 
behavior is modeled using a “friendship” model. Through 
this model, computers help each other (by sharing 
resources) only when they have previously established 
friendships. The main focus in both approaches is to 
provide a load balanced environment, which in many 
scenarios is a secondary issue. 

Our work differs from all the above in: 1) providing a 
new hierarchical grid resource management 
infrastructure, 2) proposing various game theoretical 
resource allocation techniques that fit well in the 
proposed infrastructure, 3) extensively comparing the 
gaming strategies, and 4) deriving a cooperative method 
that focuses on optimizing the Grid usage as a whole. 

 
3. The Case for Gaming Environments 



 

 

Game theory is a collection of analytical tools 
designed to help understand the phenomena observable 
when players or decision makers interact. The basic 
assumptions that underlie the theory are that players 
pursue well-defined objectives, that are rational and take 
into account their knowledge or expectations of other 
player’s behavior. There are two basic types of games 
[17]:  

1. Non-cooperative game: It is a game structure in 
which the players do not have the option of planning as a 
group in advance of choosing their actions.  

2. Cooperative game: A game structure in which the 
players have the option of planning as a group in advance 
of choosing their actions.  

In essence, the three game theoretical methods 
proposed here fall in one of the two (or some combination 
of the two) basic categories. From the category of non-
cooperative games we choose to formulate the game of 
Grid task allocation (or resource allocation) as a sealed-
bid auction. In such a setup, a task is awarded to the 
highest bidder, meaning that the agent that is the best fit 
to execute the task wins. Thus, each agent competes in a 
non-cooperative environment to obtain the rights to 
execute tasks. For the work done, each agent is 
compensated by side-payments. If somehow an agent fails 
to execute a task, the game has no procedure to allow 
reallocation of the task.  

To tackle the problem of immediate rejection of 
tasks, we propose a semi-cooperative n-round sealed-bid 
auction, which incorporates task reallocation. The agent 
who is unable to execute the task, on random, chooses an 
agent and passes the un-executable task to it. If the newly 
chosen agent can execute the task then the reallocating 
procedure finishes, otherwise, another agent is chosen on 
random. This process is repeated n-1 times, where n is the 
number of the agents. If even on the n-1 attempt the task 
still remains un-executable, then it is rejected.  

The cooperative approach is the pin-up of this paper. 
All the agents collectively negotiate and deliberate to 
come up with a task allocation that is beneficial to the 
system as a whole. It is to be noted that some individual 
agents may not be content with the decision of the 
coalition, but the resulting allocation is efficient in the 
sense that it aims to reduce the makespan and provides a 
load balanced task allocation. We prove that this 
approach results in a society-efficient allocation that is 
superior to any non-cooperative or semi-cooperative 
approach.  

 
4. Hierarchical Management of Grids 

 
For managing large-scale grid systems, a multi-tier 

hierarchical organization is proposed which consists of: 
Top level: A top-level resource manager is 

responsible for handling tasks submitted to the Grid. This 

manager could be either centralized or distributed. 
Mid-level: Many mid-level federations: collections 

of computing resources grouped by particular interests 
(i.e. resources owned by an entity, resources within a 
geographic region, etc.). 

Bottom-level: Within each federation, many 
individual computing resources (e.g. PCs, clusters and 
supercomputers). 

When an application (metatask) is submitted to the 
Grid, the top level resource manager would give tasks to a 
particular federation, and that federation would then be 
responsible for giving the tasks to the particular 
computing resource that will execute it. By delegating 
responsibility for the tasks to the federation, the Grid can 
be viewed as a set of tens or hundreds of individual 
entities (the federations), instead of thousands or tens of 
thousands of resources, as would be the case with a flat 
model. This makes management of the overall system 
much easier. Additionally, each federation, due to the 
similar interests or common ownership of its participants, 
can follow the same administrative guidelines. This 
allows for ease of management and administration at both 
the federation level because each federation can have a 
set of unique administrative policies while maintaining its 
participation in the Grid through common interfaces, and 
at the Grid level by reducing the number of visible 
participants from view of the top-level resource manager. 

 
5. Grid Computing Environment 

 
To facilitate the management of this hierarchical grid 

architecture (as described in Section 4), we propose a 
multi-agent system. At the top level a Grid broker is 
responsible for handling the Grid job queue (we call it a 
job queue since it includes both user submitted tasks and 
local system tasks), similar to the setup of the Globus 
framework [11]. The federation level special agents called 
ambassadors are responsible for interaction with the 
broker. Underneath the ambassadors, each computing 
resource would be represented by an agent. By creating a 
grid economy, such as the one used in Nimrod-G [5], the 
ambassadors can submit bids for execution contracts to 
the broker, who would then select the winning federation 
by means of a sealed-bid auction. In order for the 
ambassadors to effectively estimate the execution time for 
a contract bid, each ambassador will query the agents in 
its federation for estimates on each task in order to 
generate an Estimated Time of Completion (ETC) matrix. 
(Details of how to obtain an ETC matrix are provided in 
Section 7.) The ambassador will then be responsible for 
selecting which tasks it can execute and the price at which 
it can execute those tasks. 

The remainder of this paper will be concerned with 
how an ambassador efficiently distributes tasks from an 
awarded execution contract to its agents. 



 

 

6. Resource Allocation Methods 
 
In this section we first describe the conventional 

baseline method, followed by detailing the three game 
theoretical resource allocation techniques.   

 
6.1. Conventional Baseline Method (BASE) 

 
A conventional baseline (BASE) method is necessary 

to establish a lower bound on the performance of various 
game theoretical methods. We will use this method to 
visualize the difference in the solution quality between 
BASE and the studied game theoretical techniques. The 
BASE method was originally proposed in [18].  The basic 
idea of BASE is that when tasks arrive at the middle-tier, 
each agent is assigned a task on random by the 
ambassador. If an agent is unable to execute the task 
within the specified deadline, it is rejected without any 
reallocation. (Notice that if all the machines are heavily 
loaded, BASE can be a very effective strategy.) It is easy 
to see that BASE can allocate tasks in linear time O(m).  

 
6.2. Non-cooperative Method (NC) 

 
The non-cooperative (NC) sealed-bid method relies 

on the solicitation of bids from the agents. Each agent 
submits a bid for a task that is at the head of the 
ambassador’s job queue. After receiving bids from all the 
agents, the ambassador selects the agent which submitted 
the highest bid and awards the task for execution. For 
simplicity, we assume that an agent j’s bid (bj) is 
inversely proportional to the ETC of a job onto its 
machine. (This is very common assumption; for instance, 
see [11] and [16].) That is, bj=[n-1/n]vj, where vj=1/ETC 
of task and n is the number of agents in the system. The 
following steps are involved in a successful run of NC: 

Step 1: Ambassador de-queues the job queue and 
announces that a task i is ready for bidding. 

Step 2: Each agent in parallel does the following: 
Step 2a:  Derive ETC for task i.  
Step 2b: Artificially en-queues task i into its local 

job queue to observe if it is possible to execute the task 
within its associated deadline. (Details of how the 
deadlines are associated with a particular task is discussed 
in detail in Section 7. For the time being assume that each 
task has a deadline associated with it). 

Step 2c: If answer to Step 2b is yes then submit 
bj=[n-1/n]vj, otherwise submit bj=0 (since ETC=∞). 

Step 3: Ambassador sorts the bids and chooses the 
agent with the highest bid. 

Step 4: Ambassador allocates the task to the agent 
identified in Step 3, and the sequence repeats. 

Notice that the ambassador does not immediately 
compensate the agent for executing the task. This is 

because the bidding process is entirely based on ETC. It 
is possible that after the allocation of a task i, an agent j’s 
job queue (which includes both local and Grid tasks) is 
overwhelmed with local (machine generated) tasks. This 
would delay the processing of task i, and probably to the 
extent that it is no longer possible to finish i’s execution 
before its deadline. If that happens then there is no option 
than to reject task i. Based on this observation, the 
ambassador compensates the agent if and only if it 
receives the required output (a guarantee on the actual 
execution of tasks) of the task. The compensation is 
equivalent to the bid posed by the agent who executed the 
task, making it a first-price sealed-bid auction [13]. By 
inspecting NC, we observe that tasks can be allocated in 
O(mnlogn), where the most expensive computation takes 
place in Step 3 (sorting of the submitted bids).  

 
6.3. Non-cooperative Method with Certain 
Degree of Cooperation (NNC) 

 
The semi-distributed n-round non-cooperative (NNC) 

sealed bid method is similar to the NC method, but allows 
some limited cooperation. This is accomplished by 
handing a task to a different agent if the original agent 
cannot execute that task before the specified deadline, as 
opposed to immediately rejecting the task as is the case 
with NC. This handing off occurs n-1 times, after which 
the task is rejected. Since the initial task allocation 
procedure of NNC is exactly the same as NC, below we 
describe the task handoff steps involved in a successful 
run of NNC: 

Step 1: For each assigned task repeatedly observe the 
deadline constraint in conjunction to the local job queue. 

Step 2: If (at some point) the task cannot be 
executed, then randomly choose an agent (to differentiate 
we tag these agents as helper agents) and send the task for 
execution. (With the task attach a data structure (D) that 
holds the information about who is the original agent and 
which helpers have already been consulted.) 

Step 3: After the job arrives at the helper’s site, it 
artificially en-queues the task into its local job queue to 
observe if it is possible to execute the task within its 
associated deadline.  

Step 3a: If it can execute the handoff task, then the 
process terminates.  

Step 3b: Otherwise, choose on random another agent 
that is currently not present in D and send the task to it. If 
in D the number of helpers is equivalent to n-1, then 
reject the task. (The data structure remains associated 
with the task until the task is successfully executed or it is 
rejected.) 

Notice that the compensation method of NC is fully 
applicable in NCC without any alteration. The agents 
(original or helper) are duly paid upon receiving the 
necessary output of tasks. Since NNC is similar to NC the 



 

 

initial allocation takes O(mnlogn), but NNC allows 
reallocation of tasks so the running time of NNC becomes 
O(mnlogn+mr), where mr is the number of reallocated 
tasks.  

 
6.4. Cooperative Method (COOP) 

 
In this setup all agents cooperate (COOP) to 

collectively progress towards the global goal of 
efficiently allocating tasks. In non-cooperative games, 
agents’ sets of possible actions and their preferences over 
the possible outcomes, where an outcome is a profile of 
actions; each action is taken by a single agent 
autonomously. The primitive of the cooperative game 
model is the collection of set of joint actions that each 
group of agents (coalition) can take independently of the 
remaining agents. An outcome of a cooperative (or more 
appropriately a coalition) game is a specification of the 
coalition that forms and the joint action it takes. The other 
primitive of the model of a coalition game is the profile of 
the players’ preferences over the set of all possible 
outcomes. Thus although actions are taken by coalitions, 
the theory is based on the individual’s preferences.  

Definition 1 [17]: A coalition game consists of: 
1) a finite set of agents (players) N, and 
2) a function v that associates with every nonempty 

subset S of N (which forms a coalition) a real number 
v(S) (which is the worth of S). 

For each coalition S, v(S) is the total payoff that is 
available for division among the members of S. In other 
words, the set of joint actions that the coalition S can take 
consists of all possible divisions of v(S) among the 
members of S. It is important to understand that v(S) 
should be interpreted as the maximum payoff that the 
coalition S can guarantee independently of the behavior 
of the coalition N\S. Another important property 
(Definition 3) of the worth of the coalition of all players 
(v(N)) is that the worth is at least as large as the sum of 
the worth of the members of any partition of N.  

Definition 2 [17]: A coalition game (N,v)  is cohesive 
if 1( ) ( )K

kkv N v S=≥ ∑ for every partition {S1, …, SK} of N. 
In essence, Definition 2 is a special case of the 

condition of superadditivity, which requires that v(S⋃
T)≥v(S)+v(T) for all coalitions S and T with S∩T = ∅ . 
This property is also important to understand the central 
concept of coalition games – the core. The main idea 
behind the core is similar to that of the Nash equilibrium 
of a non-cooperative game, i.e., an outcome is stable (or 
in equilibrium) if no deviation is profitable. In the case of 
the core, the outcome is stable if no coalition can deviate 
and obtain an outcome better for all of its members. Note 
that in a coalition game there can be as many as 2N 
possible coalitions. It would be impractical to go through 
each and every coalition in order to find which coalition 

is the most beneficial. But from Definitions 1 and 2 it is 
clear that the coalition game profits the most when a 
coalition of N agents forms – called the grand coalition 
[22]. Thus, if we are able to (some how) guarantee that in 
a particular coalition game the grand coalition is always 
the most beneficial, then we can simply confine our 
search to the grand coalition. To be technically precise, 
we need to prove that the core of a coalition game is 
nonempty [17]. If the core is nonempty, then there exists 
at least one outcome that is stable via the grand coalition. 
On the other hand if the core is empty then there is no 
outcome that can guarantee stability. Below we proceed 
in that direction. 

Let (N,M,U,σ0) be a coalition Gird task allocation 
game, where N = {1,…,n} is the set of agents, M = {1,…, 
m} is the set of tasks in the ambassador’s job queue, U is 
a non-negative n×m matrix that gives the utility (uij) of 
each task i for each agent j (the utility is to be interpreted 
as the ETC of a task on an agent’s  machine, i.e., the 
smaller the ETC the larger is the utility), and σ0 is the 
order of the ambassador’s job queue. We define the worth 
v(S) of a coalition S⊆N as the maximum total profit 
(utility) it can guarantee itself without any help from N\S. 
This utility can be determined in two stages. In the first 
stage, all players sequentially choose a task, respecting σ0. 
In the second stage, the members of S reallocate the 
chosen tasks among themselves to reach coalitional 
efficiency. Obviously, the outcome of this reallocation 
depends on the tasks chosen by the members of S, and 
therefore also on the tasks chosen by the members of N\S. 

In order to describe the value v(S) of a coalition S⊆
N, we make use of a very common technique to describe 
coalition structure formation – the extensive form game 
[13]. We define an extensive form coalition task 
allocation game ({S,N\S},T,CS,uS) with agent set {S,N\S}. 
The various components of this game are as follows.  

1. The Root: For the root of the tree T, let 1≤k≤m 
and the set of bijective maps from {1,…,k} to M is 
denoted by Sk. A map π∊ Sk is interpreted as a situation 
where task π(i) is chosen by agent i for each 1≤i≤k. 
Similarly, we define S0 as the situation where none of the 
tasks is chosen yet. Let T be the rooted tree with node set 
Sk and root S0. There is an arc between π∊ Sk and τ∊ Sk+1 
with 0≤k≤m-1, if and only if π(i)=τ(i) for all 1≤i≤k. That 
is, there is an arc between π and τ if π can be extended to 
τ by assigning an appropriate task to player k+1. So, 
V1=Sk and V2=Sm are the sets of non-terminal and terminal 
nodes, respectively.  

2. Control: The control function CS:Sk→{S,N\S} is 
defined as follows. Let π∊ Sk for some 0≤k≤m-1. Then 
we define CS(π)=S if and only if k+1∊ S. So coalition S 
controls the nodes at which one of its members is to 
choose a task for scheduling. Let ∑S and ∑N\S be the set 
of all possible strategies of agents S and N\S, respectively. 



 

 

3. Utility function: Finally, we describe the utility 
function uS:∑S×∑N\S→ ℜ {S,N\S}. Let y=(yS,yN\S) ∊

∑S×∑N\S. Let τ∊ Sm be the terminal node reached by 
strategy profile y, and let HS(τ)={τ (i):i ∊ S} be the 
corresponding set of tasks identified for scheduling by S. 
Now define uS

S(y)=max{∑i ∊ S:π ∊ П(S,HS(π))}, and 
uS

N\S(y)=-uS
S(y). So, the payoff of S at terminal node τ∊

Sm is the maximum utility S obtains after reallocating the 
initially chosen tasks and the payoff for N\S is just the 
opposite of the payoff of S. Hence, N\S maximizes its 
payoff at the extensive form game by minimizing the 
payoff of S and vice versa. 

Based on that above discussion the coalition grid task 
allocation game (N,v) is defined by: 

\
\

( ) max min ( ),        
N SS

S
SyN SyS

v S u y S N
∈∈ ∑∑

= ∀ ⊆ . (1)

Notice that v(S) is precisely the maximum utility that 
coalition S can guarantee itself, without any help from 
N\S. Using Equation 1, we show the non-emptiness of the 
core of the coalition grid task allocation game. 

Theorem 1: Let (N,M,U,σ0) be the coalition gird task 
allocation game and let (N,v) be its corresponding 
coalition game. Let the core of (N,v) be the set C(v) = {x
∊ ℜ N:∑i∊ Sxi≥v(S)} for every S⊆N and ∑i∊ Nxi≥v(N). Let 
(u,w)∊ C(v) and let the mapping τ:{1,…,m}→M be a 
bijection such that wτ (1)≥… ≥wτ (m). Define xi=ui+ wτ (i) for 
all i∊ N. Then, the allocation x belongs to the core of 
(N,v), i.e.,  x∊ C(v). 

Proof: By definition of x, ∑i∊ Nxi=v(N⋃ M). Since 
v(N⋃ M) = v(N), ∑i∊ Nxi = v(N). It remains only to show 
stability. Consider the extensive form game 
({S,N\S},T,CS,uS), with strategy zN\S∊ ∑N\S for the agents 
in set N\S: “always schedule the task with highest wi that 
is still available.” More precisely, let zN\S∊ ∑N\S be such 
that zN\S(σ) = π for each σ∊ Sk, k+1∊ N\S, and π∊ Sk+1 
with wπ(k+1)≥wj for all j∊ M\{σ(1),…,σ(k)}. 

Now if the agents in set S would use a similar 
strategy in the strategic form game as the agents in set 
N\S, i.e., also “always pick the highest wi that remains,” 
then the agents in set S would acquire {π(i):i∊ S} as its 
set of tasks. If the agents in set S use a different strategy, 
then, given the agents in set N\S’s strategy zN\S, it would 
obtain a set of tasks A with lower wi values. Formally, 

( )a
a A i S

w w iπ
∈ ∈

≤∑ ∑ . (2)

In particular, let the agents in set S play a best reply 
against strategy zN\S. Let A* be the set of tasks scheduled 
by the agents in set S. Let π:S→A* be the optimal 
rescheduling of the tasks. From Equation 2 it follows that: 

*
( ) ( )a

i S i Sa A
w i w w iπ σ

∈ ∈∈
= ≤∑ ∑ ∑ . (3)

Hence, 

( )

( ) ( ) ( { ( ): })A

i
i S

i i
i S i S i S i S

i i
i S

U

x

u w i u w i v S i i Sσ π

π

π
∈

∈ ∈ ∈ ∈

∈

=

+ ≥ + ≥ ∈

=

∑

∑ ∑ ∑ ∑

∑

∪

. 

(4)

The first inequality is due to Equation 3. The second 
inequality is satisfied because (u,w) ∊ C(vA). The last 
equality is satisfied since the matching {(i,π(i)):i∊ S} is 
an optimal rescheduling, and hence optimal for coalition 
S⋃ {π(i):i∊ S} at the assignment game (N,vA).  

From the definition of the game (N,v) it follows that: 

\
\ \( ) max ( , ) max min ( ) ( )

N SS S

S S
S SN S yN SyS ySi i

i S
u yS z u y v SU π ∈∈ ∈∈

≥ ==
∑∑ ∑∑ . (5)

Now the theorem follows immediately from 
Equations 4 and 5.■ 

The above results assert that in the coalition gird task 
scheduling game, the agents can only gain a superior 
utility if they all cooperate to find an allocation for the 
tasks. Thus, rather than investigating all the 2N possible 
forms of coalition, we can confine ourselves with 
evaluating the outcome of the grand coalition. However, 
it remains to be seen how one can optimally match n 
agents to the m tasks, since the total possible 
combinations are of magnitude O(m!/(n-m)!). It turns out 
that this computationally infeasible problem can be 
solved in O(nm2) time using the widely cited Hungarian 
method [14] . Below we detail the Hungarian method.  

Step 0: Take as input the ETC matrix U. 
Step 1: Subtract the smallest entry in each row form 

all the entries in that row. (Each row will have at least one 
zero entry and all other entries will remain positive.) 

Step 2: Subtract the smallest entry in each column 
from each entry in that column. (Each row and column 
will have at least one zero entry.) 

Step 3: Cover the zeros identified by Steps 1 and 2 
by crossing out the rows and columns of U. This cover 
should be obtained by the minimal number of crossings. 

Step 4: Check for optimality. 
Step 4a: If the number of crossings is n, then 

optimality is reached. Go to Step 6. 
Step 4b: If the number of crossing is less than n, then 

an optimal assignment need to be found. Go to Step 5. 
Step 5: Determine the smallest entry not covered by 

any crossing. Subtract this entry from all uncovered 
entries and add it to all entries covered by both a 
horizontal and vertical crossings. Go to Step 3. 

Step 6: Scan each row. The first zero is the task to 
agent allocation provided that the column does not 
already contain an allocation. 

Below we detail the steps involved in a successful 
run of COOP: 

Step 1: Ambassador de-queues the job queue n 
times, where n is the number of agents in the system. This 



 

 

is done for the following two reasons. First, in a real life 
system, the number of tasks would be much larger than 
the number of agents in the system. To permit a realistic 
negotiation process, limiting the number of tasks for a 
single round of negotiation is extremely important. 
Second, coalition formation requires perfect information, 
if we do not limit the size of the utility matrix for the 
Hungarian method, then we run into the problem of how 
to obtain ETC for every task that arrives in real-time at 
the ambassador’s job queue. Essentially we want the 
agents to meet, discuss, negotiate, agree on the allocation, 
send their allocated tasks to their local job queues and 
repeat the process for the next set of tasks.  

Step 2: Use the Hungarian method to find the task to 
agent mapping. 

Step 3: Ambassador allocates the tasks to the agents 
that are identified in Step 3, and the sequence repeats. 

Once again notice that the compensation method of 
NC is fully applicable in COOP without any alteration. 
The agents are duly paid upon receiving the necessary 
output of tasks. To cater for the case when an agent is 
unable to execute an allocated task due to deadline 
constraints, that particular task is sent to the ambassador 
who inserts that task in front of its job queue so that it can 
be immediately included in the next round of task 
allocation. Observe that the Hungarian method is called at 
least O(m/n) times in a successful rum of COOP. The 
Hungarian method itself takes O(nm2). Therefore 
including the number of reallocated tasks, the total 
running time of COOP becomes O((m/n)nm2+mr). 

Finally, we quote from literature the following result 
which enables us to prove that the COOP method is a 
society-efficient method for task scheduling in a 
computational grid.  

Lemma 1 [22]: A coalition game is society-efficient 
if and only if the core is nonempty. ■ 

Theorem 2 [22]: COOP is a society-efficient 
method. 

Proof: Follows from the result of Theorem 1 by 
applying Lemma 1. ■ 

 
7. Experiments and Discussion of Results 

 
A hierarchical Grid infrastructure is simulated using 

a discrete event-driven simulator, where tasks are 
submitted to a centralized broker. The broker then 
advertises the job queue to be bid on, after which each 
federation submits a bid to the broker. The bids are 
generated by soliciting estimates from the federation’s 
sites. As mentioned in Section 5, we only confine 
ourselves with the allocation of tasks at the middle and 
bottom tier levels. Therefore, the simulation encapsulates 
a federation of workstations. 

Note that the ETC values may differ from actual 
times, e.g., actual times may depend on input data and 

communication delays. Therefore, for the simulation 
studies, the Actual Time to Complete (ATC) values were 
calculated using the ETC values as the mean. (The ATC 
values were used for the evaluation of the techniques.) 
The tasks were assumed to be independent with multiple 
deadlines. The worth of a submitted task degrades 
according to a degradation scheme, if the task misses a 
certain deadline. More specifically, let wi be a deadline 
factor for task i, where 

1.00 if finished at or below its primary deadline,
0.50 if finished at or below its 50% deadline,
0.25 if finished at or below its 25% deadline,
0.00 if is never executed.

i

i
i

i

i

t
t

w
t
t










=
 

(Note that wi indicates the degradation scheme of the 
worth a task according to when the task finishes.) 

A grid system with 16 machines and an average of 
200,000 tasks was simulated for a period of 300 minutes. 
For each of the scenarios that are discussed later in this 
section, 50 trials were run. (A trial is defined as one such 
simulation of the Grid system.) The period from 0 to 10 
minutes was the system start-up period. The period 
between 10 to 250 minutes was considered the evaluation 
period (i.e., the period where the scheduling techniques’ 
performances were measured). Within the simulation 
period (i.e., the system start up period and the evaluation 
period), the arrival times of the tasks were randomly 
generated using a Poisson distribution. To better simulate 
an overloaded system, the mean task inter-arrival time 
was faster (3.2 seconds) during the system start-up period 
than during the evaluation period (7.6 seconds). In 
addition, random bursty arrival rate periods were 
introduced during the evaluation period, where the arrival 
rate was increased. These periods did not overlap with 
each other and had a mean task inter-arrival time of 7 
seconds. The duration of a bursty period was 10 minutes. 

The estimated execution times of all tasks taking 
heterogeneity into consideration were generated using the 
gamma distribution method described in [2]. Four 
different cases of ETC heterogeneities were used in this 
study, the high task and high machine heterogeneity case, 
the low task and low machine heterogeneity case, the high 
task and low machine heterogeneity case and the low task 
and high machine heterogeneity case. (The data presented 
in this article is the average of the 4 cases over all the 
trials.)  

The deadline of each task was calculated by 
incorporating the arrival time of the task, plus the median 
execution time of the task (across all machines), plus a 
multiplier times the median execution time of all tasks 
(i.e., 20 minutes of simulation study). Two types of 
deadlines, i.e., loose and tight, were used in the 
simulation. The multiplier was changed to make the 
deadlines (i.e., the 100%, 50%, and 25% deadline) for the 
two types of deadlines. For the loose deadline, the



 

 

 
multiplier was set to four, eight, and twelve for the 
primary (100%), 50%, and 25% deadline, respectively. 
the tight deadline, the multiplier was set to one, two, and 
four for the primary (100%), 50%, and 25% deadline, 
respectively. (By loosening the deadlines the depreciation 
of the task as its execution is delayed is reduced, thereby 
increasing the task’s after-execution worth. For example, 
a multiplier of 4 would increase a task’s after-execution 

worth by 25%; a multiplier of 8 would increase it by 
50%, etc.) To evaluate the various techniques discussed 
in this paper, we made use of the following performance 
matrices: 

Makespan: The latest finish time among all tasks. 
Turnaround time: The average time spent by a task 

in the Grid. 
Slowdown ratio: The ratio of the average turnaround 

Makespan

BASE NC

NNC COOP

1.0E+09

6.0E+09

1.1E+10

1.6E+10

2.1E+10

Methods

Ti
m

e 
(s

ec
.)

 

 Turnaround time

BASE
NC

NNC
COOP

1.0E+08
6.0E+08
1.1E+09
1.6E+09
2.1E+09

2.6E+09
3.1E+09
3.6E+09
4.1E+09
4.6E+09

Methods

Ti
m

e 
(s

ec
.)

Slowdown Ratio

BASE

NC

NNC COOP

1

1.00005

1.0001

1.00015

1.0002

Methods

Sl
ow

do
w

n 
(R

at
io

)

Figure 1. Makespan.  Figure 2. Turnaround time. Figure 3. Slowdown ratio. 
    

Utilization

NNC

COOP

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

1.2%

1.4%

Methods

U
til

iz
at

io
n 

(%
)

 

 Rejection rate

BASE

NC

NNC
COOP

0.0%
1.0%
2.0%
3.0%
4.0%
5.0%
6.0%
7.0%
8.0%
9.0%

10.0%

Methods

R
ej

. r
at

e 
(%

)

Average Tasks per Agent

BASE

NC
NNC COOP

10500

11000

11500

12000

12500

13000

Methods

A
vg

. t
as

ks
/a

ge
nt

Figure 4. Utilization.  Figure 5. Task rejection rate. Figure 6. Average Tasks per agent.
 
 

Table 1. Load balancing: Tasks per agent and standard deviation on the distribution of tasks. 
 

Agents Methods (Tasks per Agent) 
 BASE NC NNC COOP 

1 11066 11736 1097 12443 
2 11350 12014 1806 12474 
3 11385 12479 3393 12517 
4 11025 11773 1378 12437 
5 11644 12431 6048 12549 
6 10886 11585 934 12417 
7 11845 12750 17104 12560 
8 11413 12607 4377 12543 
9 11143 11919 1599 12483 

10 11572 12347 3288 12527 
11 11300 12103 1917 12490 
12 11476 12251 2289 12514 
13 11190 11933 1647 12473 
14 11797 13014 147496 12579 
15 11053 11937 1497 12476 
16 11387 12125 2347 12503 

Standard deviation 278.50 394.00 36239.22 46.02 



 

 

time to the average waiting time of all tasks.  
Utilization: The fraction of resources used by 

reallocated tasks. 
Task rejection rate: The percentage of tasks 

rejected by all the agents in the system. 
To begin, we study (Figure 1) the makespan achieved 

by the techniques. Some very interesting results are 
observable. First, surprisingly BASE outperforms NC by 
producing a smaller makespan. This is because in NC the 
task allocation is biased in favor of more powerful (faster 
machines) agents. Second, we can observe tremendous 
reduction in makespan even with minor cooperation 
among agents. The makespan is reduced by as much as 
85% in case of NCC. COOP outperforms all the 
techniques by producing a makespan of 2409119610. 
Although this is only an improvement of 8.52% compared 
to NCC’s makespan of 2633596204, yet COOP’s task 
allocation is superior in load balancing, reduced task 
rejection and other important performance matrices which 
will be discussed subsequently. 

Turnaround time is an important factor in 
determining how fast an application enters and exits the 
Grid system. This measure includes: 1) the time a task 
takes to come to the front of the queue (of the broker) so 
that it can be considered for scheduling, 2) the time 
required for a task to propagate through the network from 
the broker to the ambassador queue, 3) the time taken for 
a task to move to the front of the ambassador queue, 4) 
propagation delay from the ambassador to the agent’s 
machine (site), 5) the time a task takes to reach the front 
of the site queue at which it is to be executed, 6) the time 
needed to schedule a task on the site’s local scheduler, 7) 
the time a task takes if reallocation is performed, 8) the 
time a task actually takes for execution, and 9) the time it 
takes to go back to the broker (possibly through the 
ambassador). We seek to identify methods that can 
effectively reduce the cumulative time that a task spends 
in the Grid system. A technique that exhibits a small 
turnaround time makes itself available faster to process 
other inline tasks. Figure 2 illustrates the average 
turnaround time of the studied techniques. These results 
are almost identical to the makespan results. The 
techniques based on shortest turnaround time are ranked 
as: 1) COOP, 2) NNC, 3) BASE, 4) NC. 

The slowdown ratio encapsulates the average total 
time taken by a job in the Gird infrastructure due to 
various task allocation decisions. A method that makes 
allocation decisions correctly and in a timely fashion 
would have a reduced slowdown ratio.  Figure 3 portrays 
the results obtained by observing the slowdown ratio. 
Clearly NC, which basically takes decisions locally in a 
greedy fashion, exhibits the minimum slowdown ratio. 
COOP performed surprisingly well with a slowdown ratio 
of 1.0016 (third best). It is natural to think that COOP 
would depict the worst of the slowdown time; however, 

COOP’s decision quality is unparallel. No decision on 
task allocation is made unless it is negotiated with all the 
agents in the system. On the other hand BASE which uses 
no informed decision on task allocation performs the 
worst among all the techniques. The techniques ranked 
according to the smallest slowdown ratio are as follows: 
1) NC, 2) COOP, 3) NNC, 4) BASE.  

If an agent cannot executed a given task, it may 
become necessary to reallocate that task to another agent. 
However, this necessity comes at a cost of increase in 
turnaround time and slowdown ratio. A technique that 
exhibits a smaller utilization factor ensures superior 
allocation. Note that BASE and NC cannot be included in 
this comparison because they have no facility for 
reallocation of tasks. Figure 4 shows COOP with 0.69% 
utilization compared to 1.2% of NNC. This is analogous 
to the measure of task rejection rate (Figure 5), where 
COOP again outperforms the other methods, followed by 
NNC and NC. 

The average tasks per node or agent (Figure 6) is a 
mirror inverse of the rejection rate measurement, as it is 
based on the total number of tasks completed by the 
federation. Load balancing (Table 1), however, provides 
important information about how well the methods can 
distribute the tasks among the various agents in order to 
create the most efficient use of the federation’s resources. 
The entries in Table 1 represent the number of tasks 
executed by each agent averaged (and rounded off) over 
the number of trials. Due to the heterogeneous nature of 
the federation, NNC has the worst load balancing in our 
study (based on standard deviation). In this case one 
agent (Agent 14) completely outclasses the other agents 
in the system, and as a result more tasks are allocated 
there. This in turn increases the reallocation of tasks, 
hence the worst load balancing. BASE demonstrated 
acceptable load balancing because of the random 
assignment of tasks to sites. NC provides a mediocre load 
balancing but worst than the naïve BASE method. COOP 
demonstrated the best load balancing of any method due 
to the desire of sites to ensure the most efficient execution 
scheme possible. The techniques ranked according to the 
best load balanced workload are: 1) COOP, 2) BASE, 3) 
NC, 4) NNC. 

 
8. Conclusions 
 

This paper proposed and compared various game 
theoretical resource allocation techniques in the Grid 
computing environment. The cooperation among the 
agents needed when an agent is unable to guarantee the 
execution of task can occur in a number of ways as 
illustrated by the techniques discussed in this paper. On 
one extreme was a technique that did not allow any 
cooperation among agents, while on the other extreme 
was a method that utilized the concept of coalition 



 

 

formation to collectively approach the problem. 
The simulation study, which was built around a 

newly proposed hierarchical Grid infrastructure, used a 
diverse workload that captures task to machine 
heterogeneity extremely well. The hierarchical Grid 
infrastructure consists of machines that abstract into 
larger computing centers labeled “federations,” each of 
which is responsible for managing its own resources 
independently. These federations are then linked together 
with a primary portal to which Grid jobs would be 
submitted. Using this simulation model we extensively 
evaluated the proposed game theoretical techniques and 
studied their behaviors under various performance 
metrics, such as, makespan, turnaround time, slowdown 
ratio, utilization, task rejection rate and load balancing. 
Based on our experimental findings, we conclude that the 
cooperation among agents is not only important but 
extremely necessary in order to execute tasks that bear 
multiple execution time deadlines. Although the proposed 
cooperative method has high computational complexity, 
yet the task allocation has low: 1) task rejection, 2) 
utilization, 3) slowdown ratio, and 4) turn around time. 
Moreover, the allocation has near perfect load balancing 
and minimum makespan. For applications that are of 
critical nature this cooperative approach is the best 
choice. For other applications the simple conventional 
baseline method would be best suitable as other game 
theoretical approaches such as, the non-cooperative and 
semi-cooperative are only just better.  

 
References 

 
[1] D. Abramson, R. Buyya, and J. Giddy, “A Computational 
Economy for Grid Computing and its Implementation in the 
Nimrod-G Resource Broker,” Future Generation Computer 
Systems Journal, vol. 18, no. 8, pp. 1061-1074, 2002. 
[2] S. Ali, H. J. Siegel, M. Maheswaran and D. Hensgen, 
“Representing Task and Machine Heterogeneities for 
Heterogeneous Computing Systems,” Tamkang Journal of 
Science and Engineering, Special 50th Anniversary Issue, vol. 
3, no. 3, 2000, pp. 195-207, 2000. 
[3] M. Backschat, A. Pfaffinger, and C. Zenger, “Economic-
based Dynamic Load Distribution in Large Workstation 
Network,” in Proc. of the 2nd International. Euro-Par 
Conference, vol. 2, 1996, pp. 631-634.  
[4] F. Berman and R. Wolski, “The AppLes Project: A Status 
Report,” in Proc. of the 8th NEC Research Symposium, 1997. 
[5] J. Brooke, M. Foster, S. Pickles, K. Taylor, T. Hewitt, 
“Mini-Grids: Effective test-beds for Grid Application,” in Proc. 
of the 1st IEEE/ACM International Workshop on Grid 
Computing, 2000, pp. 158-169. 
[6] R. Buyya, D. Abramson and J. Giddy, “Nimrod-G: An 
Architecture for a Resource Management and Scheduling 
System in a Global Computational Grid,” International 
Conference on High Performance Computing in Asia-Pacific 
Region, 2000, pp. 283-289. 
[7] H. Casanova and J. Dongarra, “NetSolve: A network server 

for solving computational science problems,” International 
Journal of Supercomputing Applications and High Performance 
Computing, vol. 11, no. 3, pp. 212-223, 1997. 
[8] T. Casavant and J. Kuhl, “A Taxonomy of Scheduling in 
General-purpose Distributed Computing Systems,” IEEE Trans. 
on Software Engineering, vol. 14, no. 2, pp. 141-154, 1988.  
[9] S. Chaplin, J. Karpovich and A. Grimshaw, “The Legion 
Resource Management System,” in Proc. of the 5th Workshop 
on Job Scheduling Strategies for Parallel Processing, 1999, pp. 
162-178. 
[10] A. Chavez, A. Moukas, and P. Maes, “Challenger: A 
Multi-agent System for Distributed Resource Allocation,” in 
Proc. of the 1st ACM International Conference on Autonomous 
Agents, 1997, pp. 323-331. 
[11] I. Foster, C. Kesselman, “Globus: A Metacomputing 
Infrastructure Toolkit,” International Journal of 
Supercomputing Applications, vol. 11, no. 2, pp. 115-128, 1997. 
[12] D. Grosu and A. T. Chronopoulos, “Algorithm Mechanism 
Design for Load Balancing in Distributed Systems,” IEEE 
Trans. Systems, Man, and Cybernetics, vol. 34, no. 1, pp. 77–84, 
2004. 
[13] V. Krishna. Auction Theory, Academic Press, San Diego, 
U.S.A., 2002.  
[14] H. Kuhn, “The Hungarian Method for the Assignment 
Problem,” Naval Res. Logistics Quarterly, vol. 2, pp. 83-97, 
1955. 
[15] B. Lesyng, P. Bała, D. Erwin, “EUROGRID: European 
Computational Grid Test bed,” Journal of Parallel and 
Distributed Computing, vol. 63 no. 5, pp. 590-596, May 2003  
[16] N. Nisan, S. London, O. Regev, and N. Camiel, “Globally 
Distributed Computation over the Internet: The POPCORN 
Project,” in Proc. of the 18th ICDCS, 1998, pp. 592-601.  
[17] M. Osborne and A. Rubinstein, A Course in Game Theory, 
The MIT Press, Cambridge, MA, 1994. 
[18] T. Quint, “On One-sided Versus Two-sided Matching 
Markets,” Games and Economic Behavior, vol. 16, pp. 124-134, 
1996. 
[19] K. Ramamritham, J. Stankovic and W. Zhao, “Distributed 
Scheduling of Tasks with Deadlines and Resource 
Requirements,” IEEE Trans. on Computers, vol. 38, no. 4, pp. 
1110-1123, 1989. 
[20] T. Sandholm, “Distributed Rational Decision Making”, 
Multi-agent Systems. MIT Press, 2000. 
[21] H. Scarf, “The Allocation of Resources in the Presence of 
Indivisibilities,” Journal of Economic Prespectives, vol. 4, pp. 
111-128, 1994. 
[22] L. Shapley, “On Balanced Sets and Cores,” Naval Res. 
Logistics Quaterly, vol. 14, pp. 453-460, 1967. 
[23] L . Shapley and M. Shubik, “The Assignment Game I: The 
Core,” International Journal of Game Theory, vol. 1, pp. 111-
130, 1971. 
[24] L. Svenson, “Large Indivisibilities: An Analysis with 
Indivisibilities,” Econometrica, vol. 51, pp. 939-954, 1983. 
[25] D. E. Volper, J. C. Oh, and M. Jung, “GameMosix: Game-
Theoretic Middleware for CPU Sharing in Un trusted P2P 
Environment,” in Proc. of 17th ICDCS, 2004. 
[26] C. Waldspurger, T. Hogg, B. Huberman, J. Kephart, and 
W. Stornetta, “Spawn: A Distributed Computational Economy,” 
IEEE Trans. on Software Engineering, vol. 18, no. 2, pp. 103-
117, 1992. 


